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ABSTRACT
In this paper, we study a sampling and transmission scheduling

problem for multi-source remote estimation, where a scheduler

determines when to take samples from multiple continuous-time

Gauss-Markov processes and send the samples over multiple chan-

nels to remote estimators. The sample transmission times are i.i.d.
across samples and channels. The objective of the scheduler is

to minimize the weighted sum of the time-average expected es-

timation errors of these Gauss-Markov sources. This problem is

a continuous-time Restless Multi-armed Bandit (RMAB) problem

with a continuous state space. We prove that the bandits are in-

dexable and derive an exact expression of the Whittle index. To

the extent of our knowledge, this is the first Whittle index policy

for multi-source signal-aware remote estimation of Gauss-Markov

processes. We further investigate signal-agnostic remote estimation

and develop a Whittle index policy for multi-source Age of Infor-

mation (AoI) minimization over parallel channels with i.i.d. random
transmission times. Our results unite two theoretical frameworks

for remote estimation and AoI minimization: threshold-based sam-

pling and Whittle index-based scheduling. In the single-source,

single-channel scenario, we demonstrate that the optimal solution

to the sampling and scheduling problem can be equivalently ex-

pressed as both a threshold-based sampling strategy and a Whittle

index-based scheduling policy. Notably, the Whittle index is equal

to zero if and only if two conditions are satisfied: (i) the channel is

idle, and (ii) the estimation error is precisely equal to the threshold

in the threshold-based sampling strategy. Moreover, the method-

ology employed to derive threshold-based sampling strategies in

the single-source, single-channel scenario plays a crucial role in

establishing indexability and evaluating the Whittle index in the

more intricate multi-source, multi-channel scenario. Our numerical

results show that the proposed policy achieves high performance

gain over the existing policies when some of the Gauss-Markov

processes are highly unstable.
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Figure 1: A multi-source, multi-channel remote estimation system.
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1 INTRODUCTION
Due to the prevalence of networked control and cyber-physical

systems, real-time estimation of the states of remote systems has

become increasingly important for next-generation networks. For

instance, a timely and accurate estimate of the trajectories of nearby

vehicles and pedestrians is imperative in autonomous driving, and

real-time knowledge about the movements of surgical robots is es-

sential for remote surgery. In these examples, real-time system state

estimation is of paramount importance to the performance of these

networked systems. Other notable applications of remote state esti-

mation include UAV navigation, factory automation, environment

monitoring, and augmented/virtual reality.

To assess the freshness of system state information, one metric

named Age of Information (AoI) has drawn significant attention in

recent years, e.g., [14], [34]. AoI is defined as the time difference

between the current time and the generation time of the freshest

received state sample. Besides AoI, nonlinear functions of the AoI

have been introduced in [38], [39], [16], [35] and illustrated to be

useful as a metric of information freshness in sampling, estimation,

and control [49], [35].

In many applications, the system state of interest is in the form

of a signal Xt , which may vary quickly at time t and change slowly
at a later time t + τ (even if the system state Xt is Markovian and

time-homogeneous). AoI, as a metric of the time difference, cannot

precisely characterize how fast the signalXt varies at different time

https://doi.org/10.1145/3565287.3610263
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instants. To achieve more accurate system state estimation, it is

important to consider signal-aware remote estimation, where the
signal sampling and transmission scheduling decisions are made

using the historical realization of the signal process Xt . Signal-
aware remote estimation can achieve better performance than AoI-

based, signal-agnostic remote estimation, where the sampling and

scheduling decisions are made using the probabilistic distribution of

the signal processXt , and the mean-squared estimation error can be

expressed as a function of the AoI. The connection between signal-

aware remote estimation and AoI minimization was first revealed

in a problem of sampling a Wiener process [37]. Subsequently, it

was generalized to the case of (stable) Ornstein-Uhlenbeck (OU)

process in [28].

In many remote estimation and networked control systems, mul-

tiple sensors send their measurements (i.e., signal samples) to the

destined estimators. For example, tire pressure, speed, and acceler-

ation sensors in a self-driving vehicle send their data samples to

the controller and nearby vehicles to make safe maneuvers [14]. In

this paper, we consider a remote estimation system with N source-

estimator pairs and L channels, as illustrated in Figure 1. Each

source n is a continuous-time Gauss-Markov process Xn,t , defined
as the solution of a Stochastic Differential Equation (SDE)

dXn,t = θn (µn − Xn,t )dt + σndWn,t , (1)

where θn , µn , and σn > 0 are the parameters of the Gauss-Markov

process, and theWn,t ’s are independentWiener processes. If θn > 0,

Xn,t is a stable Ornstein-Uhlenbeck (OU) process, which is the only

nontrivial continuous-time process that is stationary, Gaussian,

and Markovian [6]. If θn = 0, then Xn,t = σnWn,t is a scaled

Wiener process [20]. If θn < 0, we call Xn,t an unstable Ornstein-

Uhlenbeck (OU) process, because limt→∞ E[X
2

n,t ] = ∞ in this

case. These Gauss-Markov processes can be used to model random

walks [22], interest rates [23], commodity prices [7], robotic swarms

[15], biological processes [2], control systems (e.g., the transfer of

liquids or gases in and out of a tank) [18], state exploration in

deep reinforcement learning [17], and etc. A centralized sampler

and scheduler decides when to take samples from the N Gauss-

Markov processes and send the samples over L channels to remote

estimators. At any time, at most L sources can send samples over

the channels. The samples experience i.i.d. random transmission

times over the channels due to interference, fading, etc. The n-th
estimator uses causally received samples to reconstruct an estimate

X̂n,t of the real-time source value Xn,t .
Our objective is to find a sampling and transmission schedul-

ing policy that minimizes the weighted sum of the time-average

expected estimation errors of these Gauss-Markov sources. We de-

velop a Whittle index policy to solve this problem. The technical

contributions of this work are summarized as follows:

• We study the optimal sampling and transmission scheduling

problem for the remote estimation of multiple continuous

Gauss-Markov processes over parallel channels with i.i.d.
random transmission times. This problem is a continuous-

time Restless Multi-armed Bandit (RMAB) problem with a

continuous state space, for which it is typically quite chal-

lenging to show indexability or to evaluate the Whittle index

efficiently. We are able to prove indexability (see Theorem

1) and derive an exact expression for the Whittle index (The-

orem 2 and Lemma 1). These results generalize prior studies

on the remote estimation of a single Gauss-Markov process

[27, 28, 36] to the multi-source, multi-channel case. To the

best of our knowledge, such results for multi-source remote

estimation of Gauss-Markov processes were unknown be-

fore. Among the technical tools used to prove these results

are Shiryaev’s free boundarymethod [30] for solving optimal

stopping problems and Dynkin’s formula [25] for evaluating

expectations involving stopping times.

• We further investigate signal-agnostic remote estimation.

In this context, the optimal sampling and scheduling prob-

lem becomes a multi-source AoI minimization problem over

parallel channels with i.i.d. random transmission times. We

establish the indexability property and derive a precise ex-

pression of the Whittle index (Theorems 4-5 and Lemma 3).

Technically, these results carry forth and expand upon prior

findings onWhittle index based AoIminimization [10, 12, 41]

in the following manner: In [10, 12, 41], the transmission

time remains constant, resulting in the optimality of the zero-

wait sampling policy defined in [39, 48]. Consequently, the

Whittle index derived in that case consistently maintains a

non-negative value. In contrast, our results take into account

scenarios involving i.i.d. random transmission times. In such

instances, the optimality of the zero-wait sampling policy

is not guaranteed, leading to the possibility of both positive

and negative values for the Whittle index.

• Our results unite two important theoretical frameworks for

remote estimation and AoI minimization: threshold-based

sampling [27, 28, 35, 36] and Whittle index-based scheduling

[10, 12, 41]. In the single-source, single-channel scenario, we

demonstrate that the optimal solution to the sampling and

scheduling problem can be expressed as both a threshold-

based sampling strategy ([27, 28, 36]) and a Whittle index-

based scheduling policy (see Theorems 3, 6). Particularly

noteworthy is that the Whittle index is equal to zero at time

t if and only if two conditions are satisfied: (i) the channel

must be idle at time t , and (ii) the threshold condition is

precisely met at time t . Moreover, the methodology used

for deriving threshold-based sampling in the single-source,

single-channel scenario plays a pivotal role in establishing

indexability and evaluating the Whittle index in the more

complex multi-source, multi-channel scenario.

• Our numerical results show that the proposed policy per-

forms better than the signal-agnostic AoI-based Whittle in-

dex policy and the Maximum-Age-First, Zero-Wait (MAF-

ZW) policy. The performance gain of the proposed policy is

high when some of the Gauss-Markov processes are highly

unstable.

2 RELATEDWORK
Remote state estimation has received considerable attention in

numerous studies, e.g., see [1, 21, 27, 28, 31, 36, 42, 45] and two

recent surveys [11, 43]. Optimal sampling of one-dimensional and

multi-dimensional Wiener processes with zero-delay, perfect chan-

nel was studied in [21, 31]. A dynamic programming method was

used in [31] to find the optimal sampling policy of the stable OU

processes numerically for the case of zero-delay, perfect channel.

A connection between remote estimation and AoI minimization

was first reported in [36], where optimal sampling strategies were

obtained for the remote estimation of the Wiener process over

a channel with i.i.d. random transmission times. This study was

further generalized to the case of the stable OU process in [28],

where the optimal sampling strategy was derived analytically. In
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[42], the authors considered remote estimation of the Wiener pro-

cess with random two-way delay. When the system state follows a

binary ON-OFF Markov process, Whittle index scheduling policies

for remote estimation were developed in [1]. Our study makes a

contribution on the remote estimation of multiple Gauss-Markov

processes (possibly with different distributions), by showing in-

dexability and providing an analytical expression of the Whittle

index.

Moreover, AoI-based scheduling for timely status updating has

been studied extensively in, e.g., [3–5, 9, 10, 12, 13, 32, 40, 41, 50].

A detailed survey on AoI was presented in [49]. In [9], the authors

showed that under inference constraints, the scheduling problem

for minimizing the age in wireless networks is NP-hard. In [4], the

authors minimized the weighted-sum peak AoI in a multi-source

status updating system, subject to constraints on per-source battery

lifetime. A joint sampling and scheduling problem for minimizing

increasing AoI functions was considered in [3]. AoI minimization

in single-hop networks was considered in [13]. AoI-based schedul-

ing with timely throughput constraints was considered in [12]. A

Whittle index-based scheduling algorithm for minimizing AoI for

stochastic arrivals was considered in [10]. In [40], [41], the Whittle

index policy to minimize age functions for reliable and unreliable

channels was proposed. A Whittle index policy for multiple source

scheduling for binary Markov sources was studied in [5]. A Whittle

index policy for signal-agnostic remote estimation was studied in

[45] for minimizing increasing AoI functions. In [32], the authors

proposed a Whittle index policy for minimizing non-monotonic

AoI functions. In the present paper, we propose a Whittle index

policy for AoI-based, signal-agnostic remote estimation for i.i.d.
random transmission times.

3 MODEL AND FORMULATION
3.1 System Model
Consider a remote estimation systemwith N source-estimator pairs

and L channels, which is shown in Figure 1. Each source n is a

continuous-time Gauss-Markov process Xn,t , as defined in (1). The

sources are independent of each other and the parameters θn , µn ,
and σn may vary across the sources. Hence, the N sources could

be a mixing of scaled Wiener processes, stable OU processes, and

unstable OU processes. A centralized sampler and transmission

scheduler chooses when to take samples from the sources and

transmit the samples over the channels to the associated remote

estimators. At any given time, each source can be served by no

more than one channel. In other words, if there are multiple samples

from the same source waiting to be transmitted, only one of these

samples can be transmitted over a single channel simultaneously.

Sample transmissions are non-preemptive, i.e., once a channel starts
to send a sample, it must finish transmitting the current sample

before switching to serve another sample. Whenever a sample is

delivered to the associated estimator, an acknowledgment (ACK) is

immediately sent back to the scheduler.

The operation of the system starts at time t = 0. Let Sn,i be
the generation time of the i-th sample of source n, which satisfies

Sn,i ≤ Sn,i+1. This sample is submitted to a channel at time Gn,i ,
undergoes a random transmission time Yn,i , and is delivered to the

estimator n at time Dn,i , where Sn,i ≤ Gn,i , andGn,i +Yn,i = Dn,i .
Because (i) each source can be served by at most one channel

at a time and (ii) the sample transmissions are non-preemptive,

Dn,i ≤ Gn,i+1. The sample transmission times Yn,i ’s are i.i.d.

across samples and channels with mean 0 < E[Yn,i ] < ∞. In
addition, we assume that the Yn,i ’s are independent of the Gauss-
Markov processes Xn,t . The i-th sample packet (Sn,i ,Xn,Sn,i ) con-
tains the sample value Xn,Sn,i and its sampling time Sn,i . Let
Un (t) = maxi {Sn,i : Dn,i ≤ t , i = 1, 2, . . .} be the generation

time of the freshest received sample from source n at time t . The
AoI of source n at time t is defined as [14, 34]

∆n (t) = t −Un (t) = t −max

i
{Sn,i : Dn,i ≤ t , i = 1, 2, . . .}. (2)

Because Dn,i ≤ Dn,i+1, ∆n (t) can also be expressed as

∆n (t) = t − Sn,i , if t ∈ [Dn,i ,Dn,i+1), i = 0, 1, . . . . (3)

At time t = 0, the initial state of the system satisfies Sn,0 = 0, and

Dn,0 = Yn,0. The initial value of the Gauss-Markov process Xn,0 is

finite.

3.2 MMSE Estimator
At any time t ≥ Sn,i , the Gauss-Markov process Xn,t can be ex-

pressed as

Xn,t =



Xn,Sn,i e
−θn (t−Sn,i ) + µn

[
1 − e−θn (t−Sn,i )

]
+

σn√
2θn

Wn,1−e−2θn (t−Sn,i ) , if θn > 0,

σnWn,t , if θn = 0,

Xn,Sn,i e
−θn (t−Sn,i ) + µn

[
1 − e−θn (t−Sn,i )

]
+

σn√
−2θn

Wn,e−2θn (t−Sn,i )−1
, if θn < 0,

(4)

where three expressions are provided for stable OU process (θn > 0),

scaled Wiener process (θn = 0), and unstable OU process (θn < 0),

respectively. The first two expressions in (4) for the stable OU

process and the scaled Wiener process were provided in [19]. The

third expression in (4) for the unstable OU process is proven in the

technical report [29] of the present paper.

At time t , each estimator n utilizes causally received samples

to construct an estimate X̂n,t of the signal value Xn,t . The infor-
mation that is available at the estimator contains two parts: (i)

Mn,t = {(Sn,i ,Xn,Sn,i ,Gn,i ,Dn,i ) : Dn,i ≤ t , i = 1, 2, . . .}, which
contains the sampling time Sn,i , sample valueXn,Sn,i , transmission

starting time Gn,i , and the delivery time Dn,i of the samples up to

time t and (ii) no sample has been received after the last delivery

time maxi {Dn,i : Dn,i ≤ t , i = 1, 2, . . .}. Similar to [28, 31, 33, 36],

we assume that the estimator neglects the second part of the in-

formation. If t ∈ [Dn,i ,Dn,i+1), the MMSE estimator is given by

[27, 28]

X̂n,t =E[Xn,t |Mn,t ]

=

{
Xn,Sn,i e

−θn (t−Sn,i ) + µn
[
1 − e−θn (t−Sn,i )

]
, if θn , 0,

σnWn,Sn,i , if θn = 0.
(5)

The estimation error εn (t) of source n at time t is given by

εn (t) = Xn,t − X̂n,t . (6)

By substituting (4) and (5) into (6), if t ∈ [Dn,i ,Dn,i+1), then

εn (t) =


σn√
2θn

Wn,1−e−2θn (t−Sn,i ) , if θn > 0,

σn (Wn,t −Wn,Sn,i ), if θn = 0,
σn√
−2θn

Wn,e−2θn (t−Sn,i )−1
, if θn < 0.

(7)
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3.3 Problem Formulation
Let π = (πn )

N
n=1

denote a sampling and scheduling policy, where

πn= ((Sn,1,Gn,1), (Sn,2,Gn,2), . . .) contains the sampling and trans-

mission starting time instants of source n. Let πn denote a sub-

sampling and scheduling policy for source n. In causal sampling

and scheduling policies, each sampling time Sn,i is determined

based on the up-to-date information that is available at the sched-

uler, without using any future information. Let Π denote the set of

all causal sampling and scheduling policies and letΠn denote the set

of causal sub-sampling and scheduling policies for source n, both of

which satisfy (i) each source can be served by at most one channel

at a time, and (ii) the sample transmissions are non-preemptive. At

any time t , cn (t) ∈ {0, 1} denotes the channel occupation status of

source n. If source n is being served by a channel at time t , then
cn (t) = 1; otherwise, cn (t) = 0. Hence, if t ∈ [Gn,i ,Dn,i ), then

cn (t) = 1. Because there are L channels,

∑N
n=1

cn (t) ≤ L is required

to hold for all t ≥ 0.

Our objective is to find a causal sampling and scheduling policy

for minimizing the weighted sum of the time-average expected

estimation errors of the N Gauss-Markov sources. This sampling

and scheduling problem is formulated as

inf

π ∈Π
lim sup

T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

ε2

n (t)dt

]
(8)

s.t.

N∑
n=1

cn (t) ≤ L, cn (t) ∈ {0, 1},n = 1, 2, . . . ,N , t ∈ [0,∞), (9)

wherewn > 0 is the weight of source n. The sampling and schedul-

ing policy π can be simplified by simplifying the sub-sampling and

scheduling policy πn . In our technical report [29], we prove that in

the optimal policies to (8)-(9), the sampling time of the i-th sample

Sn,i and the transmission starting time of the i-th sample Gn,i are
equal to each other, i.e., Sn,i = Gn,i . Therefore, each sub-policy πn
in π can be simply denoted as πn = (Sn,1, Sn,2, . . .).

4 MAIN RESULTS
4.1 Signal-aware Scheduling
Problem (8)-(9) is a continuous-time Restless Multi-armed Bandit

(RMAB) with a continuous state space, where the estimation error

εn (t) of source n is the state of the n-th restless bandit and each rest-

less bandit is a Markov Decision Process (MDP) with two actions:

active and passive. If a sample of source n is taken and submitted

to a channel at time t , we say that bandit n takes an active action at

time t ; otherwise, bandit n is made passive at time t . If a sample of

source n is in service, only the passive action is available for source

n.
An efficient approach for solving RMABs is to develop a low-

complexity scheduling algorithm by leveraging the Whittle index

theory [46, 47]. If all the bandits are indexable and certain technical

conditions are satisfied, the Whittle index policy is asymptotically

optimal as the number of bandits N and the number of channels L
increases to infinity, keeping the ratio L/N constant [46]. In this

section, we develop a Whittle index policy for solving problem

(8)-(9) in three steps: (i) first, we relax the constraint (9) and utilize

a Lagrangian dual approach to decompose the original problem

into separated per-bandit problems; (ii) next, we prove that the

per-bandit problems are indexable; and (iii) finally, we derive closed-

form expressions for theWhittle index. Because the RMAB in (8)-(9)

has a continuous state space and requires continuous-time control,

demonstrating indexability in Step (ii) and efficiently evaluating

the Whittle index in Step (iii) are technically challenging. However,

we are able to overcome these challenges.

4.1.1 Relaxation and Lagrangian Dual Decomposition. In stan-

dard restless multi-armed bandit problems, the channel resource

constraint needs to be satisfied with equality. In this paper, we

consider a scenario where less than L bandits can be activated at

any time t , as indicated by constraint (9). Following [44, Section

5.1.1], we introduce L additional dummy bandits that will never
change state and hence their estimation errors are 0 (i.e., ε0(t) = 0).

When a dummy bandit is activated, it occupies one channel, but
it does not incur any estimation error. Let c0(t) ∈ {0, 1, 2, . . . ,L}
denotes the number of dummy bandits that are activated at time t .
By considering dummy bandits, the RMAB (8)-(9) is equivalent to

inf

π ∈Π
lim sup

T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

ε2

n (t)dt

]
(10)

s.t.

N∑
n=0

cn (t) = L, c0(t) ∈ {0, 1, . . . ,L}, t ∈ [0,∞),

cn (t)∈{0, 1},n = 1, 2, . . . ,N , t ∈ [0,∞), (11)

which is an RMAB with an equality constraint.

Following the standard relaxation and Lagrangian dual decom-

position procedure in the Whittle index theory [47], we relax the

constraint (11) as

lim sup

T→∞

N∑
n=0

Eπ

[
1

T

∫ T

0

cn (t)dt

]
= L. (12)

The relaxed constraint (12) only needs to be satisfied on average,

whereas (11) is required to hold at any time t . Then, the RMAB

(10)-(11) is reformulated as

inf

π ∈Π
lim sup

T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

ε2

n (t)dt

]
(13)

s.t. lim sup

T→∞

N∑
n=0

Eπ

[
1

T

∫ T

0

cn (t)dt

]
= L,

c0(t)∈{0, 1, . . . ,L}, cn (t)∈{0, 1},n=1, 2, . . . ,N , t∈[0,∞). (14)

Next, we take the Lagrangian dual decomposition of the relaxed

problem (13)-(14), which produces the following problem with a

dual variable λ ∈ R, also known as the activation cost [47]:

inf

π ∈Π
lim sup

T→∞
Eπ

[
1

T

∫ T

0

N∑
n=1

wnε
2

n (t) + λ

( N∑
n=0

cn (t) − L

)
dt

]
. (15)

The term
1

T

∫ T
0

∑N
n=0

λLdt in (15) does not depend on policy π and

hence can be removed. Then, Problem (15) can be decomposed into

(N + 1) separated sub-problems. The sub-problem associated with

source n is

m̄n,opt = inf

πn ∈Πn
lim sup

T→∞
Eπn

[
1

T

∫ T

0

wnε
2

n (t) + λcn (t)dt

]
, (16)

where m̄n,opt is the optimum value of (16) and n = 1, 2, . . . ,N . On

the other hand, the sub-problem associated with the dummy bandits
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is given by

inf

π0∈Π0

lim sup

T→∞
Eπn

[
1

T

∫ T

0

λc0(t)dt

]
, (17)

where π0 = {c0(t), t ∈ [0,∞)} and Π0 is the set of all causal activa-

tion policies π0.

4.1.2 Indexability. We now establish the indexability of the

RMAB in (10)-(11). Let γn (t) ∈ [0,∞) denote the amount of time

that has been used to send the current sample of source n at time t .
Here, if no sample from source n is currently in service at time t ,
then γn (t) = 0; if a sample from source n is currently in service at

time t , then γn (t) > 0. Consequently, if γn (t) > 0, the active action

is not available for source n at time t .
LetΨn (λ) be a set of states (ε,γ ) ∈ R×[0,∞) such that if εn (t) = ε

and γn (t) = γ , the optimal solution for (16) (or (17) when n = 0) is

to take a passive action at time t .

Definition 1. (Indexability). [44] Bandit n is said to be index-
able if, as the activation cost λ increases from −∞ to∞, the set Ψn (λ)
increases monotonically, i.e., λ1 ≤ λ2 implies Ψn (λ1) ⊆ Ψn (λ2). The
RMAB (10)-(11) is said to be indexable if all (N + 1) bandits are
indexable.

In general, establishing the indexability of an RMAB can be a chal-

lenging task. Because the per-bandit problem (16) is a continuous-

time MDP with a continuous state space, determining the index-

ability of (16) appears to be quite formidable. In the sequel, we

will utilize the techniques developed in our previous work [28] to

solve (16) precisely and analytically characterize the set Ψn (λ). This
analysis will allow us to demonstrate that (16) is indeed indexable.

Define

G(x) =

√
π

2

ex
2

x
erf(x), (18)

K(x) =

√
π

2

e−x
2

x
erfi(x), (19)

where erf(x) and erfi(x) are the error function and imaginary error

function, respectively, determined by [8, Sec. 8.25]

erf(x) =
2

√
π

∫ x

0

e−t
2

dt , (20)

erfi(x) =
2

√
π

∫ x

0

et
2

dt . (21)

If x = 0, both G(x) and K(x) are defined as their limits G(0) =
limx→0G(x) = 1 and K(0) = limx→0 K(x) = 1, respectively. Both

G(·) and K(·) are even functions. The function G(x) is strictly in-

creasing on x ∈ [0,∞) and G(0) = 1 [28]. On the other hand, K(x)
is strictly decreasing on x ∈ [0,∞) and K(0) = 1 [27]. Hence, the

inverse functions ofG(x) and K(x) are well defined on x ∈ [0,∞).
The relation between these two functions is given by [27]

K(x) = G(jx), (22)

where j =
√
−1 is the unit imaginary number.

Proposition 1. If the Yn,i ’s are i.i.d. with 0 < E[Yn,i ] < ∞, then
(Sn,1(βn ), Sn,2(βn ), . . .) with a parameter βn is an optimal solution
to (16), where

Sn,i+1(βn ) = inf

t

{
t ≥ Dn,i (βn ) : |εn (t)| ≥vn (βn )

}
, (23)

Dn,i (βn ) = Sn,i (βn ) + Yn,i , vn (βn ) is defined by

vn (βn ) =



σn√
θn

G−1

(
wn

σ 2

n
2θn
E[e−2θnYn,i ]

wn
σ 2

n
2θn
−βn

)
, if θn > 0,

1√
wn

√
3(βn −wnσ

2

nE[Yn,i ]), if θn = 0,

σn√
−θn

K−1

(
wn

σ 2

n
2θn
E[e−2θnYn,i ]

wn
σ 2

n
2θn
−βn

)
, if θn < 0,

(24)

G−1(·) and K−1(·) are the inverse functions of G(x) in (18) and K(x)
in (19), respectively, defined in the region of x ∈ [0,∞), and βn is the
unique root of

E

[∫ Dn,i+1(βn )

Dn,i (βn )
wnε

2

n (t)dt

]
−βnE[Dn,i+1(βn )−Dn,i (βn )]

+ λE[Yn,i+1]=0. (25)

The optimal objective value to (16) is given by

m̄n,opt =
E
[∫ Dn,i+1(βn )
Dn,i (βn )

wnε
2

n (t)dt
]
+ λE[Yn,i+1]

E[Dn,i+1(βn )−Dn,i (βn )]
. (26)

Furthermore, βn is exactly the optimal objective value of (16), i.e.,
βn = m̄n,opt.

The proof is provided in our technical report [29].

Proposition 1 complements earlier optimal sampling results for

the remote estimation of the Wiener process (i.e., the case of θn = 0

and λ = 0) [36] and stable OU process (i.e., θn > 0 and λ = 0) [28],

by (i) adding a third case on unstable OU process (i.e., θn < 0) and

(ii) incorporating an activation cost λ ∈ R.
By using Proposition 1, we can analytically characterize the set

Ψn (λ). To that end, we first show that the threshold vn (βn ) in (23)

is a function of the activation cost λ. For any given λ, βn is the

unique root of equation (25). Hence, βn can be expressed as an

implicit function βn (λ) of λ, defined by equation (25). Moreover,

the threshold vn (βn ) can be rewritten as a function vn (βn (λ)) of
the activation cost λ. According to (23) and the definition of set

Ψn (λ), a point (εn (t),γn (t)) ∈ Ψn (λ) if either (i) γn (t) > 0 such

that a sample from source n is currently in service at time t , or (ii)
|εn (t)| < vn (βn (λ)) such that the threshold condition in (23) for

taking a new sample is not satisfied. By this, an analytical expression

of set Ψn (λ) is derived as

Ψn (λ) = {(ε,γ ) ∈ R × [0,∞) : γ > 0 or |ε | < vn (βn (λ))}. (27)

Using (27), we can prove the first key result of the present paper:

Theorem 1. The RMAB problem (10)-(11) is indexable.

Proof sketch. According to Proposition 1, for any λ, the optimal

solution to (16) is a threshold policy. Using this, we can show that

the unique root βn (λ) of (25) is a strictly increasing function of λ.
In addition, vn (βn ) in (24) is a strictly increasing function of βn .
Hence, vn (βn (λ)) is a strictly increasing function of λ. Substituting
this into (27), if λ1 ≤ λ2, then Ψn (λ1) ⊆ Ψn (λ2). For the dummy
bandits, it is optimal in (17) to activate a bandit when λ < 0. Hence,

dummy bandits are always indexable. The details are provided in

our technical report [29]. □

4.1.3 Whittle Index Policy. Next, we introduce the definition of

the Whittle index.
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Definition 2. [47] If bandit n is indexable, then the Whittle index
Wn (ε,γ ) of bandit n at state (ε,γ ) is defined by

Wn (ε,γ ) = inf

λ
{λ ∈ R : (ε,γ ) ∈ Ψn (λ)}, (28)

which is the infimum of the activation cost λ for which it is better not
to activate bandit n.

Theorem 2. The following assertions are true for the Whittle index
Wn (ε,γ ) of problem (16) at state (ε,γ ):

(a) If γ = 0, then the Whittle indexWn (ε,γ ) is presented in the
following three cases:

(i) Case 1: If θn > 0 (i.e., Xn,t is a stable OU process), then

Wn (ε, 0) =
wn
E[Yn,i ]

{
E[Dn,i+1(ε) − Dn,i (ε)]

σ 2

n
2θn

(
1 −
E[e−2θnYn,i ]

G
(√θn
σn ε

) )
− E

[ ∫ Dn,i+1(ε )

Dn,i (ε )
ε2

n (s)ds

]}
, (29)

(ii) Case 2: If θn = 0 (i.e., Xn,t is a scaled Wiener process), then

Wn (ε, 0) =
wn
E[Yn,i ]

{
E[Dn,i+1(ε) − Dn,i (ε)]

(
ε2

3

+ σ 2

nE[Yn,i ]

)
− E

[ ∫ Dn,i+1(ε )

Dn,i (ε )
ε2

n (s)ds

]}
, (30)

(iii) Case 3: If θn < 0 (i.e., Xn,t is an unstable OU process), then

Wn (ε, 0) =
wn
E[Yn,i ]

{
E[Dn,i+1(ε) − Dn,i (ε)]

σ 2

n
2θn

(
1 −
E[e−2θnYn,i ]

K
(√−θn

σn ε
) )

− E

[ ∫ Dn,i+1(ε )

Dn,i (ε )
ε2

n (s)ds

]}
, (31)

where G(·) and K(·) are defined in (18) and (19), respectively.
(b) If γ > 0, then

Wn (ε,γ ) = −∞. (32)

Proof sketch. When γ = 0, by (27), (28), and the monotonicity of

vn (·) and βn (·), the Whittle indexWn (ε, 0) is equal to the unique

root λ of equation

|ε | = vn (βn (λ)). (33)

Hence,Wn (ε, 0) = β−1

n (v
−1

n (|ε |). By substituting (24) and (25) into

(33) and using the fact that G(·) and K(·) are even functions, state-

ment (a) in Theorem 2 is proven. When γ > 0, (ε,γ ) is always in the

set Ψn (λ) for any λ ∈ R. Hence, by using (28),Wn (ε, λ) = −∞. By
this, statement (b) in Theorem 2 is proven. The details are provided

in our technical report [29]. □
In Theorem 2, the delivery timeDn,i (ε) is expressed as a function

of ε for the following reason: in the optimal solution to (16), the

sample delivery time is a function of the activation cost λ. If the
activation cost λ in (16) is chosen as λ =Wn (ε,γ ), then the sample

delivery time in the optimal solution to (16) is a function of ε .
We use the notation Dn,i (ε) to remind us that the expectations

E[Dn,i+1(ε)−Dn,i (ε)] and E[
∫ Dn,i+1(ε )
Dn,i (ε )

ε2

n (s)ds] in (29)-(31) change

as ε varies.
In order to compute the Whittle indexWn (ε,γ ), we need to calcu-

late the expectationsE[Dn,i+1(ε)−Dn,i (ε)] andE[
∫ Dn,i+1(ε )
Dn,i (ε )

ε2

n (s)ds]

in (29)-(31). Because Sn,i (ε) and Dn,i (ε) are stopping times of the

process Xn,t , numerically evaluating these two expectations is non-

trivial. This challenge can be addressed by resorting to Lemma 1

provided below, which is obtained by using Dynkin’s formula [24,

Theorem 7.4.1] to simplify expectations involving stopping times.

To that end, let us introduce a Gauss-Markov process On,t with
a zero initial condition On,0 = 0 and parameter µn = 0, which is

expressed as

On,t =


σn√
2θn

Wn,1−e−2θn t , if θn > 0,

σnWn,t , if θn = 0,
σn√
−2θn

Wn,e−2θn t−1
, if θn < 0.

(34)

By comparing (7) with (34), the estimation error process εn (t) has
the same distribution with as the time-shifted Gauss-Markov pro-

cess On,t−Sn,i (ε ), where t ∈ [Dn,i (ε),Dn,i+1(ε)).
Then, we have the following lemma for computing the expecta-

tions in (29), (30), and (31).

Lemma 1. In Theorem 2, it holds that

E[Dn,i+1(ε) − Dn,i (ε)] = E
[
Rn,1

(
max

{
|ε |, |On,Yn,i |

})]
, (35)

E

[∫ Dn,i+1(ε )

Dn,i (ε )
ε2

n (s)ds

]
=E

[
Rn,2

(
max

{
|ε |, |On,Yn,i |

}
+On,Yn,i+1

) ]
− E

[
Rn,2

(
On,Yn,i

) ]
,

(36)

where if θn , 0, then

Rn,1(ε) =
ε2

σ 2

n
2F2

(
1, 1;

3

2

, 2;

θn

σ 2

n
ε2

)
, (37)

Rn,2(ε) = −
ε2

2θn
+

ε2

2θn
2F2

(
1, 1;

3

2

, 2;

θn

σ 2

n
ε2

)
; (38)

if θn = 0, then

Rn,1(ε) =
ε2

σ 2

n
, (39)

Rn,2(ε) =
ε4

6σ 2

n
. (40)

In (37) and (38), we have used the generalized hypergeometric

function, which is defined by [26, Eq. 16.2.1]

pFq (a1,a2, · · · ,ap ;b1,b2, · · ·bq ; z)

=

∞∑
n=0

(a1)n (a2)n · · · (ap )n

(b1)n (b2)n · · · (bp )n

zn

n!

, (41)

where

(a)0 = 1, (42)

(a)n = a(a + 1)(a + 2)· · ·(a + n − 1), n ≥ 1. (43)

Lemma 1 is more general than Lemma 1 in [28], because Lemma 1

holds for all three cases of the Gauss-Markov processes, i.e., θn > 0,

θn = 0, and θn < 0, whereas Lemma 1 in [28] was only shown for

θn > 0. Moreover, (35)-(36) in Lemma 1 are neater than (22)-(23) in

Lemma 1 of [28]. Due to space limitation the proof of Lemma 1 is

relegated to our technical report [29].

The expectations in (35) and (36) can be evaluated by Monte-

Carlo simulations of scalar random variables On,Yn,i and On,Yn,i+1

which is much easier than directly simulating the entire process

{εn (t), t ≥ 0}.

The Whittle index of the dummy bandits is derived in the follow-

ing lemma.
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Algorithm 1 Whittle Index Policy for Signal-aware Remote Estimation

1: Initialize the set of passive bandits A = {1, 2, . . . ,N }.
2: for all time t do
3: Update Xn,t and X̂n,t for all n = 1, 2, . . . ,N using (4) and

(5), respectively.

4: Update εn (t), γn (t), and the Whittle indexWn (εn (t),γn (t))
for all n = 1, 2, . . . ,N using (6) and (29), (30), (31), (32), (35),

and (36).

5: Update A = {n ∈ {1, 2, . . . ,N } : γn (t) = 0}.

6: for all l = 1, 2, . . . ,L do
7: if channel l is idle and max

n∈A
Wn (εn (t),γn (t)) ≥ 0 then

8: n = argmaxn∈AWn (εn (t),γn (t)).
9: Take a sample of bandit n and send it on channel l .
10: A← A − {n}.
11: end if
12: end for
13: end for

Lemma 2. TheWhittle index of the dummy bandits is 0, i.e.,W0(ε,γ )
= 0.

The proof of Lemma 2 and theWhittle index policy for the RMAB

(10)-(11) is provided in our technical report [29]. This policy acti-

vates the L bandits with the highest Whittle index at any given time

t . As stated in Lemma 2, each dummy bandit has a Whittle index of

W0(ε0(t),γ0(t)) = 0. Consequently, if a bandit n (for n = 1, 2, . . . ,N )

possesses a negative Whittle index, denoted asWn (εn (t),γn (t)) < 0,

it will remain inactive. Furthermore, if source n is being served by

a channel at time t such that γn (t) > 0, thenWn (εn (t),γn (t)) = −∞
and no more channel will be scheduled to serve source n.

The Whittle index scheduling policy for solving the original

sampling and scheduling problem (8)-(9) is illustrated in Algorithm

1. Because RMAB (8)-(9) and the RMAB (10)-(11) are equivalent to

each other, the Whittle index policy for RMAB (10)-(11) (provided

in [29]) and the Whittle index policy in Algorithm 1 are equivalent.

Specifically, at any time t , L bandits having the highest non-negative
Whittle indexWn (ε,γ ) will be activated. Because in the relaxed

RMAB (13)-(14), a bandit n havingWn (ε,γ ) ≤ 0 will never be made

active, the dummy bandits withW0(ε,γ ) will be made active. As

there are L dummy bandits, the constraint (11) will be satisfied.
In Algorithm 1, the set A of passive bandits is initialized as A =

{1, 2, . . . ,N }. If channel l is idle and maxn∈AWn (εn (t),γn (t)) ≥ 0,

then one sample is taken from bandit n=argmaxn∈AWn (εn (t),γn (t))
and sent over channel; meanwhile, bandit n is removed from the

set A of passive bandits. Algorithm 1 can be either used as an

event-driven algorithm, or be executed on discretized time slots

t = 0,Ts , 2Ts , . . .. When Ts is sufficiently small, the performance

degradation caused by time discretization can be omitted.

4.1.4 Unity of Whittle Index-based Scheduling and Threshold-
based Sampling. Let consider the special case N = L = 1, where the

system has a single source and a single channel. Letw1 = 1, then

problem (8)-(9) reduces to

m̄1,opt = inf

π ∈Π
lim sup

T→∞
Eπ

[
1

T

∫ T

0

ε2

1
(t)dt

]
. (44)

The single-source, single-channel sampling and scheduling problem

(44) is a special case of Proposition 1 with n = 1 and λ = 0. A
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Figure 2: Illustration of the Whittle indexW1(ε, γ ) and the optimal
threshold v1(β1), where the parameters of the Gauss-Markov pro-
cess are σ1 = 1 and θ1 = 0.1 and the i.i.d. transmission times follow
an exponential distribution with mean E[Y1,i ] = 2.

threshold-based optimal solution to (44) is provided by the following

corollary of Proposition 1.

Corollary 1. If the Y1,i ’s are i.i.d. with 0 < E[Y1,i ] < ∞, then
(S1,1(β1), S1,2(β1), . . .) with a parameter β1 is an optimal solution to
(44), where

S1,i+1(β1) = inf

t

{
t ≥ D1,i (β1) : |ε1(t)| ≥v1(β1)

}
, (45)

D1,i (β1) = S1,i (β1) + Y1,i , v1(β1) is defined by

v1(β1) =



σ1√
θ1

G−1

( σ 2

1

2θ
1

E[e−2θY
1,i ]

σ 2

1

2θ
1

−β1

)
, if θ1 > 0,√

3(β1 − σ
2

1
E[Y1,i ]), if θ1 = 0,

σ1√
−θ1

K−1

( σ 2

1

2θ
1

E[e−2θ
1
Y

1,i ]

σ 2

1

2θ
1

−β1

)
, if θ1 < 0,

(46)

G−1(·) and K−1(·) are the inverse functions of G(x) in (18) and K(x)
in (19), respectively, for the region x ∈ [0,∞), and β1 is the unique
root of

E

[∫ D1,i+1(β1)

D1,i (β1)

ε2

1
(t)dt

]
−β1E[D1,i+1(β1)−D1,i (β1)]=0. (47)

The optimal objective value to (44) is given by

m̄1,opt =
E
[∫ D1,i+1(β1)

D1,i (β1)
ε2

1
(t)dt

]
E[D1,i+1(β1)−D1,i (β1)]

. (48)

Furthermore, β1 is exactly the optimal objective value of (44), i.e.,
β1 = m̄1,opt.

Corollary 1 follows directly from Proposition 1. For the cases of

the Wiener process (θ1 = 0) and stable OU process (θ1 > 0), the

threshold-based policy in Corollary 1 were earlier reported in [28].

The case of unstable OU process (θ1 < 0) is new.

It is important to note that the threshold-based policy in Corol-

lary 1 and the Whittle index policy in the following theorem are

equivalent.

Theorem 3. If the Y1,i ’s are i.i.d. with 0 < E[Y1,i ] < ∞, then
(S1,1(ε), S1,2(ε), . . .) with a parameter ε is an optimal solution to (44),
where

S1,i+1(ε) = inf

t

{
t ≥ S1,i (ε) :W1(ε1(t),γ1(t))≥ 0

}
, (49)

andW1(εn (t),γn (t)) is the Whittle index of source 1, defined by (29),
(30), (31), and (32).

Proof sketch. Because (i) Corollary 1 provides an optimal solution

to (44) and (ii) (49) is equivalent to the solution in Corollary 1, (49)
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Algorithm 2Whittle Index Policy for Signal-agnostic Remote Estimation

1: Initialize the set A of passive bandits A = {1, 2, . . . ,N }.
2: for all time t do
3: Update ∆n (t), γn (t), and the Whittle index

Wn,age(∆n (t),γn (t)) for all n = 1, 2, . . . ,N using (3), (57), (59),

(60), and (61).

4: Update A = {n ∈ {1, 2, . . . ,N } : γn (t) = 0}.

5: for all l = 1, 2, . . . ,L do
6: if channel l is idle andmax

n∈A
Wn,age(∆n (t),γn (t))≥0 then

7: n = argmaxn∈AWn,age(∆n (t),γn (t)).
8: Take a sample of bandit n and send it on channel l .
9: A← A − {n}.
10: end if
11: end for
12: end for

is also an optimal solution to (44). The details are provided in our

technical report [29]. □
Corollary 1 and Theorem 3 reveal a unification of threshold-

based sampling and scheduling policy developed in [28] and the

Whittle index policy developed in the present paper. In particular,

if the Whittle indexW1(ε1(t),γ1(t)) = 0, then (i) the channel is idle

at time t and (ii) the instantaneous estimation error |ε1(t)| exactly
crosses the optimal threshold v1(β1) at time t . As illustrated in

Figure 2, ε = ±v1(β1) are the roots of equationW1(ε, 0) = 0.

The threshold-based sampling and scheduling results outlined

in Corollary 1 and [28] are applicable specifically to the single-

source, single-channel scenario. Nevertheless, our exploration in

Sections 4.1.1-4.1.3 illustrates the methodology for utilizing these

findings to establish indexability and evaluate the Whittle index in

the multi-source, multi-channel scenario.

4.2 Signal-agnostic Scheduling
A scheduling policy π ∈ Π is called signal-agnostic if the policy
π is independent of the observed process {Xn,t , t ≥ 0}Nn=1

. Let

Πagnostic ∈ Π denote the set of signal-agnostic, causal policies,

defined by

Πagnostic = {π ∈ Π : π is independent of {Xn,t , t ≥ 0}Nn=1
}. (50)

In a signal-agnostic policy, the mean-squared estimation error

of the process Xn,t at time t is [36], [28]

E[ε2

n (t)] =pn (∆n (t))=

{
σ 2

n
2θn
(1 − e−2θn∆n (t )), if θn , 0,

σ 2

n∆n (t), if θn = 0,
(51)

where ∆n (t) is the AoI and pn (·) is an increasing function defined

in (51). By using (51), for any policy π ∈ Πagnostic

E

[ ∫ T

0

ε2

n (t)dt

]
= E

[ ∫ T

0

pn (∆n (t))dt

]
. (52)

Hence, the signal-agnostic sampling and scheduling problem can

be formulated as

inf

π ∈Πagnostic

lim sup

T→∞

N∑
n=1

wnEπ

[
1

T

∫ T

0

pn (∆n (t))dt

]
(53)

s.t.

N∑
n=1

cn (t) ≤ L, cn (t) ∈ {0, 1}, t ∈ [0,∞). (54)

Problem (53)-(54) is a continuous-time Restless Multi-armed Ban-

dit (RMAB) with a continuous state space, where ∆n (t) of source
n is modeled as the state of the restless bandit. By following the

standard relaxation and Lagrangian dual decomposition procedure

as explained in Section 4.1.1, we obtain the following sub-problem

associated with bandit n:

m̄n,age-opt = inf

πn ∈Πn,agnostic
lim sup

T→∞
Eπn

[
1

T

∫ T

0

wnpn (∆n (t)) + λcn (t)dt

]
,

(55)

where m̄n,age-opt is the optimum value of (55), πn = (Sn,1, Sn,2, . . .)
denotes a sub-scheduling policy for source n, and Πn,agnostic is the
set of all causal sub-scheduling policies of source n.

Let Ψn,age(λ) be a set of states (δ ,γ ) ∈ [0,∞) × [0,∞) such that

if ∆n (t) = δ and γn (t) = γ , the optimal solution for (55) is to take a

passive action at time t .

Definition 3. (Indexability). [44] Bandit n is said to be index-
able if, as the activation cost λ increases from −∞ to ∞, the set
Ψn,age(λ) increases monotonically, i.e., λ1 ≤ λ2 implies Ψn,age(λ1) ⊆

Ψn,age(λ2). The RMAB (53)-(54) is said to be indexable if all (N + 1)

bandits are indexable.

An optimal solution to problem (55) is provided in of our tech-

nical report [29, Proposition 2], where we show that a parameter

βn,age is equal to the optimum value of (55), i.e., βn,age = m̄n,age-opt
and βn,age is a function of λ. By using the solution of (55), the set

Ψn,age(λ) in Definition 3 can be simplified as

Ψn,age(λ) =

{(δ ,γ ) ∈ [0,∞) × [0,∞) : γ > 0 orE[pn (δ + Yn,i+1)] < βn,age(λ)}.
(56)

Following the techniques developed in Section 4.1, we can obtain

Theorem 4. If pn (δ ) is a strictly increasing function of δ , the
RMAB problem (53)-(54) is indexable.

Theorem 5. In the RMAB problem (53)-(54), if pn (δ ) is a strictly
increasing function of δ , the Yn,i ’s are i.i.d. with 0 < E[Yn,i ] < ∞,
then the following assertions are true for the Whittle index of source
n at state (δ ,γ ):

(a) If γ = 0, then

Wn,age(δ , 0) =
wn
E[Yn,i ]

{
E[Dn,i+1(δ ) − Dn,i (δ )]E[pn (δ + Yn,i+1)]

− E

[ ∫ Dn,i+1(δ )

Dn,i (δ )
pn (s)ds

]}
, (57)

where Dn,i (δ ) = Sn,i (δ ) + Yn,i and

Sn,i+1(δ ) = Dn,i (δ ) +max{δ − Yn,i , 0}. (58)

(b) If γ > 0, then

Wn,age(δ ,γ ) = −∞. (59)

The expectations in (57) can be easily evaluated using the fol-

lowing lemma:

Lemma 3. In Theorem 5, it holds that

E[Dn,i+1(δ ) − Dn,i (δ )] = E[max{δ ,Yn,i }], (60)

E

[ ∫ Dn,i+1(δ )

Dn,i (δ )
pn (s)ds

]
=E[Rn,3(max{δ ,Yn,i } + Yn,i+1)]

− E[Rn,3(Yn,i )], (61)
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Figure 3: Total time-average MSE vs the parameter σ1 of the Gauss-
Markov source 1,where thenumber of sources isN = 4 and thenum-
ber of channels is L = 2. The transmission times are i.i.d, following
a normalized log-normal distribution with parameter ρ = 1.5, and
E[Yn,i ] = 1. The other parameters of the Gauss-Markov sources are
σ2 = 0.8, σ3 = 0.9, σ4 = 1, and θ1 = −0.1, θ2 = θ3 = θ4 = 0.1.

where

Rn,3(δ ) =

∫ δ

0

pn (s)ds . (62)

Theorems 4-5 and Lemma 3 hold for all increasing functions

pn (δ ) of the AoI δ , not necessarily the mean-square estimation error

function in (51). Due to space limitation, the proofs of Theorems

4-5 and Lemma 3 are relegated to our technical report [29].

The Whittle index scheduling policy for solving the sampling

and scheduling problem (53)-(54) is illustrated in Algorithm 2.

Theorems 4-5, Lemma 3, and Algorithm 2 generalize prior stud-

ies on AoI-based Whittle index policies, e.g., [10, 12, 41]. More

specifically, the Whittle index policies detailed in [10, 12, 41] were

derived for the scenario of constant transmission times where the

zero-wait sampling policy [39, 48] is an optimal solution for the

sub-problem (55), and the resulting Whittle index always maintains

a non-negative value. In contrast, our current study accommodates

scenarios involving i.i.d. random transmission times. In such cases,

the optimality of zero-wait sampling is not assured for sub-problem

(55), resulting in the potential for both positive and negative values

for the Whittle index derived in Theorem 5.

4.2.1 Unity of Whittle Index-based Scheduling and Threshold-
based Sampling. For single-source, single-channel special case with
w1 = 1, problem (53)-(54) reduces to

m̄1,age-opt = inf

π ∈Πagnostic

lim sup

T→∞
Eπ

[
1

T

∫ T

0

p1(∆1(t))dt

]
(63)

Theorem 6. If p1(δ ) is a strictly increasing function of δ , the
Y1,i ’s are i.i.d. with 0 < E[Y1,i ] < ∞, then (S1,1(δ ), S1,2(δ ), . . .) with
a parameter δ is an optimal solution to (63), where

S1,i+1(δ ) = inf

t
{t ≥ S1,i (δ ) : W1,age(∆1(t),γ1(t)) ≥ 0}, (64)

whereW1,age(∆1(t),γ1(t)) is the Whittle index of source 1, defined by
(57) and (59).

In the AoI literature, threshold-based scheduling and Whittle

index have been two distinct approaches for AoI minimization. Our

study unifies the two approaches: for AoI minimization of a single

source, the threshold policy in [35, Theorem 1] and the Whittle

index policy based in Theorem 6 are equivalent. Specifically, if the

Whittle indexW1,age(ε1(t),γ1(t)) = 0, then (i) the channel is idle
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Figure 4: Total time-average MSE vs the parameter θ1 of the Gauss-
Markov source 1,where thenumber of sources isN = 4 and thenum-
ber of channels is L = 2. The transmission times are i.i.d., following
a normalized log-normal distribution with parameter ρ = 1.5, and
E[Yn,i ] = 1. The other parameters for the Gauss-Markov sources are
σ1 = σ2 = σ3 = σ4 = 1, and θ2 = 0.2, θ3 = 0.3, θ4 = 0.1.

at time t and (ii) the expected age-penalty function surpasses the

threshold in [35, Theorem 1] at time t .

5 NUMERICAL RESULTS
In this section, we compare the following three scheduling policies

for multi-source remote estimation:

• Maximum Age First, Zero-Wait (MAF-ZW) policy: Suppose

that N ≥ L. Whenever one channel l becomes free, the

MAF-ZW policy will take a sample from the source with the

highest AoI among the sources that are currently not served

by any channel, and send the sample over channel l .
• Signal-agnostic, Whittle Index policy: The policy that we

proposed in Algorithm 2.

• Signal-aware, Whittle Index policy: The policy that we pro-

posed in Algorithm 1.

Figure 3 depicts the total time-average mean-squared estimation

error versus the parameter σ1 of the Gauss-Markov source 1, where

the number of sources is N = 4 and the number of channels is

L = 2. The other parameters of the Gauss-Markov processes are

σ2 = 0.8,σ3 = 0.9,σ4 = 1, and θ1 = −0.1,θ2 = θ3 = θ4 = 0.1. The
transmission times are i.i.d. and follow a normalized log-normal

distribution, where Yn,i = eρQn,i /E[eρQn,i ], ρ > 0 is the scale

parameter of the log-normal distribution, and (Qn,1,Qn,2, . . .) are
i.i.d. Gaussian random variables with zero mean and unit variance.

In our simulation, ρ = 1.5. All sources are given the same weight

w1 = w2 = w3 = w4 = 1. In Figure 3, the signal-awareWhittle index

policy has a smaller total MSE than the signal-agnostic Whittle

index policy and the MAF-ZW policy. The total MSE of the signal-

aware Whittle index policy achieves up to 1.58 times performance

gain over the signal-agnostic Whittle index policy, and up to 1.65

times than the MAF-ZW policy.

Figure 4 illustrates the total time-average mean-squared estima-

tion error versus the parameter θ1 of the Gauss-Markov source 1,

where the number of sources is N = 4, and the number of channels

is L = 2. The other parameters of the Gauss-Markov processes are

θ2 = 0.2,θ3 = 0.3,θ4 = 0.1, and σ1 = σ2 = σ3 = σ4 = 1. The

transmission time distribution and the weights of the sources are

the same as in Figure 3. In Figure 4, the total MSE of the signal-

aware Whittle index policy achieves up to 8.6 times performance
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gain over the MAF-ZW policy and up to 1.32 times over the signal-

agnostic Whittle index policy. When θ1 < 0, the performance gain

of the signal-aware Whittle index policy is much higher than that

in the case of θ1 > 0. This suggests a high performance gain can be

achieved if the Gauss-Markov sources are highly unstable. For all

three policies, the total MSE decreases, as θ1 increases.

6 CONCLUSION
In this paper, we have studied a sampling and scheduling problem

in which samples of multiple Gauss-Markov sources are sent to

remote estimators that need to monitor the sources in real-time.

The formulated sampling and scheduling problem is a restless multi-

armed bandit problem, where each bandit process has a continuous

state space and requires continuous-time control. We have proved

that the problem is indexable and proposed a Whittle index policy.

Analytical expressions of the Whittle index have been obtained. For

single-source, single-channel scheduling, we have showed that it is

optimal to take a sample at the earliest time when the Whittle index

is no less than zero. This result provides a new interpretation of

earlier studies on threshold-based sampling policies for the Wiener

and Ornstein-Uhlenbeck processes.
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