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Abstract—We consider the problem of minimizing the age of information when a source can transmit status updates over two
heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur
over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a
time-correlated Gilbert-Elliot channel at a high rate when the channel is in the “ON” state. The reliable channel provides a deterministic
but lower data rate. The scheduling strategy determines the channel to be used for transmission in each time slot, aiming to minimize
the time-average age of information (Aol). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which
is challenging to solve because super-modularity does not hold in a part of the state space. We address this challenge and show that a
multi-dimensional threshold-type scheduling policy is optimal for minimizing the age. By exploiting the structure of the MDP and
analyzing the discrete time Markov chains (DTMCs) of the threshold-type policy, we devise a low-complexity bisection algorithm to
compute the optimal thresholds. We compare different scheduling policies using numerical simulations.

Index Terms—Age of information, hybrid channels, scheduling, and mmWave communications.

1 INTRODUCTION

IMELY updates of the system state are of great sig-
Tnificance in cyber-physical systems, such as vehicular
networks, sensor networks, and UAV navigations. In these
systems, freshly generated data is more valuable than out-
dated data. Age of information (Aol), or simply age, was
introduced as an end-to-end application-layer metric to
measure information freshness [2]-[25]. The age at time ¢
is defined as A(t) = t — Uy, where Uy is the generation time
of the freshest packet that has been received by time ¢. The
difference between age and classical performance metrics
of wireless networks like delay and throughput is evident
even in elementary queuing systems [3]. High throughput
requires frequent status updates, which would cause a long
waiting time in the queue that worsens timeliness. On the
other hand, delay and waiting time can be greatly reduced
by decreasing the update frequency, which, however, may
increase the age because the status is updated infrequently.

In future wireless networks, sub-6GHz frequency spec-
trum is insufficient for fulfilling the high throughput de-
mand of emerging real-time applications such as VR/AR
applications, where contents must be delivered within 5-
20 ms of latency, requiring a high throughput of 400-
600 Mbps [26]. To address this challenge, 5G technology
utilizes high-frequency millimeter wave (mmWave) bands
such as 28/38 GHz, which provide a much higher data
rate than sub-6GHz [27]. Verizon and Samsung demon-
strated that a throughput of nearly 4Gbps was achieved
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in their mmWave demo system, using a 28GHz frequency
band with 800MHz bandwidth [28]. However, unlike sub-
6GHz spectrum bands, mmWave channels are highly un-
reliable due to blocking susceptibility, strong atmospheric
absorption, and low penetration. Real-world smartphone
experiments have shown that even obstructions by hands
could significantly degrade the mmWave throughput [29].
One solution to mitigate this effect is to let sub-6GHz
coexist with mmWave to form two heterogeneous channels,
so that the user equipment can offload data to sub-6GHz
when mmWave communications are unfeasible [30]-[33].
Some work has already been done based on mmWave/sub-
6GHz heterogeneous networks [34], [35]. However, how to
improve information freshness in such hybrid networks has
remained largely unexplored.

In this study, we consider a hybrid status updating sys-
tem where a source can transmit the update packets over an
unreliable but fast mmWave channel or a slow reliable sub-
6GHz channel. Our objective is to find a dynamic channel
scheduling policy that minimizes the long-term average
expected age. The main contributions of this paper are
stated as follows:

e The optimal scheduling problem for minimizing the
age over heterogeneous channels is formulated as a
Markov Decision Process (MDP). The state transition
of this MDP is complicated for two reasons: (i) the
two channels have different data rates and packet
transmission times, and (ii) the state of the unreliable
mmWave channel is correlated over time. We prove
that there exists a multi-dimensional threshold-type
scheduling policy that is optimal. This optimality
result holds for all possible values of the channel
parameters. One of the tools for proving this result
is super-modularity [36]]. Because of the complicated
state transitions, super-modularity holds in a part
of the state space but not in the rest of the state
space. This is a key difference from the scheduling
problems considered earlier in prior studies, e.g.,



[10], [22], [23], [37]-140]. To conquer this challenge,
we develop additional techniques to show that the
optimal scheduling policy has a threshold-type struc-
ture over the entire state space, including the part of
state space where super-modularity does not hold.

o The state transition of the discrete time Markov
chain (DTMC) for the threshold-type scheduling pol-
icy is complicated. Nonetheless, we show that the
thresholds of the optimal scheduling policy can be
evaluated efficiently, by using closed-form expres-
sions or a low-complexity bisection search algorithm.
Compared with the algorithms for calculating the
thresholds and optimal scheduling policies in, e.g.,
[10], [22], [23], [37]-[40], our solution algorithms have
much lower computational complexities.

e In the special case that the state of the unreliable
mmWave channel is independent and identically
distributed (i.i.d.) over time, the optimal scheduling
policy is shown to possess a simpler and interest-
ing form. Finally, numerical results are provided to
validate our results by comparing with several other
policies.

2 RELATED WORKS

Age of information has become a popular research topic
in recent years, e.g., [2]-[25]. A comprehensive survey of
the area was recently provided in [2]. First, there has been
substantial work on age performance analysis in queuing
systems [3]-[8]. Average age and peak age in elementary
queuing systems were analyzed in [3]-[5]. A similar setting
was considered in [6] where the inter-arrival times or service
times follow a Gilbert-Elliot two-state Markov chain model.
A Last-Generated, First-Served (LGFS) policy was shown
(near) optimal in single-source, multi-server, and multihop
networks with arbitrary packet generation and arrival pro-
cess [7], [8]. These results were extended to multi-source
multi-server networks in [9].

Next, there has been a significant effort in age-optimal
sampling [10]-[12], [21], [22]. The optimal sampling policy
was provided for minimizing a monotonic age function in
[10], [21], [22]. Joint Sampling and scheduling in multi-
source systems were analyzed in [12] where the objective
problem could be decoupled into maximum age first (MAF)
scheduling [9] and an optimal sampling problem. Finally,
age in wireless networks has been substantially explored in
[13], [14], [16]-[20]. Scheduling in a broadcast network with
random arrivals was provided where Whittle index policy
can achieve (near) age optimality [13]. Some other age-
optimal scheduling for cellular networks were considered
in [14], [16]-[18], [25]. A class of age-optimal scheduling
policies was analyzed in the asymptotic regime when the
number of sources and channels both grow to infinity [19].
An age-optimal multi-path routing strategy was introduced
in [20].

However, the age-optimal scheduling problem via het-
erogeneous channels has been largely unexplored yet. Tech-
nical results for similar models were reported in [23]], [24].
In these studies, it is assumed that the first channel is unreli-
able but consumes a lower cost, and the second channel has
the same delay as the first channel, but depletes a higher

cost. Optimal scheduling policies were derived to achieve
the optimal trade-off between age performance and cost.
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Figure 1. The system model for status updates in heterogeneous chan-

nels. The scheduler chooses mmWave (Channel 1) or sub-6GHz (Chan-
nel 2) for transmission over time.
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Figure 2. The Gilbert-Elliot ON-O F'F Markov model for Channel 1.

The study in [23], [24] show the optimality of a threshold-
type policy and efficiently computes the optimal threshold
when the first channel is i.i.d. [23], but our work allows
a Markovian channel which generalizes the i.i.d. channel
model in [23]. (ii) In addition, our study assumes that
the second sub-6GHz channel has a larger delay than the
first mmWave which complies with the property of dual
mmWave/sub-6GHz channels in real applications. These
two differences between mmWave and sub-6GHz make the
MDP formulation more complex than those of [23], [24].
Thus, the techniques in e.g., [10], [22], [23], [37]-[40] that
can show a nice structure of the optimal policy or solve the
optimal policy with low complexity do not apply to our
model.

3 SYSTEM MODEL AND PROBLEM FORMULATION
3.1 System Models

Consider a single-hop network as illustrated in Fig. |1} where
a source sends status update packets to the destination. We
assume that time is slotted with slot index ¢ € {0,1,2...}.
The source can generate a fresh status update packet at the
beginning of each time slot. The packets can be transmitted
either over the mmWave channel or over the sub-6GHz
channel. The packet transmission time of the mmWave
channel is 1 time slot, whereas the packet transmission time
of the sub-6GHz channel is d time slots (d > QE because
of its lower data rate. The two channels have different
advantages, which is the key feature of our study.

The mmWave channel, called Channel 1, follows a two-
state Gilbert-Elliot model that is shown in Fig. 2| We say that

1.If d = 1, one can readily see that it is better to choose sub-6GHz
than mmWave. Thus, in this paper we study the nontrivial case of d >
2.



Channel 1 is ON in time slot ¢, denoted by [ (t) = 1, if the
packet is successfully transmitted to the destination in time
slot t; otherwise Channel 1 is said to be OF'F, denoted by
l1(t) = 0. If a packet is not successfully transmitted, then
it is dropped, and a new status update packet is generated
at the beginning of the next time slot. The self transition
probability of the ON state is ¢, and the self transition
probability of the OF F' state is p, where 0 < ¢ < 1 and
0 < p < 1. We assume that at the beginning of time slot ¢,
the source knows 1 (¢ — 1) perfectly.

The sub-6GHz channel, called Channel 2, has a steady
connection. As mentioned above, the packet transmission
time of Channel 2 is d time slots. Define I5(¢) € {0, 1, ...,d —
1} as the state of Channel 2 in time slot ¢, where I5(t) is
the remaining transmission time of the packet being sent
over Channel 2 at the beginning of time slot ¢, and l2(t) = 0
means that Channel 2 is currently idle and ready for sending
the next packet. In time slot ¢, the source has immediate
knowledge about the state l2(t) of Channel 2. On the other
hand, because the packet transmission time of Channel 1 is
1 time slot, Channel 1 is always ready for transmission at
the beginning of each time slot.

Following the application settings in [30]-[34], a packet
can be transmitted using only one channel at a time, i.e., the
two channels cannot be used simultaneously. The scheduler
decides which channel to use for transmitting a packet at
each time slot. We also assume that the scheduler can choose
idle (neither channel) since it has been shown that channel
idling could reduce the average age in some systems [10],
[12], [22]. Hence, the scheduling decision at the beginning
of time slot ¢ can be denoted by u(t) € {1,2,none}. The
action u(t) = 1 or 2 means that the source generates a packet
and assigns it to Channel 1 or Channel 2, respectively. The
action u(t) = none means that no new packet is assigned
to any channel at time slot ¢. Hence, u(t) = none can occur
if (i) a packet is was assigned to Channel 2 earlier and has
not completed its transmission, i.e., lz(t) € {1,2,...,d — 1}
such that no packet can be assigned for transmission, or (ii)
l5(t) = 0, but both channels are kept idle on purpose.

The age of information (Aol) A(t) is the time difference
between the current time slot ¢ and the generation time of
the freshest delivered packet [3]. By this definition, when a
packet is delivered, the age drops to the transmission time
duration of the delivered packet. Specifically, if Channel 1
is selected in time slot ¢ and Channel 1 is ON, then the age
drops to 1 at time slot ¢ + 1. If the remaining service time of
Channel 2 at time slot ¢ is 1, then age drops to d at time slot
t+ 1. When there is no packet delivery at time slot ¢, the age
increases by one in each time slot. Hence, the time-evolution
of the age is given by

1 ifu(t)=1and l1(t) =1,
Alt+1)={ d if o(t) = 1, 1)
A(t)+1 Otherwise.

3.2 Problem Formulations

We use m = {u(0),u(1)...} to denote a scheduling policy. A
scheduling policy is said to be admissible if (i) u(t) = none
whenever l3(t) > 1 and (ii) u(t) is determined by the current
and history information that is available at the scheduler.

Table 1
Value of State Transition Probability

P,/ (u) | Action and State Transition

P u=1,5=(0,0,0),8 = (3 +1,0,0)
w=25=(500),s = (5+1,0,d— 1)
u = none,s = (6,0,0),s’ = (6 +1,0,0)
u = none,s = (§,0,12),8' = (6§ +1,0,la —1),l2 > 2
u = none,s = (6,0,1),s’" = (d,0,0)

T-p |u=15=(5,0,0),8 =(1,1,0)
u=2,8=(50,0),s =(6+1,1,d—1)
u = none,s = (4,0,0),s' = (§ +1,1,0)
u:none,s:55,0,12)),51/:(6+1),1,l271),lg>2
u = none,s = (4,0,1),8’ = (d, 1,0

q u:l,S:(é,l,D),Slz(l,LO)
u=2s=(51,0),s=(F+1,1,d—1)
u = none,s = (§,1,0),s' = (§ +1,1,0)
u = none,s = Eé,l,lg)),s,;/ :((5—!— 1),1,l2 —1),l2>2
u = none,s = (4,1,1),8’ = (d, 1,0

T-¢ |u=1s=(3,1,0,8 =0 +1,0,0)
w=25=(61,0),8 = (6 +1,0,d—1)
u = none,s = (§,1,0),8' = (§ +1,0,0)
u:none,s:E?l,lQ)),?’ :((CES+1),0,l2—1),l2>2
u = none,s = (4,1,1),s" = (d,0,0

0 Otherwise

Let A (t) denote the Aol induced by policy 7. The expected
time-average age of policy 7 is

T
1

lim sup — E[A,(?)].

s 7. 3Bl (1)
Our objective in this paper is to solve the following opti-
mal scheduling problem for minimizing the expected time-
average age:

1 X
Agpt = inf i = E[A:()], 2
opt = Inf limsup t:zl (A (1) @

where II is the set of all admissible policies. Problem
can be equivalently expressed as an infinite time-horizon
average-cost MDP problem [38], [41], which is illustrated
below.

e Markov State: The system state in time slot ¢ is
defined as

s(t) = (A1), li(t — 1),12(t)), ®)

where A(t) € {1,2,3,...} is the Aol in time slot ¢,
I1(t—1) € {0,1} is the ON — OFF state of Channel
1 in time slot t — 1, and l3(¢) € {0,1,...,.d — 1}
is the remaining transmission time of Channel 2 at
the beginning of time slot ¢. Let S denote the state
space which is countably infinite. The time-evolution
of A(t) is determined by the state and action in time
slot ¢ — 1.

e Action: As mentioned before, if Channel 2 is busy
(i.e., I2(t) > 0), the scheduler always chooses an idle
action, i.e., u(t) = none. Otherwise, the action u(t) €
{1,2, none}.

o Cost function: Suppose that a decision u(t) is
applied at a time slot ¢{, we encounter a cost
C(s(t),u(t)) = A(?).

o Transition probability: We use Py (u) to denote the
transition probability from state s to s’ for action w.
The value of Py (u) is summarized in Table[l]



We provide an explanation of the transition prob-
abilities Pss (u) in Table [I} Due to the Markovian
state transition properties of Channel 1, there are
four possible values of state transition probabilities:
p,1 —p,qand 1 — q. For example, Py (u) = p if both
the current and previous states of Channel 1 is OF'F..
Thus, there are two possible age state evolutions: if
the remaining time slot of Channel 2 is 1, the age ¢
decreases to d; otherwise, the age J increases by one
time slot. The transition probabilities of other cases,
ie, Pi(u) =1 —p,q and 1 — g in Table [1| can be
explained in the similar way.

4 MAIN RESULTS

In this section, we show that there exists a threshold-type
policy that solves Problem (2). We then provide a low-
complexity algorithm to obtain the optimal policy and opti-
mal average age.

4.1 Optimality of Threshold-type Policies

As mentioned in Section the action space of the MDP
allows u(t) = none even if Channel 2 is idle, i.e., l3(t) = 0.
In the following lemma, we show that the action u(t) =
none can be abandoned when l5(t) = 0. Define

' = {m € I1 : u(t) # none, if la(t) = 0}. 4

Lemma 1. For any © € II, there exists a policy n’ € 11’ that is
no worse than .

Remark 1. In [10l, [12l], [22]], it was shown that in certain
systems, the zero wait policy (transmitting immediately after the
previous update has been received) might not be optimal. However,
in our model, the zero wait policy is indeed optimal. The reason
is that in our model, the minimum non-zero waiting time is one
time slot which is the same as the delay of Channel 1. If I5(t) = 0,
it is better to choose Channel 1 than keeping both channels idle,
because, by choosing Channel 1, fresh packets could be delivered
over Channel 1.

The proof of Lemma [1] is provided in Appendix [A] By
Lemma (1} the scheduler only needs to choose from the
actions u(t) € {1,2} when l2(t) = 0. This lemma simplifies
the MDP problem.

The parameters of the hybrid channels are (p,q,d),
where p, g are the self transition probabilities of Channel 1
and d is the transmission delay of Channel 2. For the ease of
presenting our main results, we divide the possible values
of channel parameters (p,q,d) into four complementary
regions By, ..., By.

Definition 1. The regions By, ..., By are defined as

Bl = {(p7Qad) : F(Pa%d) S OaH(pa(Ld) S 0}7
By = {(p,q,d) : F(p,q,d) > 0,G(p,q,d) < 0}, )
B3 = {(pqud) : F(paqu) > OvG(pqud) > 0}7
By = {(pvqad) : F(paqad) < OaH(paQ7d) > 0}7
where
1
F(pv(bd)_ﬂ_da
l—gq
H =——+1-—d.
(p: g, d) " d

04r
0.35 —F(p,q,d)=0
H(p,q,d)=0
03t (p,9.,d)
—G(p,q,0)=0
0.25F
T 0.2+
Bz
0.15 g
01t 1
0.05F A B3
‘ 4 ‘ ‘ ‘ ‘
086 0.88 09 092 094 096 0.98
p

Figure 3. The Diagram of the regions By,...,B4 with an example of
d = 10. In the diagram, each function F, G, H divides the whole plane
((p,q) € (0,1) x (0,1)) into two half-planes respectively. Each region
Bi,...,By4 is the intersection of some two half-plane areas. Since we
emphasize the differences of the four regions, we provide the partial but
enlarged diagram.

Note that the inequality 1/(1 — p) > d also represents
a comparison between the channel delay d and the average
waiting time for an ON channel state given that the last
channel state is OF F'. Similarly, 1 — dg > 0 represents a
comparison between d and the average waiting time for an
ON channel state given that the last channel state is ON.
Finally, (1 — q)/(1 — p) + 1 > d represents a comparison
between d and the average waiting time of Channel 1 under
steady-state distribution of the Gilbert-Elliot model. These
comparisons interpret all the boundary functions F, G, H of
the regions B; —By. The four regions By, . . ., B4 are depicted
in Fig. B] for the case that d = 10.

Consider a stationary policy u(d,11,1l2). As mentioned
in Lemma (1) when I, = 0, the decision p(9,!;,0) can be 1
(Channel 1) or 2 (Channel 2). Given the value of [y, 1(d,11,0)
is said to be non-decreasing in the age 9, if

1 if 0 < )\

Conversely, (6, 11,0) is said to be non-increasing in the age 9,
if

2 if < A

©(0,11,0) = { 1 if 6>\ (8)

One can observe that scheduling policies in the form of
and (8) are both with a threshold-type, where X is the
threshold on the age 0 at which the value of u(d,!1,0)
changes.

One optimal solution to Problem is of a special
threshold-type structure, as stated in the following theorem:

Theorem 1. There exists an optimal solution p*(4,11,0) to
Problem @), which satisfies the following properties:

(@) if (p,q,d) € By, then u*(6,0,0) is non-increasing in the
age § and p* (9,1, 0) is non-increasing in the age §;

(b) if (p,q,d) € By, then 4*(6,0, 0) is non-decreasing in the
age 6 and (1*(6,1,0) is non-increasing in the age 9;

(c) if(p,q,d) € B, then 1*(9,0,0) is non-decreasing in the
age 6 and p*(6,1,0) is non-decreasing in the age o;



(d) if (p,q,d) € By, then 11*(8,0,0) is non-increasing in the
age 6 and p*(6,1,0) is non-decreasing in the age 0.

Proof. See Section[7.2) for the proof. O

As is shown in Theorem (I} for all possible parameters
(p, ¢, d) of the two channels, the optimal action p*(d,1;,0)
of channel selection is a monotonic function of the age J.
Whether 1*(6,11,0) is non-decreasing or non-increasing in
d depends on the region of the channel parameters (p, ¢, d)
and the previous state /; of Channel 1.

The study in [23] assumed that the first channel is unre-
liable and consumes a lower cost, and the second channel
the same delay as the first channel but a higher cost. They
studied the scheduling policy for optimizing the trade-off
between age and cost. The optimal scheduling policy in
Theorem [l is quite different from that in [23]]: The study
in [23] assumes the first channel to be i.i.d., but our result
allows a Markovian Channel 1, which is a generalization of
the i.i.d. case. Observe that in [23], the first channel is no
better than the second channel with regard to delay and
reliability. However, in our study, the two channels (ie.,
Channel 1 and 2) have their own advantages in delay and
reliability. Therefore, the optimal solution in our study is
non-decreasing in age for some values of (p, ¢, d) and non-
increasing in age for the remaining values of (p,q,d). In
conclusion, our study allows for general channel param-
eters (p,q,d) and our optimal decision p*(4,11,0) is non-
increasing in age or non-decreasing in age depending on
the choices of channel parameters.

4.1.1 Insights Behind the Regions B; — B,

The regions B; — B4 were introduced in Theoremfor prov-
ing that the action value function Q(s,u) is super-modular
or sub-modular, where s = (4,11,0) denotes the state of the
MDP and u is the action. For example, in the case of [; = 0,
if1/(1—p) >dand 1/q < d (i.e, (p,q,d) € By), Lemma
[]in Section [7.2 showed that Q(4,0,0,u) is sub-modular in
(0, ) (in the discounted case). As a result, the optimal action
1*(6,0,0) is increasing in 0.

However, in the case [{ = 1 of Theorem [l there are ad-
ditional technical challenges: For example, if (p, ¢, d) € Ba,
Q(4,1,0,u) is neither super-modular nor sub-modular. A
new method was developed in Lemma [10|in Section [7.2|to
conquer this challenge. Technically, super-/sub-modularity
is a sufficient but not necessary condition for the mono-
tonicity of p*(d,11,0). When neither super-modularity nor
sub-modularity holds, we are able to show that the optimal
decision p*(d,11,0) does not change with §. By this, we
proved the monotonicity of p*(,11,0) for all values of §
and [y, without requiring Q(s,u) to be super-modular or
sub-modular over the entire state space s € S.

The following is one of the key technical contributions
of the paper: we proved that the optimal action p* (4,11, 0)
is monotonic in J even if super-/sub-modularity does not
hold. This is a key difference from prior studies, e.g.,
[10], [22], [23], [37]-[39], where super-modularity (or sub-
modularity) holds for the entire state space.

4.2 Optimal Scheduling Policy

In Theorem [T} we have characterized the threshold structure
for an optimal policy in region By, ..., B4. A threshold-type
policy is fully identified by its thresholds Ag, A1, where Ag
is the threshold given that the previous state of Channel 1
is OF'F (ie., l; = 0) and )\ is the threshold given that the
previous state of Channel 1is ON (i.e., l; = 1). Thus, for a
givenregion B; (i = 1,...,4), the MDP problem (2) reduces
to

Ai(Ao, A1), 9

min

A t —
L NpENF A\ Nt

where A;()\g, A1) is the long term average cost of the
threshold-type policy such that: (1) the threshold (mono-
tone) structure is determined by Theorem (1| and B;; (2)
the thresholds are Ao, A\;. Note that a threshold type policy
is stationary and thus can be modeled as a discrete-time
Markov chain (DTMC). Then, (9) can be solved by deriving
the steady-state distribution of the DTMC.

We use A and A} to denote the thresholds of p*(4,0,0)
and p*(9,1,0), respectively. In this section, we provide the
optimal scheduling policy and the thresholds.

4.2.1

Theorem 2. If (p, q,d) € By, then an optimal scheduling policy
is

Optimal Scheduling Policy for (p, q,d) € B,

/’L* (57 ) O) ) ]‘7 (10)
jH(0,1,0)=1,6 > 1 (11)
In this case, the optimal objective value of (2) is
- 1-¢)(2—p)+(1—-p)?
Aoy = (1-9)2-p)+(1-p)° (12)

(2-q—p)(1-p)

We provide an insight to Theorem 2} As will be shown
by Lemma and Lemma in Section if (p,q,d) € By,
then 1*(1,0,0) = 1 and p*(1,1,0) = 1. According to Theo-
rem(a), if (p,q,d) € By, n*(4,0,0) and p*(9, 1,0) are both
non-increasing in 0. Thus, p*(6,0,0) = 1 and p*(4,1,0) =1
for all § > 1. That is, the optimal scheduler always chooses
Channel 1. The DTMC for a policy always choosing Channel
1 is easy to analyze. We omit the derivation steps and
provide

(1-q)(2—p)+ (1 —p)?
2-q-p)(A-p)

This result directly implies Theorem

Aopt = A1(17 1) = (13)

4.2.2 Optimal Scheduling Policy for (p,q,d) € Bs

While the result of case (p, ¢, d) € By is easy to describe, the
result of case (p,q,d) € By is not. As shown by Theorem 3]
the optimal decision p*(4, 11, 0) is not constant in age ¢.

Theorem 3. If (p, q,d) € By, then an optimal scheduling policy
is

N 1 i< A
u(é,o,ow{ ) Fesiy (14)
. 2 0 o< AT
©*(9,1,0) —{ 1 if 6>\, (15)



Algorithm 1: Bisection method for solving

1 Given function h;. [ = 0, I’ sufficiently large,
tolerance € small. The value i € {1,2,3,4}.

2 repeat

3 B=50+1)

4 if h(8) <0:I'=p.elsel =f

suntill’ — 1 <e

6 return 5; = f3

where A is unique, but \} may take multiple values, given by

Ao =s1(P1), AM=1 if Dopr = P,

N = s2(B), A =1 if Aoy = 0,
)‘8217 )‘IE{QaSaad} ionpt:fO/QOa
A =1, Neld+1,...)

Ayt is the optimal objective value of [2), determined by

By =min {1,002, 2031 )

51(), s2(), B1, and B are given in Definition [2| below, and
d 2d
. byq+ b
foquz—i—(l—q)Zz—&-(“llq 4 )Zz
i=1 i=d+1 =d+1
(18)
/
o= a0ty g, (19)
1—bq
[ a 1-4]"[0
4-[ ST
Proof. See Section|[7.3] O

In order to prove Theorem B, we have conducted steady-
state analysis of four DTMCs, each of which corresponds
to one case in (16). These four DTMCs have diverse state
transmission matrices and have to be analyzed separately.

For each case, the optimal thresholds A\§ and A} can be
either expressed in closed-form, or computed by using a
low-complexity bisection search method to compute the root
of given in below.

Definition 2. The value of (; is the root of

where

21)

5i(B;) = max{ {1__22%] ,d} , i€ {1,3,4},

. —k

s2(B2) = max {mln { lrl—dQ((lﬁi)m-‘ ,d} ,2} , (22)
ki(Bi) = 1; — Bioi, (23)

and [x| is the smallest integer that is greater or equal to x. For

the ease of presentation, 16 closed-form expressions of f; (), ¢:(+),
I}, and o; for i = 1,...,4 are provided in Table

Note that 83 and 34 in Definition [2| will be used later
when (p, q,d) € Bs. For notational simplicity, we define

hi(B) = fi(si(B)) — Bgi(si(B)), i € {1,2,3,4}.
The function h; (/) has the following nice property:

(24)

if Aoy = (3/2)d—1/2,
(16)

Vi

Lemma 2. Forall i € {1,2,3,4}, the function h;(3) satisfies
the following properties:

(1) hi(B) is continuous, concave, and strictly decreasing on
B

(2) h;(0) > 0 and limg_, o0 hi(8) = —o0.

Proof. See Appendix O

Lemma |2 implies that has a unique root on [0, c0).
Therefore, we can use a low-complexity bisection method to
compute 3, ..., B4 as illustrated in Algorithm

Lemma [2|is motivated by Lemma 2 in [11] and Lemma
2 in [21]. In [11] and [21]], since the channel is error free,
the age state at the end of each transmission is independent
with history information. Thus, Lemma 2 in [11] and Lemma
2 in [21] are related with a per-sample (single transmission)
control. However, our study does not have such a property
and Lemma [2] arises from solving (9) for optimizing the
thresholds Aj and Aj.

The advantage of Theorem 2| Theorem [3 is that the
solution is easy to implement. In Theorem [2, we showed
that the optimal policy is a constant policy that always
chooses Channel 1. In Theorem Aopt is expressed as the
minimization of only a few precomputed values, and the
optimal threshold-type policy are then obtained based on
the value of Aopt.

Since we can use a low complexity algorithm such as
bisection method to obtain (1, 82 in Theorem [3, Theorem
provides a solution that has much lower complexity than
other solutions for MDPs such as relative value iteration and
policy iteration.

We now provide the sketch of the proof when (p, ¢, d) €
Bgl

First, by computing the steady-state distributions of
some DTMCs with different thresholds, we have obtained
the average age performance for four cases, given by

_ fiho)/g1(Ao) Ao €{d+1,...},
As(No, 1) = { fng2§§g2E)\gg )\g € %2, cood}y } 5
_ 3/2)d—-1/2 X\ d+1,...},

Note that each one of the four expressions in and
[@6) corresponds to each one of the four cases in (16),
respectively. One of our technical contributions is that only
studying the steady-state analysis of the 4 types of DTMCs
in (25), [@6) is sufficient to solve (9). The proof of this state-
ment and the detailed expressmns of the DTMC structure
of the four cases in ., are relegated to Sectlon nﬂ
Therefore, the optimal average age Aypt chooses the smallest
value of the four cases from (25), 26),
“a)

Aopt min {617 4 @7
90
2. Althou h @ is a two- dlmensmnal optimization problem in
(Mo, A1), has been simplified as or ([26), which are one-
dlmen51onal optimization problem. For example, as is shown in @
the threshold-type policies with different A; may have the same DTMC.

27)



where f31, 85 are defined as follows:

= : fi(ho) .
e )\06?(}}&2,...} gi()\o)’z € {17374}7 (28)
B5 = min f2(%0) (29)

27 Ao€{2,...d} g2(/\0) '

Note that 5 and £} in and will be used later when
(p,q,d) € Bg. Finally, in Section we show that

Bi=Bi, i €{1,2,3,4}.
Thus, Theorem [3]is solved by — (B0).

(30)

4.2.3 Optimal Scheduling Policy for (p,q,d) € Bs

According to Theorem |1} the optimal decision £*(6, (1, 0) is
non-decreasing in age 0. Similar to the case (p, ¢,d) € By in
Theorem [3 the optimal solution p*(d,1;,0) is not constant.
Therefore, we need to solve the optimal thresholds A§ and
Al by deriving the steady-state distribution of the DTMC.
The final result is presented as follows:

Theorem 4. If (p, q,d) € Bs, then an optimal scheduling policy
is

1 if 5 <A

2 (6a070):{ ) 1][52>\87 (31)
X 1 i <AL
u(571,0)—{2 5o (32)
where A is unique, but X7 may take multiple values, given by

As=s1(61), AMe{d+1,...}  if Dy = f,

)\8252(52)7 AT S {d+17} iféopt:/@%

)‘std(ﬁ3)7 )‘T S {2u7d} iféoptzﬂ?n

)‘6_54(54)7 Aik 6{25"'ad} l:féUPt:/B%

Ao =1, AL e{l,2,...,d}, if Ay =(3/2)d—1/2,
_ (33)
Ayt is the optimal objective value of (2), determined by

- . 3 1

Aopi‘ :mln{ﬁl762aﬂ3vﬁ4a§d_ 5}7 (34)
51(-), ..., 84(-) and By, ..., B4 are given in Definition 2]
Proof. See Section|[7.3] O

To show Theorem 4] we have analyzed five different
DTMCs. Each of the DTMC corresponds to one case in (33).
As is explained in Section the solution to each case
in is closed-form or related with a one-dimensional
optimization problem. Different from Theorem [3| which
needs to compute $; and 3 in (16), Theorem [ needs to
compute 1, ..., 04 in B3). By Definition 2l and Lemma
B1, ..., Ba can be solved by using low complexity bisection
search algorithm (Algorithm|T). Therefore, despite Theorem
containing a number of cases, the optimal thresholds
described in can be efficiently solved.

4.2.4 Optimal Scheduling Policy for (p, q,d) € By

From Theorem [1} 1*(4,0,0) is non-increasing in age ¢ and
1*(8,1,0) is non-decreasing in d. The result of (p, ¢,d) € By
is similar to that of Theorem [2|

vii

Theorem 5. If (p, q,d) € By, then an optimal scheduling policy
is

p©*(6,0,0)=1,6 > 1, (35)
*(0,1,0) = ’ A7 ' 36
w10 ={ 330 F A R O
where Ay is the optimal objective value of @), determined by
N
Agpr = min {A, 9—6}, 37)
the constants A, f}, gb, are given by
7 1-¢)(2— 1—p)?
A-1Z9C=p+1-p)7 (39)
2-g¢-p)(1-p)
d 1-v 2d—1 ') .
=i+ 7 o N iy ipt (39)
i=1 d i=d i=d
, d
90 =y +1/(1=p). (40)

Proof. See Section[7.3] O

As is illustrated in Theorem |5, the proposed optimal
decision p*(6,0,0) for (p,q,d) € By is constant in age J,
depending on whether Agpe = A or Ay = f§/gf from
(B7). The value A is the expected age of the steady-state
DTMC that always chooses Channel 1. The value f}/g( is
the expected age of the steady-state DTMC that chooses
Channel 1 if I; = 0 and chooses Channel 2 if ; = 1. If
§opt = A, then it is optimal to always choose Channel 1; if
Agpt = f5/90, then we will select Channel 1 when /; = 0
and Channel 2 when [; = 1.

We briefly summarize the results for Theorem An
optimal solution to () is presented for the 4 complementary
regions By,...,By of the channel parameters (p,q,d). If
(p,q,d) € B1UBy, the solution is constant in age (Theorem[Z]
and Theorem . Otherwise, for (p,q,d) € By U Bs, there
exists an optimal scheduling policy that has a threshold
structure depending on the current age value and the previ-
ous state of Channel 1 (Theorem [Bland Theorem [4). Further,
the optimal thresholds can be computed efficiently.

4.3 Optimal Scheduling policy for i.i.d. Channel

We finally consider a special case in which Channel 1 is
iid. ie. p+ ¢ = 1. First, according to the following lemma,
if p+q = 1, the 4 regions By, ..., B4 will reduce to 2 regions

B, Bs.
Lemma 3. If p + g = 1, then (p,q,d) € By or (p,q,d) € Bs.
Moreover,
1
B, = — < 41
1 {(p7Qad) 1_p_d}7 ( )
1
B; = — . 42
3 {(p,q,d) 1_p>d} 42)

Proof. By (f) and 1 — ¢ = p, we have: (i) F(p,q,d) =
H(p,q,d), and (i) F(p,q,d) > 0 is equivalent to
G(p,q,d) > 0. From the two above results and the definition
of By,...,By in (B), we directly get and (42). Moreover,
the definitions of and imply that (p,q,d) € By or
(pa q, d) € BB' U
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Figure 4. Thresholds of the optimal scheduling policy for i.i.d. mmWave
channel state, where the packet transmission time of the sub-6GHz
channel is d = 10, 20, 50.
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Figure 5. Time-average expected age vs. the parameter ¢ of the
mmWave channel, where d = 20 and p = 0.966.

From Theorem[2} if (p, ¢, d) € By, then the optimal policy
is always choosing Channel 1. From Theorem@ if (p,q,d) €
B3, then the optimal policy chooses one of the five cases that
are depicted in . However, we can reduce the five cases
to two cases: If Channel 1 is i.i.d., then the state information
of Channel 1 is not useful. Thus, Aj = A]. Note that from
Definition @ we have s3(8) < d and s;(8) > d + 1 for
i € {1,3,4}. Thus, only the first case and the last case in
(33) can possibly appear for i.i.d. channel.

So in i.i.d. case, Theorem [2]and Theorem [ reduce to the
following;:

Corollary 1. Suppose that p + q = 1, i.e., Channel 1 is i.i.d.,
then

(a) If 1 —p > 1/d, then the optimal policy is always choosing
Channel 1. In this case, the optimal objective value of @) is Ay =
1/(1-p).

(b) If 1 — p < 1/d, then the optimal policy is non-decreasing
in age and the optimal thresholds \§ = AY. The threshold \§ may
take multiple values, given by

Ay = s1(81) if Aoyt = P1, 3)
A €{1,2,...,d} if A =(3/2)d—1/2,
Ayt is the optimal objective value of @), determined by
x . 3 1
Aopt = min {Bl, id - 5} (44)

Corollary [T[a) suggests that if the transmission rate of
Channel 1 is larger than the rate of Channel 2 (which is

viii
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Figure 6. Time-average expected age vs. the parameter ¢ of the
mmWave channel, where d = 20 and p = 0.972.
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Figure 7. Time-average expected age penalty vs. the parameter q of the
mmWave channel, where p = 0.9, d = 20, and the age penalty function

is f(A) = (HW)A-

1/d), then the age-optimal policy always chooses Channel
1. Corollary [I(b) implies that if the transmission rate of
Channel 1 is smaller than the rate of Channel 2, then the
age-optimal policy is non-decreasing threshold-type on age.

5 NUMERICAL RESULTS

We first provide the optimal threshold Aj with the change
of p for d = 10,20, 50, respectively, where \j is the op-
timal threshold in ii.d. channel described in Corollary
From Fig. [@ the optimal threshold diverges to boundary
p* = 0.9,0.95,0.98 respectively. As p enlarges, the mmWave
channel has worse connectivity, thus the thresholds goes
down and converges to always choosing the sub-6GHz
channel.

Then we compare our optimal scheduling policy (called
Age-optimal) with three other policies, including (i) always
choosing the mmWave channel (called mmWave), (ii) always
choosing the sub-6GHz channel (called sub-6GHz), and (iii)
randomly choosing the mmWave and sub-6GHz channels
with equal probability (called Random). We provide the per-
formance of these policies for different ¢ in Fig.[5|and Fig.[f]
Our optimal policy outperforms other policies. If the two
channels have a similar age performance, the benefit of the
optimal policy enlarges as the mmWave channel becomes
positively correlated (g is larger). If the two channels have a
large age performance disparity, the optimal policy is close
to always choosing a single channel, and thus the benefit
is obviously low. Although our theoretical results consider
linear age, we also provide numerical results when the cost



function is nonlinear on age by using value iteration [38].
For exponential age in Fig.[7} the gain is significantly large
for all g: other policies have more than 2 times of average
cost than the optimal policy. The numerical simulation
indicates the importance of exploring optimal policy for
nonlinear age cost function, which is our future research
direction.

6

CONCLUSION

In this paper, we have studied age-optimal transmission
scheduling for hybrid mmWave/sub-6GHz channels. For all
possibly values of the channel parameters and the ON-OFF
state of the mmWave channel, the optimal scheduling policy
have been proven to be of a threshold-type on the age. Low
complexity algorithms have been developed for finding the
optimal scheduling policy. Finally, our numerical results
show that the optimal policy can reduce age compared with
other policies.
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7 APPENDICES: PROOFS OF MAIN RESULTS

In this section, we prove our main results: Theorem [1] (Sec-
tion [7.2) and Theorem (Section [7.3). In Section [7.1} we
describe a discounted problem that helps to solve average
problem @). In Section we introduce Proposition
which plays an important role in proving Theorem [I} Sec-
tion [7.3| provides the proofs of Theorem

71

To solve Problem @, we introduce a discounted problem
below. The objective is to solve the discounted sum of
expected cost given an initial state s:

Preliminaries

s(0) =s], (45

« tAT
4 (S) _nglfl’TlgnooZE A
where o € (0,1) is the discount factor. We call J(s) the
value function given the initial state s. Recall that we use
s= (d,11,12) to denote the system state, where ¢ is the age
value and [y, ls are the state of Channel 1 and Channel 2.
From Lemma|l} we only need to consider m € II' instead of
me Il
The value function J(s) satisfies a following property:

Lemma 4. For any given o and s, J*(s) < co.

Proof. See Appendix O
A policy 7 is deterministic stationary if 7(t) = Z(s(t))

at any time ¢, where Z : S — II’ is a deterministic function.

According to [42], and Lemma E} there is a direct result for
Problem (45):

Lemma 5. (a) The value function J*(s) satisfies the Bellman
equation

Q(su)-é—kaZPss )J(s),
s'eS (46)
J%(s) = min Q%(s, u).

u€ell’
(b) There exists a deterministic stationary policy p“* that
satisfies Bellman equation (46). The policy p** solves Problem

(@5) for all initial state s.
(c) Assume that J§(s) = 0 forall s. For n > 1, J is defined

as
Qn (s, u) _5+O‘ZPSS Jna(s),
s'eS
T (s) = min Qr (s, u),

uell

(47)

then lim, o J2(s) = J*(s) for every s.

Also, since the cost function is linearly increasing in age,
utilizing Lemma 5{(c), we also have

Lemma 6. For all given |y and la, J*(6,11,12) is increasing in

J.
Proof. See Appendix D} O

Since Problem satisfies the properties in Lemma
utilizing Lemma 5| and Lemma 6} the following Lemma
gives the connection between Problem (2) and Problem (45).

Lemma 7. (a) There exists a stationary deterministic policy that
is optimal for Problem (2).
(b) There exists a value J* for all initial state s such that

lim (1 —«)J%s) =J".
a—1-

Moreover, J* is the optimal average cost for Problem (2).

(c) For any sequence (o, )y, of discount factors that converges
to 1, there exists a subsequence (3, )y, such that lim,, o puPr* =
w*. Also, ji* is the optimal policy for Problem [}

Proof. See Appendix O

Lemma [7] provides the fact that: We can solve Problem
to achieve Problem (). The reason is that the optimal
policy of Problem converges to the optimal policy of
Problem (@) in a limiting scenario (as o — 1).

7.2 Proof of Theorem(d]

We begin with providing an optimal structural result of dis-
counted policy p1“*. Then, we achieve the average optimal
policy u* by letting o — 1.

Definition 3. For any discount factor o € (0, 1), the channel
parameters p,q € (0,1) and d € {2,3, ...}, we define

Bi(a) ={(p,q,d) : F(p,q,d,) <0,H(p,q,d,a) <0},
2(0¢)={(p,q, d): F(p,q,d,a) > 0,G(p,q,d,a) <0},
Bs(a) = {(p,q,d) : F(p,q,d,) > 0,G(p,q,d, ) > 0},
By(a) ={(p,q,d) : F(p,q,d,a) <0,H(p,q,d,a) > 0},

where functions F(-),G(-), H(-) : © x (0,1) — R are defined

as:
0 ) d—1 )
F(p,q,d,a) = Z(O‘p)l - Z a’,
=0 i:O
- d-1
G(p7qada)*1+aliq Z Zazv (49)
=0 =0
00 ) d—1 )
H(p,q,d,a) =1+a(l—q)) (ap)' =) a'.
1=0 1=0

Observe that all four regions B;(«) converge to B; as the
discount factor o« — 1, where the regions B; are described
in Definition 6l

The optimal structural result of Problem with a
discount factor « is provided in the following proposition:

Proposition 1. There exists a threshold type policy u®*(d,11,0)
on age ¢ that is the solution to Problem such that:



(@) If Iy = 0 and (p,q,d) € Bi(a) U By(a), then
w**(8,11,0) is non-increasing in the age 6.

) If i = 0 and (pg,d) € Byla) U Bs(a),
u®*(8,11,0) is non-decreasing in the age 6.

© I L = 1and (pg.d) € Bi(a)U Ba(a)
u®>*(0,11,0) is non-increasing in the age 6.

(d If i, = 1 and (p,q,d) € Bs(a) U By(a),
u®*(8,11,0) is non-decreasing in the age 9.

then
then

then

Note that Theorem [1| can be immediately shown from
Proposition[I} Lemma [7]and the convergence of the regions
Bi(c) to B; (fori = 1,2,3,4) as o« — 1. The rest of Section[7.2]
provides the proof for Proposition

Since Channel 1 and Channel 2 have different delays, we
are not able to show that the optimal policy is threshold type
by directly observing the Bellman equation like [23]. Thus,
we will use the concept of super-modularity [36, Theorem
2.8.2]. The domain of age set and decision set in the Q-
function is {1,2,...} x {1,2}, which is a lattice. Given a
positive s, the subset {s,s + 1,...} x {1,2} is a sublattice of
{1,2,...} x {1, 2}. Thus, if the following holds for all § > s:

Qa((S)llvO’ 1) - Qa((s - 1;l170a 1)
SQa(éallaOvQ) - Qa((s - 151170a2)a

then the Q-function Q* (4,11, 0, u) is super-modular in (4, u)
for 0 > s, which means the optimal decision

(50)

:ua’*((;a l17 O) = argminué{l,Q}Qa (67 lla 07 U) (51)

is non-increasing in § for § > s. If the inequality of is

inversed, then we call Q(4,11,0) is sub-modular in (J, u)

for § > s, and p®*(9,11,0) is non-decreasing in 0 for § > s.
For ease of notations, we give Definition [4

Definition 4. Given [y € {0,1}, u € {1,2},

La(éallau) £ Qa((svllvoau) - Qa((s - 1,11,0,’(1,). (52)

Note that L*(d,11,1) is the left hand side of (50), and
L*(6,1y,2) is the right hand side of (50).

Our high-level idea to show Proposition [1|is as follows:
First, we show that L%(d,11,2) is a constant (see Lemma
below), then we compare L*(d,11,1) with the constant
to check super-modularity (see the proofs of Lemma [9] and
Lemma [10]below).

Suppose that m 2 Y91 o/, and we have:

Lemma 8. Forall § > 2and l; € {0,1}, L*(9,11,2) = m.
Proof. See Appendix O
Also, we have

Lemma 9. (a) If [y = 0 and (p,q,d) € Bi(«) U By(v), then
Q°(6,11,0,u) is super-modular in (0, ) for 6 > 2.

() If Iy = 0 and (p,q,d) € Ba(a) U Bs(a), then
Q%(6,11,0,u) is sub-modular in (6,u) for § > 2.

Proof. See Appendix O

Lemma [Pfa) implies that p**(4,0,0) is non-increasing
in 0 if (p,q,d) € Bi() U By(r). Lemma [9[b) implies that
u**(6,0,0) is non-decreasing in ¢ if (p,q,d) € Ba(a) U
B3 (). Thus, Proposition [Ifa),(b) hold.

Lemma [9] gives the result when the previous state of
Channel 1 is 0. We then need to solve when the previous

Xi

state of Channel 1 is 1. Different from Q°(4,0,0,u), the Q-
function Q(4,1,0,u) does not satisfy super-modular (or
sub-modular) in (4, u) for all the age value 6. Thus, we give a
weakened condition: we can find out a value s, such that the
Q-function Q*(4, 1,0, u) is super-modular (or sub-modular)
for a partial age set s,s + 1,... and p®*(9,1,0) is a constant
on the set 1,2, ..., s. Then, u®*(4, 1, 0) is still non-increasing
(or non-decreasing). Note that super-/sub-modularity is the
sufficient but not necessary condition to the monotonicity of
u®*(6,11,0) in 6.

Thus, to solve Proposition C),(d), we provide the fol-
lowing lemma:

Lemma 10. (a) Ifl; = 1 and (p,q,d) € Bi(a) U By(«), then
there exists a positive integer s, such that Q“ (0, 11,0, u) is super-
modular in (§,u) for & > s, and p®*(d,11,0) is always 1 or
always 2 for all 6 < s.

(b) If Iy = 1 and (p, q,d) € Bs(a) UBy(cx), then there exists
a positive integer s, such that Q(9,11,0,u) is sub-modular in
(0,u) for 6 > s, and p**(8,11,0) is always 1 or always 2 for all
0 <s.

Proof. See Appendix O

Lemma [10(a) implies that 4**(4,1,0) is non-increasing
for 6 > s and is constant for for § < s. Thus, u**(9,1,0)
is non-increasing in ¢. Similarly, Lemma [I0b) implies that
u**(0,1,0) is non-decreasing for § > 0. Thus, we have
shown Proposition C),(d). Showing the threshold structure
of u®*(d,11,0) even if super-modularity does not hold is
one of the key technical contributions in this paper.

Overall, Lemma and Lemma 9| shows Proposition
[(a),(b). Lemma [§and Lemma(I0|shows Proposition|[Tfc),(d).
Thus we have completed the proof of Proposition

To summarize Section Proposition [T} Lemma [7] and
the convergence of Bi(a),...,Bs(a) to By,...,By show
Theorem I}

7.3 Proofs of Theorem[2—Theorem [§

In this section, we prove Theorem Theorem with
(p,q,d) € B1—(p,q,d) € By, respectively for efficiently
deriving an optimal threshold-type solution.

7.3.1  Proof of Theorem[2
For (p,q,d) € By, we firstly prove that ¢*(5,0,0) = 1 and
then show that *(6,1,0) = 1.

Lemma 11. If (p, q,d) € By U By, then the optimal decisions at
states (9,0, 0) for all § are 1.

Proof. See Appendix M O
In addition, when [; = 1, we have the following;:

Lemma 12. If (p, q,d) € By, then the optimal decisions at states
(6,1,0) for all § are 1.

Proof. See Appendix[O} O

Since 1*(4,1,0) is non-increasing in the region By by
Theorem [1} Lemma [12] implies that p*(d,1,0) = 1 for all
J. Besides, Lemma [11] implies that p*(4,0,0) = 1 for all
0. Thus, Theorem [2| follows directly from Lemma |11} and
Lemma [12| The optimal policy for (p,¢,d) € B, is always
choosing Channel 1.



7.3.2 Proof of Theorem[3

In (9), we have stated that the MDP problem (@) is reduced
to deriving the steady-state distributions of the DTMCs.
Note that Channel 1 is Markovian (I; = 0 or 1). When
l; = 1, we observe that only the states (1, 1,0) and (d, 1,0)
can be reached with positive probability for any policy
in II'. As a result, @I) can be reduced to a number of
the steady-state distributions of the DTMCs with different
actions at (1,1,0) and (d,1,0). In addition, we observe
that the state transition matrices of the DTMCs in (9) are
significantly different depending on the action at (d,0,0).
Thus, we conclude that there are at most 23 different steady-
state distributions of DTMCs based on the actions at three
system states: (1,1,0),(d,1,0) with Iy = 1 and (d,0,0)
with [; = 0. Despite that there are totally 23 cases to
enumerate, we manage to reduce to only 4 cases as in 27)
(for (p, q,d) € By). The reason is that the remaining cases are
impossible to occur due to the two following restrictions:
(1) the monotonicity is known by Theorem (I} and (2) the
following lemma:

Lemma 13. If Channel 1 is positive-correlated, i.e., p + q > 1,
and 11*(6,0,0) = 1, then u*(4,1,0) = 1. Conversely, if Channel
1 is negative-correlated, i.e. p + q < 1, and p*(6,0,0) = 2, then
w*(6,1,0) = 2.

Proof. See Appendix [K] O

Since our optimal policy is of threshold-type, the ac-
tion at (d,0,0) is equivalent to whether the threshold of
1*(6,0,0) is larger or smaller than d. Thus, we use s to
denote the possible threshold of 1* (4,0, 0).

For (p,q,d) € Bs, p*(6,1,0) is non-increasing, and
1*(,0,0) is non-decreasing. Note that (p, ¢, d) € By implies
p + q > 1. According to Lemma [13} if 4*(1,1,0) = 2, then
©*(1,0,0) = 2, hence *(8,0,0) = 2 for all . Thus, there
are two possible types of DTMCs regarding £*(d,1,0) = 1
or u*(d,1,0) = 2. If p*(1,1,0) = 1, then u*(9,1,0) = 1 for
all §, there are thus two possible types of DTMCs regarding
the threshold s > d or s < d. Thus, for (p,q,d) € Bs, there
are four possible ways to represent the DTMC diagram of
the threshold policy based on the value of the threshold s
and the actions at states (d, 1, 0) and (1, 1,0) (see Appendix
for the corresponding DTMCs and derivations):

o The threshold s > d and *(1,1,0) = p*(d,1,0) = 1
(A\f = 1). Note that we have mentioned Ay(\g, A1)
as the average age of the DTMC with thresholds
(Ao, A1) when (p,q,d) € Ba. Then, the average age
is derived as Ay (s, 1) = f1(s)/g1(s), which is shown
in Appendix The functions f1(s), g1(s) are de-
scribed in Table[2] As is shown later, 31 described in
Definition 2] is the minimum of f1(s)/g1(s).

o The threshold s < d and *(1,1,0) = p*(d,1,0) = 1
(A\f = 1). Then the average age is Aa(s,1) =
f2(s)/g2(s), which is shown in Appendix The
functions f2(s), g2(s) are described in Table 2| As
is shown later, 5> described in Definition [2| is the
minimum of f2(s)/ga(s).

e The threshold s = 1, u*(1,1,0) = 2 and p*(d, 1,0) =
1 (A7 € {2,3,...,d}). The average age is the constant
fo/go, which is shown in Appendix Note that
fo/go is described in Theorem

X

o The threshold s = 1 and p*(1,1,0) = p*(d,1,0) =

2 (A7 € {d+1,d + 2,...}). This policy means that

we always choose Channel 2. So the average age is
(3/2)d — 1/2.

The listed statements illustrated above directly provides the
following property:

Proposition 2. If (p,q,d) € By, then the optimal scheduling
policy is

if 6 < A\5;

" _J1

/‘(5’070)—{ 2 if 0> A, (53)
" 2 0 < AT
u(5,1,0)_{1 if 6> AL (54)

where \§ and A\ are given by

X = argmin f1(3)/01(s), X = 1 i By = B,
se{d+1,...} B

Ay = argmin fa(s)/g2(s), Al =1 if Ay = 5,
se{1,...,d}

)\6:1, T€{2,3,,d} iféopt:fO/g(L
No=1, Nel{d+t1,...} if Age=(3/2)d—1/2,

_ (55)
Ayt is the optimal objective value of ), determined by
x . fo 3 1
Aopt:mln{ﬂi, év%aidfi}v (56)

B1, B4 are given in @28), @9), respectively.

By using Dinkelbach’s method [43], we can change the
minimization problem (28), into a two-layer problem.
The inner-layer problem is shown to be unimodal and we
derive an exact solution. Thus, we only need a bisection
algorithm for the outer-layer, i.e., solving the roots of the
equations hq(3) = 0,h2(8) = 0 in 2I). To show this, we
introduce the following lemma:

Lemma 14. Suppose that i € {1, 2, 3,4}. Define

hi(c) = Se{g?...}fi(s) —cgi(s), i € {1,3,4}, (57)
hy(c) = min | fa(s) —cga(s). (58)
then forall i = 1,2,3,4, h}(c) § 0 if and only if ¢ % BL.
Proof. See Appendix[Q O

The solution to hf(c) in Lemma is shown in the
following lemma:

Lemma 15. Suppose that i € {1,2,3,4}. If (p,q,d) € B2UBs,
then the threshold s;(c) defined in is the solution to (57) and

[9), ie., hi(c) = hi(c).
Proof. See Appendix[Rl O
Therefore, we can immediately conclude that for all ¢ €
{1,2,3,4}:
Bi = Bi (59)

where f3] is defined in (28), 29) and f3; is derived in Defini-
tion E]with low complexity algorithm. In addition,

S’L(ﬁl) = argmin fz(s)/gz(s)vl S {17374}7 (60)
se{d+1,...}

s2(f2) = argmin fa(s)/g2(s). (61)
s€q{2,...,d}



The studies in [10], [11]], [21] also derive an exact solution
to their inner-layer problem. However, their technique is
using optimal stopping rules [11], [21] or stochastic convex
optimization [10], which is different with our study. In
conclusion, (59) and Proposition 2] shows Theorem 3}

7.3.3  Proof of Theorem[4

When (p,q,d) € Bs , p*(6,0,0) and p*(d,1,0) are non-
decreasing. Then, the two cases are removed: 1*(6,0,0) = 2,
1*(6,1,0) =1, s < dors > d.Since (p,q,d) € B3 does not
imply p+ ¢ < 1orp+ q > 1, we will enumerate all of the
five possible ways to represent the DTMCs of the threshold
policy based on the value of the threshold s and the optimal
decision at states (d,1,0) and (1,1, 0) (see Appendix [P| for
the corresponding DTMCs):

e The threshold s > d and p*(1,1,0) = pu*(d,1,0) =1
(A} € {d+1,d+2,...}). The average age is derived
as f1(s)/g1(s).

o The threshold s > d, u*(1,1,0) = 1 and p*(d, 1,0) =
2 (\f € {2,..,d}). Then, the average age is
f3(s)/g3(s), which is shown in Appendix [P.4]

o The threshold s > d and *(1,1,0) = p*(d, 1,0) = 2
(AT € {2,...,d}) with average age f1(s)/ga(s), which
is shown in Appendix

o The threshold s < d and *(1,1,0) = p*(d,1,0) =1
(AT € {d+1,d+2,...}), with average age f2(s)/g2($).

e The threshold s < d and p*(d,1,0) = 2. Then, re-
gardless of p*(1,1,0) (A} € {1,2,...,d}), the DTMC
corresponds to always choosing 2, with average age
(3/2)d —1/2.

Then, we directly have the following result:

Proposition 3. If (p,q,d) € Bs, then the optimal scheduling
policy is

. 1 A< A
i 1 i< AL

where A\j and A are given by

Ao = argmin fi(s)/g1(s),A\] € {d+1,...}if Agy = 1,

se{d+1,...} B
A5 = aigmin}fg(s)/gg(s), AT e{d+1,.. }if Agy = B,
se{2,....d B
Ay = argmin f3(s)/g3(s), A\] €{2,...,d} if Ao = B,
se{d+1,...} _
Ay = argmin f4(s)/ga(s), A} €{2,...,d} if Aoy = B4,
se{d+1,...} N
=1, A ef{1,2,....d} if A = (3/2)d —1/2,
) (64)
Aoy is the optimal objective value of @), determined by
_ , 31
Aoy = min {B], By, 85,8, 5d =5} (65)

According to (59), and (6I), Theorem [ is shown
directly from Proposition

7.3.4 Proof of Theorem[4

For (p,q,d) € By, p*(0,1,0) is non-decreasing in J from
Theorem [1]} Also, 11*(6,0,0) = 1 by Lemmal[l1]

Xiii

If ¢*(1,1,0) = 1, the policy becomes always choosing
Channel 1 (since (d, 1, 0) is not reached at any time slot with
probability 1). If x*(1,1,0) = 2, then p*(d,1,0) = 2 for all
0. Thus, the solution to the optimal threshold-type policy
when (p,¢,d) € B4 may contain two possible steady-state
DTMCs which directly gives Theorem

o The optimal decision p*(6,0,0) = 1 for all § > 1
and ©*(1,1,0) = 1. Then, the optimal policy is al-
ways choosing Channel 1. The average age of always
choosing Channel 1 is ((1—¢)(2—p)+(1—p)?)/((2—
4—p)(1 - p)) as in @,

o The optimal decision 11*(4,0,0) = 1 and p*(4,1,0) =
2 for all § > 1. See Appendix|P|for the corresponding
DTMC. The average age by analyzing the steady-
state distribution of this DTMC is f{/g; which is
shown in Appendix

Therefore, the listed items directly proves Theorem

From our analysis in Section we have the following
conclusion for the proof of Theorem P} (i) If (p, ¢, d) € By,
the optimal decision is always choosing Channel 1; (ii) If
(p,q,d) € By, B3 or By, there are a couple of possible cases
(4 cases for (p,q,d) € By, 5 cases for (p,q,d) € Bg and 2
cases for (p, q,d) € By, respectively). Each case corresponds
to analyzing the steady-state distribution of a single DTMC
or a collection of DTMCs over the threshold s; in the latter
case, the optimal threshold can be computed efficiently
using bisection search. The optimal objective value in
is the minimum of the derived ages in each cases and the
optimal thresholds are determined by the case that achieves
the minimum.

APPENDIX A
PROOF OF LEMMA[T]

Suppose that the age at initial time 0 is the same for any
policy. For any given policy m € II, we construct a policy
7': whenever both channels are idle and 7 chooses none, 7’
chooses Channel 1, and at other time 7 and 7’ are the same.
The equivalent expression of 7’ is given as follows:

, 1 if I5(t) = 0 and 7 (t) = none;
v —{ Ly 50 (1

else.
The policy 7 and 7’ are coupled given a sample path of
Channel 1: Z = {l1(0),l1(1),...}. For any Z, we want to
show that the age of policy 7’ is smaller or equal to that of
.

For simplicity, we use A, (t) and l2(¢) to be the age and
the state of Channel 2, respectively, with a policy 7 and 7.
Compared with 7, 7’ only replaces none by 1. Thus, the state
of Channel 2 of 7’ is still Io(¢).

Then, we will show that for all time ¢ and any Z, the age
AL (t) < Ar(t). We prove by using induction.

If t = 0, then according to our assumption, the hypothe-
sis trivially holds.

Suppose that the hypothesis holds for ¢ = k. We will
show for t = k + 1.We divide the proof into two different
conditions: (i) If Iz(k) > 0, then w(k) = 7’(k) = none. Thus,

(66)

AR 1 ifla(k) > 2
Ar(k+1)= { d if lz(k) =1, )

(AR 1 ifla(k) > 2
Aw(k+1) = { d i Lo (k) = 1



Table 2

Notations for f;(s), g:(s), i, 0s (i = 1,2, 3,4) in Definition[2]

Name | Expression
al, b, _| a 1—gq a
aqg_ bq 1-p p
; T Watb :
foo | aXii+ (- i CE )
’
90 MG+ d 41
1o S i+ a /by x ST i+ 3 ipt e
90 A ERicia))
) [ 1= bap = (1= q);"dps__d_l
A1) | @)@/ - )+ Ty ip' ) + dpf
D TRL e D VAN s
g1(s) | e1(&)p/(1 = )+ Zizpp' ) 4 p*

std—1_s—
+Zz d+1p1 1"‘21?; p*!

c2 ba/(aqq)

fa(s) | (p/(1—q)+ X5_qip™ 1) + st Lips—t
e 200 ipt T 4 (03 d+1(1_Q)Z+d) ~1/q
g2(s) (p/(1*11)+21_2p1 D+ (d—1)p*~ T+ codp®~?
+(d(1—q) + Dp*~1/q
f3(s) | (1—p*~ ‘i)(p/(lquZ_a ip*~1)
+ e+ i+ tdipet
g3(s) | (1=p°~ d)(p/(l—q)+21 gpl D)

P T gt T A (A= D)p !

aG) | @+ <ad—a'>pf YICA)
fa(s) | (1= p =)L i+ ea(s) 220510
+Zf+g+1l ips— d"'Zz_del d

g9a(s) [ (1 =p*T)d+ca(s)d+ (d—1)p*7
_,’_Zf:dpzfd

i —p~ T (bg + (1 — @)aa)(1 — p)(p/(1 —q) + 0o ip" 1)
+d(p — (1 —p)(d—1)/2) _

o1 —p~ 1 (bg + (1 — q)aq)(1 — p)(p/(1 — q) + L, p'~ 1)
+1—(1—p)d

l —eo(1-p) it (i (1 —@)i+d+ 1)(1—p)/q
+d(p— (1 —p)(d—1)/2)

02 p—(1-p)(1+d(1-4q))/q

—(L—p)d(i+ea)

14 (/(1—q) + 2 ip (1 —p) — 277, Ti(1 = p)aa/b),
+(d-1)(p— d(l— p)/2)

03 (p/(1—q) + X4y pi=4(1 - p))
+1— (1 —p)(d—1+daq/by)

P A -p) i -2 (1 - p)/(1 - aq)

+(d—1)(p—d(1 - )/2)
p?~tod —(1—p)d—(1—p)d/(1—aa)

—(@d-1Hd-p+1

Thus, Ay (k+1) < Ay (k+1).

(ii) If Io(k) = 0, then (k) may take none, 1, or 2. If (k) =1
or 2, then 7' (k) = w(k). Thus, the hypothesis directly gives
Ar(k+1) < Ag(k+1). If (k) = none, then 7' (k) = 1.
Then,

Aﬂ/(k + 1) < Aﬂ—/(k) + 1,

Ak +1) = An(k) + 1. (68)

Thus, Az (k+1) < Ar(k+1). From (i) and (ii), we complete
the proof of induction.

APPENDIX B
PROOF OF LEMMA [2]

Similar techniques were also used recently in [21].

Xiv

(1) According to Lemma [15, the function h;(5) in (21)
also satisfies
hi(B) = _min  fi(s) — Bgi(s), i € {1,3,4},  (69)
se{d+1,...}
ho(B) = min fa(s) — Bga(s), (70)
se{l,...d}

The function f;(s) — Sg:(s) is linearly decreasing, which is
concave and continuous. Since the minimization preserves
the concavity and continuity, h;(3) is still concave. From
Table it is easy to show that there exists a positive d’ such
that f;(s) > d’ and g;(s) > d forall i € {1,2,3,4}. So, for

all s and any 81 < B, fi(s) — B1gi(s) > fi(s) — Ba2gi(s).
Thus, h;(B) is strictly decreasing.
(2) Since fi(s) > d and g;(s) > d, so h;(0) >

0. Moreover, since h;(8) is strictly decreasing, we have
limg_, o0 hi(B) = —o0.

APPENDIX C
PROOF OF LEMMA [4]

Consider the policy that always idles at every time slot (i.e.,
7(t) = none for all ¢). Under this policy, the age increases
linearly with time. The discounted cost under the aforemen-
tioned policy acts as an upper bound on the optimal value
function J“(s). Thus, for any initial state s = (0,11,l2),
J*(s) satisfies

0+ %)

J(s) < 0+a(d+1)+a?(0+2)... = .

< o0, (71)

which proves the result.

APPENDIX D
PROOF OF LEMMA [6]

We show Lemma [f] by using induction in value iteration
(7). We want to show that J¢(s) = JZ (4,11, l2) is increasing
in age 0 for all iteration number n.

If n =0, J§(,l1,l2) = 0, so the hypothesis holds.
Suppose the hypothesis holds for n = £k, then we will
show that it also holds for n = k + 1. First, note that in
(@7), the immediate cost of any state s = (,11,12) is 4,
which is increasing in age. Second, by our hypothesis and
the evolution of age in Section 3|, >_ cg Pes (1) J (s') is
increasing in age d. Thus, Q' (s, u) is 1ncreas1ng in age 6
Thus, Ji, | (s) is increasing in age J and we have completed
the induction.

APPENDIX E
PROOF OF LEMMA [7]

Similar techniques were also used recently in [13].

According to [42] and Lemma E} it is sufficient to show
that Problem (2) satisfies the following two conditions:

(a) There exists a non-negative function M (s) such that
h®(s) < M(s) for all s and «, where the relative function
h(s) = J*(s) — J*(1,1,0).

(b) There exists a non-negative N such that
for all the state s and «.

For (a), we first consider a stationary deterministic policy
f that always chooses Channel 1. The states (1, 1, 0), (4,0, 0)
(6 > 2) are referred as recurrent states. The remaining states

—N < h%(s)



in the state space are referred as transient states. Define
e(s1,82) to be the average cost of the first passage from s; to
s2 under the policy f where s; and sy are recurrent states.
The recurrent states of f form an aperiodic, recurrent and
irreducible Markov chain. So, from Proposition 4 in [42], for
any recurrent state s, e(s’, sg) is finite (where so = (1,1, 0)).

Now, we pick M (s). We let M (s) = e(s',s9) +d(6 +d —
1) for the transient state s, and let M(s) = e(s,sg) for the
recurrent state s. Then, replacing “BEg(T')” by M(s) in the
proof of Proposition 1 in [44], we have h®(s) < M(s) for
all the state s. Overall, there exists M (s) such that h*(s) <
M(s).

We start to show (b). According to Lemma @ the
value function is increasing in age. Thus, we only need
to show that there exists NV such that —N < h%(1,l,l2)
for all I; and ly. In order to prove this, we will show
that there exists E’(1,l1,l3) such that —E'(1,l1,ls) <
h*(1,l1,l3) for all l; and ly. Thus, we take N =
max;, e{0,1},l5€{0,1,....di—1} £'(1,11,1l2), which is still finite,
and condition (b) is shown.

Now, we start to find out E'(1,1y,13).

We split the states (1,11, l3) into three different cases.

(b1) If iy = 1 and I, = 0, then h*(1,11,13) = 0. Thus, we
take E,(L ll, lz) =0.

(b2) If Iy = 0 and Iy = 0, then we take T = 1 if the
optimal decision of (1,0,0) is 1 and take T' = d + 1 if the
optimal decision is 2. Therefore, the definition of J*(1,0,0)
tells that there exists T' € {1,d 4+ 1} and a € [0, 1] such that

J(1,0,0)
T .
> Zia“l +at (aJ*(1,1,0) +
i=1

aT(aJ*(1,1,0) + (1 — a)J%(1,0,0))
=aT (aJ“(l, 1,0) + (1 — a)(h(1,0,0) + J*(1, 1,0)))
=a’J*(1,1,0) + T (1 — a)h®(1,0,0)
>a’' J*(1,1,0) + oT (1 — a)h*(1,0,0).

(1 —a)J*(1,0,0))

(72)

Notice that J*(1,1,0) is smaller or equal to the a-
discounted cost of always choosing Channel 1 with initial
state (1,1,0). Consider a special case of MDP consisting of
states (1,1,0),(2,0,0),(3,0,0),..., where there is only one
policy that always chooses Channel 1. Therefore, applying
Lemma A2 in appendix of [42] to this MDP, (1—a)J*(1,1,0)
is upper bounded by a constant ¢’ that is not a function of
a. Note that

l-af'=(1-a)1+a+.+a™ H) <A -a)T. 73)
Then from (72), we get
h*(1,0,0)
=J%(1,0,0) — J*(1,1,0) s
>—(1—a")J*(1,1,0) + a* (1 — a)h*(1,0,0) (74)
>—T¢ 4+ aT(1-a)h*(1,0,0).
Therefore,
T !
he(1,0,0) > —— = 2 ['(1,0,0). (75)

1—aT(l-a)

Xv

(b3) If I > 0, similar with (b2), we take 77 = I3 and
there exists a’ € [0, 1] such that
T

TI/_ -
¢~ 1-af(1-a)

h® (]. ll,lg) (1 — a’) (76)

2 E'(1,1,1p). (77)

Therefore, we have found out all the values of E’(1,11,12).
Overall, by proving (a) and (b), we complete the proof of
Lemma[Z

APPENDIX F
PROOF OF LEMMA [§]

Recall that we use [; (which is 0 or 1) to denote the state of
Channel 1 and that

La(67l152) = Qa(éal17072) - Qa(é - 1al17072)

. We define the sequences ay, a}, by, b, with the non-
negative index k as

[0,1] x P*,

(78)

lak, bk] = [a},, b,] = [1,0] x P*, (79)

where P is the transition probability matrix of Channel 1,
given by {1 gp 1 ; | Note that implies ay, + by, =

aj, + by, = 1 for all the index k.

By using the Bellman equation (46) iteratively, L (4, 0, 2)
and L“(4, 1, 2) satisfy the following lemma:
Lemma 16. The values L(6,0,2) and L(0, 1, 2) satisfy:

2
L%(5,0,2) =) o

¥

Q O

+atlay ( (6+d— 1,1,1)—J@(5+d—2,1,1))

+adlp,_ 1(Ja (6+d— 1,0,1)—J°‘(6+d—2,0,1)>,
d—2

L¥(6,1,2) =) o
=0
La, 1(,]”‘6+d—1,1,1)—J“(5+d—2,1,1))

+ad 1y, (J“ (6+d—1,0,1) — Ja(5+d—2,0,1)>,
(80)
where ag—1, al;_q, ba—1, bl,_, are defined in (79).
Proof. Please see Appendix [G]for details. O

Note that the state of Channel 2 represents the remaining
transmission time of Channel 2. From Lemma[l6] L (4,0, 2),
L%(4,1,2) can be expressed by J*(6+d—1,0,1), J*(6+d—
1,1,1),J%0+d—2,0,1) and J*(6 +d — 2,1, 1). Observe
that I = 1 in all of these terms. Thus, we can use to
further expand these terms and prove L*(9,1,2) = m.

Since the state of Channel 2 is 1, then at the next time
slot, the state of Channel 2 is 0, and the age drops to d. So,
from (46), for all age value dp > d — 1, we have

J%(00,0,1)

=dp + apJ“(d,0,0) + a(1 — p)J*(d, 1,0),
J%*(d0,1,1)

=00 + (1 — q)J%(d,0,0) + agJ“(d, 1,0).

(81)



Then, we replace dp by 6 +d — 1, and 6 +d — 2 in (81). Recall

that [aq, ba] = [ad—1,ba-1]P, [ag, by] = [a}_y,by_;]P and
ag—1+bqg—1 =al,_; +b,_; =1.Then becomes
d—2
L¥(5,0,2) =Y o'+ a? M(aa—1 + bg—1)
=0
+alaq(J*(d,1,0) = J*(d, 1, 0))
(82)
+adby (J"‘(d, 0,0) — J*(d,0, 0))
d—1
i A
= Z o =m.
=0
Also,
d—2 ]
L%(6,1,2) = Z o +a’Mah_y + by ,)
i=0
+add, (J"‘(d, 1,0) — J%(d, 1, 0)) ©)
+at), (Jo‘(d, 0,0) — J%(d, 0, 0))
d—1
i A
= Z o =m.
=0
APPENDIX G

PROOF OF LEMMA [16]

We show Lemma [16| by using recursion. The state (9,0, 0)
has a probability of p to increase to (6 +1,0,d — 1), and a
probability of 1 — pto (6 + 1,1,d — 1). Thus, implies

Q“(4,0,0,2)
=+ apJ(0+1,0,d— 1)+ a(l—p)J*(+1,1,d — 1),
(84)
thus,

L%(5,0,2) = 1+ ap(Ja(d +1,0,d—1) — J%5,0,d — 1))
+a(l=p)(JE+1,1,d=1) = J(6,1,d  1)).

(85)
Using similar idea when [; =1,
Q“(6,1,0,2)
=i+a(l—q)J*d+1,0,d—1)+aqgJ(0+1,1,d — 1),
(86)
Thus,
L*(4,1,2)

=1+a(l-q) (Ja(a +1,0,d — 1) — J%5,0,d — 1)) )
+ aq(JH@+1,1,d - 1) = J7(6,1,d — 1)).

Observe that, from and (87), we can express L*(9,11,2)
in terms of J*(6 + 1,l1,d — 1) and J*(4,11,d — 1). Also,
the optimal decision is none when Iy > 0. Then, we can
iteratively expand J*(6 + 1,{1,d — 1) and J“(d,0;,d — 1)
using (46). For all the age do:
J*(60,0,d — 1)
=dp + apJ“ (6o +1,0,d — 2) + (1 — p)J*(do + 1,1,d — 2),
T80, 1,d — 1)
=y + a(l —q)J%(dp +1,0,d — 2) + aqJ (6o + 1,1,d — 2).
(88)

XVi

Applying (88) into and (87):
L°(5,0,2)
=1+ alay +b)+ a*(qay + (1 - p)by)
(Jo0+2,1,d-2) = I3 +1,1,d-2))
+ a(pby + (1 — q)ar)
(J“(5+2,0,d—2) - J“(6+1,0,d—2)>,

89
L°(8,1,2) (89)
=1+ a(ay + b)) + a®(gay + (1 - p)by)
(Jo0+21,d=2) = J(0+1,1,d~2))
+a’(phy + (1= g)ay)
(J”(6+2,07d—2) — J“(6+1,0,d—2)),
wherea; =1 —p,b; =p,af =¢g,and V) =1—¢q.
From (79), we have
qai + (1 = p)b1 = az, pb1 + (1 — q)ar = by,
qa/l + (1 - p)bll = al27 pbll + (1 - q)all = b/2a (90)
[11+b1 :a/1+b/1 = 1
Applying (0) in @B9), we get
1
L%(5,0,2) =) o
i=0
+ 00y (JO(0 +2,1,d~2) = J* (0 +1,1,d — 2))
+a2b2(Ja(5+2,0,d72) - Ja(5+1,0,d72)),
91)

1
L*(5,1,2)=> o
i=0
n a%g(ﬂ(a v2,1,d—2)— J¥G+1,1,d — 2))
+o<2b’2(Ja(6+2,O,d—2) - Ja(5+1,o,d_2)).
We use iteratively for d — 3 times, and we get in

Lemma [16] (note that if d = 2, we have proved in
and (87).

APPENDIX H
PROOF OF LEMMA [9]

Frist of all, we observe that B;(a) U By4(«) implies that
Y 2olap)t — m < 0, while By(a) U B3(a) implies that
Yrcolap)’ — m > 0. Thus, we will need the following
lemma:

VIIA

Lemma 17. For any real number m' that satisfies m’

> o(ap)?, we have m’ § SE(ap)t + (ap)km! for all
ke{0,1,2.).

Proof. Please see Appendix [l| for details. O

Next, we need to know an alternative expression of
L~(6,0,1).
Q%(4,0,0,1)

92
S5t apo(3+1,0,0) + a(l — p)Jo(1,1,0), 2



Thus,
L2(5,0,1) =1+ ozp(JO‘((S +1,0,0) — J“((S,0,0)). (93)

Now, we start to prove Lemma E} From Lemma @ it is
sufficient to show that:

(@) If (p,q,d) € By(a) UBy(c), then L*(6,0,1) < m for
§>2.

() If (p, q,d) € Ba(a) UBs(cx), then L*(5,0,1) > m for
5> 2.

(@ If (p,q,d) € Bi(a) U By(w), then the function
F(p,q.d,a) < 01ie, m > > (ap)’. We want to show
that L*(5,0,1) <m

Suppose that us is the optimal decision of state (J,0, 0),
i.e., the value function J*(4,0,0) = Q*(4,0,0,us). For all
given 0,

J*(5+1,0,0) —
=Q%(6+1,0,0,us41) — Q%(5,0,0, us)
=Q(6+1,0,0,u541) — Q*(6 + 1,0,0, us)

<0(, by optimality)

J(8,0,0)

+ Q%6+ 1,0,0,us5) — Q%(6,0,0, us)
<Q(6+1,0,0,us) — Q*(5,0,0,us) = L¥(6 + 1,0, us).
(94)
Thus, (93) and (94) gives
L(5,0,1) < 1+ apL®(6 + 1,0, us). (95)

Given age o, there are two possible cases for the optimal
decision when § > dy.

Case (al) For some non-negative integer [, we have us, =
Usg41 = - = Uso+1—1 = 1 and us, 41 = 2.

In this case, if [ = 0, then u;5, = 2. From Lemmal we get
L*(00 +1,0,2) = m. Also, (p, q,d) € Bi(a) UB4(a) implies
that m > Zl o(ap)i. From Lemma if m > 32 (ap)’,
then we have 1 + (ap)m < m. Combining these with (95),
we get

L%(60,0,1) <1+ (ap)m < m. (96)

If I > 0, then us, = ... = us,4+1—1 = 1. Thus, we can expand
L*(8p + 1,0,us,), ...L*(60 + 1,0, ugsy+1—1) iteratively using
and get

l

< (ap

=0

*(8p,0,1) (ap) YL (80 + 14 1,0, us, 11)-

©7)

Since ug,4+1 = 2, Lemmaimplies that L*(0p+1+1,0,2) =
m. By Lemma [17] we get

l
Z H'1m <m.
=0

Case (a2) For all [ > 0, we have us,4; = 1. Then, we can
use (95) iteratively. Thus, holds for all the value .
Since the optimal decision ugs,4+; = 1, we take into

(©7), and get

!
> (ep)" + (ap) L (5o + 1+ 1,0, us,+1)
1=0
1

(59, 0,1) 98)

99)

<N (ap)’ 4 (ap) 2L (0o + 1 + 2,0, u5y 1141)-
1=0

XVii

Thus, the right hand side of is an increasing sequence in
[. Then in order to prove L*(dp,0,1) < m, we want to show
that the supremum limit of the sequence over [ is less than
or equal to m. To prove this, we will show that the tail term
of (97), which is (ap)!**L*(8g + I + 1,0, us,+1), vanishes.

Lemma [¢] implies that the value function J*(4, 1y, l3) is
increasing in J. Equation in the proof of Lemma [4| gives
J*(8,11,12) < (6 + o/(1 — a))/(1 — @), which is linear on
the age d. Thus, we get

0< L8 +1+1,0,1)

=J%do+1+1,0,0) — J*(dp +1,0,0)

(100)
(bo+1+1472)
< J6o+1+1,0,0) < )
11—«
From and a,p < 1, we get
Jlim (ap) L2 (60 +1+1,0,1) = 0. (101)
—00

Thus, we give
l

L%(60,0,1) < hmsupz ap)t + (ap) L (6o +1+1,0,1)

l—oo T,
l 0o
= li i i.
fim > (ap) = (ap)
=0 =0

(102)

Part (a) implies that m > 7°(ap)’. Thus, {[02) directly
gives L*(09,0,1) < 372 (ap)’ < m.In conclusmn for both
cases (al) and (a2), we have

L%(50,0,1) < m. (103)

(b) If (p, ¢, d) € Ba(a)UB3(a), then F(p,q,d, ) >0, i.e.,
m < Y .o (ap)’. Thus, we want to show that L%(§,0,1) >
m for all age §. The proof of (b) is similar to (a), by reversing
the inequalities and a slight change of (106). We use the
same definition of us in part (a), assuming that J*(4,0,0) =
Q%(0,0,0,us). We get

J(8 +1,0,0) — J%(4,0,0)
=Q“(0+1,0,0,us+1) — Q@¥(4,0,0, us)
=Q“(0+1,0,0,us41) — Q@¥(4,0,0, ust1)
+QY(8,0,0,us41) — Q°(6,0,0, ug) (104)
>0, by optimality
>Q%(d+1,0,0,u541) — Q(5,0,0,us41)
=L¥(6+1,0,u541)-
From and (93), we can directly get
LY(6,0,1) > 1+ apL*(6 + 1,0, us11). (105)

Like in part (a), we split part (b) into two different cases:

Case (b1l) For some non-negative integer [, we have
Usg+1 = - = Ugo+1 = 1 and ugy4i4+1 = 2. Similar to @7), by
the iteration in (105),

l

L9(60,0,1) > S (ap) +

=0

(ap) T LY (8o + 1+ 1,0, u501141)-
(106)

Using Lemma (b), and us,+1+1 = 2, we can get

L¥(80,0,1) > >0 (ap)® + (ap)tim > m.



Case (b2) The optimal decision us,4i+1 = 1 for all I >
0. Then holds for all non-negative [. Also, similar to
(©9), the right hand side of is decreasing in [. Thus,
L*(09,0,1) is larger than the infimum limit of the sequence
over . From (I0I), and m < 32 (ap)?, we get

l
L*(80,0,1) > liminf » (ap)’ + (ap)' ' L*(8o + 1+ 1,0,1)
l—o0 =0

l )
Jim izo(ap) ;(ap) >m

(107)

Thus, the proof of Lemma [9)is complete.

APPENDIX |
PROOF OF LEMMA 7|

(@ If m" > >, (ap)’, we will show that m' >
Zf;ol(ap)i + (ap)km’ for all k € {1,2...}. We prove by
using induction.

Suppose that k = 1. Since m’ > > (ap)’ = 1/(1—ap),
then (1 — ap)m’ > 1, and we get m’ > 1 + (ap)m/. So, the
condition holds for k£ = 1.

Suppose that the condition holds for k = n, then we will
show that it holds for £ = n + 1. Since we have shown that
m’ > 1+ (ap)m/, the hypothesis inequality becomes

m > z_:(ap)i+(ap)n(1+(ap)m/) _ Z(ap)i-*-(ap)’“rlm’.
i=0

= (108)
Thus, the condition holds for &k = n + 1.
(b) If m’ < 322, (ap)?, the proof is same with that of (a)
except replacing notation ">’ by '<’.
(©Ifm' =32 (ap)’, thenwe have forall k € {1,2, ...},

k—1 oo k—1 oo
m' =3 (ap)' + 3 (ap) =D _(ap)' + (ap)* 3 _(ap)’
=0 i=k =0 =0
k
= (ap)' + (ap)*+im'.
i=0

(109)
Thus, we complete the proof of Lemma

APPENDIX J
PROOF OF LEMMA [0

Lemma [8) implies that: Showing that L(d,11,1) < m for
d > s is sufficient to show that Q(d,/;,0,u) is super-
modular in (6,u) for § > s. Conversely, showing that
L*(0,l1,1) > m for § > s is sufficient to show that
Q°(0,11,0,u) is supermodular in (0, u) for § > s. Thus, it
remains to prove the following statements:

(s1) If (p,q,d) € By(a) U By(w), then there exists a
positive integer s, such that L%(4,1,1) < m for § > s, and
1**(8,11,0) is constant for all § < s.

(s2) If (p,q.d) € Bs(a) U By(a), then there exists a
positive integer s, such that L*(9,1,1) > m for § > s, and
u**(d,11,0) is constant for all 4 < s.

We first need to give three preliminary statements before
the proof.

Xviii

(1) We first need to give an expression of L*(4,1,1).

The state (9,1,0) has a probability ¢ to decrease to state
(1,1,0) and a probability 1 — ¢ to be (§ + 1,0, 0). According
to (46), we get

Q*(5,1,0,1)
=0+ a(l—q)J0+1,0,0) + aqgJ(1,1,0),

Thus,

(110)

L(8,1,1) = 1+ a(1 = g)(J*(+1,0,0) = J*(3,0,0)).
(111)

(2) We consider a special case when J*(d + [,0,0) =
Q*(6+1,0,0,1) for all non-negative [. Then, we have

JE +1,0,0) — J(6,0,0) = LY+ 1,0,1)  (112)
. Recall that
L(5,0,1) = 1+ ozp(J(’((S £1,0,0) — J(6, 0, 0)). (113)

Then, (113) gets

L%(6,0,1) = 1 + apL®(6 +1,0,1). (114)

By iterating the (114) on 6 + 1,6 + 2, ..., we get for all non-
negative /,

-1
L¥(6,0,1) = (ap)’ + (ap)'L¥(6 + 1+ 1,0,1).
1=0

(115)

Equation (T0T) implies that (ap)'L%(6 + 1+ 1,0, 1) vanishes
as | goes to infinity. After taking the limit of /, our conclusion
is thatif J*(6+1,0,0) = Q“(0+!,0,0, 1) for all non-negative
[, for all age ,

oo

L%(6,0,1) = Z(ap)i.

=0

(116)

(3) The threshold s mentioned in Lemma depends
on whether Channel 1 is positive-correlated or negative-
correlated. So, we will utilize Lemma [I8)in Appendix [K]

After introducing the three statements, we start our
proof of Lemma The proof is divided into four parts:
(@), (b), (c) and (d). Parts (a) and (b) are dedicated to prove
part (s1) that gives Lemma [10| (a), and parts (c) and (d) are
dedicated to prove part (s2) that gives Lemma (b).

(@ If (p,q,d) € Bi(wa), then we have 1 + a(l —
Q) Y icolap)t < mand Y2 (ap)’ < m. Our objective is:
there exists a value s, such that the function L*(4,1,1) < m
for 6 > s, and the optimal decisions **(4, 1, 0) is a constant
for § < s. The choice of s depends on two cases: p+ g > 1
orp+qg<lIfp+qg>1 wewilltakes=1.Ifp+q <1,
We will take s to be the threshold of u®*(4,0,0).

Case (al) Suppose that p + ¢ > 1. Thus, by comparing
with (IT1), we get L*(6,1,1) < L%(4,0,1). Lemma[J](a)
implies that L*(5,0,1) < m. Thus, L*(4,1,1) < m for all
the age > 1. Thus, we take s = 1, and our objective holds.

Case (a2) Suppose that p + ¢ < 1. Lemma |§| (a) implies
that 4** (4,0, 0) is non-increasing. Then we take s to be the
threshold of u**(4,0,0). Then, u®*(0,0,0) = 2 for 6 < s.
Lemma (18| implies that u**(0,1,0) = 2 for § < s. Also,



p**(6,0,0) = 1 for § > s. So, (116) implies that L*(d +
1,0,1) = >:2 o (ap)’ for § > s. From (11), for § > s,

oo

L¥(6,1,1) = 1+a(l—q)L*(6+1,0,1) = 1+a(l—q) Y (ap)".

1=0
(117)

Thus, the first condition in part (a) implies that L*(d,1,1) <
m for 6 > s. By combining bothp+¢>1landp+¢ < lin
Case (al) and Case (a2) respectively, we complete the proof
when (p, q,d) € Bi(a).

(b) Suppose that (p,q,d) € Ba(«a). Similar to (a), our
objective is to show that there exists a value s such that
L*(6,1,1) < mfor § > s, and u**(4,1,0) is a constant for
6 <s.

Since the system parameters (p, ¢,d) € Bz(a), we have
1+ a(l —¢m < mand Y7 o(ap)® > m. This implies
p+q > 1. Also, Lemma E] (b) implies that p**(4,0,0)
is non-decreasing. Then we take s to be the threshold of
©**(8,0,0). Then, 1%*(8,0,0) = 1 for § < s, and LemmallL§]
implies that 4**(6,1,0) = 1 for 6 < s. Also, p**(6,0,0) =
2for § > s. Thus, J%(6+1,0,0)—J%(5,0,0) = L*(5+1,0,2)
for 6 > s. Lemma [§ implies that L*(6 + 1,0,2) = m for
§ > s. Thus, from ([[11), we get L*(,1,1) = 1+ a(1 — g)m.
From the condition in part (b), 1 + (1 — q)m < m. Thus,
L*(6,1,1) < mfor § > s, and we complete the proof of our
objective when (p, ¢, d) € Ba(«).

(c) The case (p,q,d) € Bz(«) has a similar proof to part
(a) where (p,q,d) € Bi(a). Our objective is to show that
there exists a value s such that L*(4,1,1) > m for § > s,
and p®*(d,1,0) is a constant for § < s. We will take s =
1if p+ g < 1. Lemma E] (b) implies that p®*(4,0,0) is
non-decreasing threshold type. So, we will take s to be the
threshold of u**(5,0,0) if p+¢q > 1.

Note that the system parameters (p,q,d) € Bs(«) im-
plies 1 + a(1 — ¢)m > mand > ;2 (ap)’ > m.

Case (cl) Suppose that p + ¢ < 1. Similar to the
proof of part (al), we compare with (III), and we
get L*(6,1,1) > L%(6,0,1). Lemma [9 (b) implies that
L*(6,0,1) > m. Thus, L*(4,1,1) > m for 6 > 1. Thus,
we take s = 1, and our objective holds.

Case (c2) Suppose that p + ¢ > 1. We take s to
be the threshold of non-decreasing p®*(d,0,0). Then,
1**(6,0,0) = 1 for 6 < s. Thus, Lemma implies that
u**(6,1,0) = 1. Also, u®*(6,0,0) = 2 for § > s, same with
part (b), L*(6,1,1) = 1+ a(l — ¢)m > m, which proves
our objective. By combining both Case (c1) and Case (c2)
respectively, we complete the proof when (p, ¢, d) € Bs(a).

(d) The case (p, ¢,d) € B4(c) has a similar proof to part
(b) where (p,q,d) € Ba(a). Our objective is to show that
there exists a value s such that L%(6,1,1) > m for 6 > s,
and p®*(4,1,0) is a constant for 6 < s.

The case (p, ¢,d) € B4(a) gives 1+a(1—¢q) > ooy (ap)’ >
m and > ic,(ap)’ < m. These 2 conditions imply that
p+ g < 1. Lemma E] (a) implies that p**(4,0,0) is non-
increasing threshold type. Then we take s to be the thresh-
old of pu®*(4,0,0). So, u**(4,0,0) = 2 for § < s, and
Lemma implies that u®*(6,1,0) = 2 for § < s. Also,
1**(6,0,0) = 1 for § > s. Thus, in proof of (a2) still
holds for § > s. Since 1 + a(1 — q) > i (ap)® > m,
directly implies that L*(4,1,1) > m for all 6 > s. Thus, we
complete the proof of our objective when (p, ¢, d) € B4(w).

Xix
APPENDIX K
PROOF OF LEMMA [13]

According to Lemma [7} it is sufficient to show that for all
a < 1, the following lemma holds.

Lemma 18. If Channel 1 is positive-correlated, i.e., p+q > 1, and
n>*(06,0,0) = 1, then u®*(0,1,0) = 1. Conversely, if Channel
1 is negative-correlated, i.e. p + q < 1, and p®*(4,0,0) = 2,
then p**(6,1,0) = 2.

We start the proof of Lemma

First of all, since both Q<(4,0,0,2) — Q*(4,0,0,1) and
Q*(4,1,0,2) — Q~(5,1,0,1) will induce a term J(0 +
1,1,d —1) — J*(1,1,0), we need to provide a lemma:

Lemma 19. We have J*(6 +1,1,d — 1) > J%(1,1,0).
Proof. Please see Appendix [[]for details. O

Then we start the proof.
(a) Suppose that p + ¢ > 1 and p®*(4,0,0) = 1. Thus,

Q%(4,0,0,2) > Q“(4,0,0,1). (118)

Recall that (92), give the expression of Q“(4,0,0,1),
Q°(4,0,0,2) respectively. We get

Qa(57 07 07 2) - Qa(67 07 07 1)

:ap<.]o‘(6+1,0,d—l) —Ja(5+1,o,0)) (119)

+a(l—p) (Ja(a +1,1,d— 1) — J(1, 1,0)).

Then we want to show that Q@*(4,1,0,2) > Q*(4,1,0,1).
Note that

Qa(57 17 Oa 2) - Qa(57 1707 1)
=a(1—g)(J*(F+1,0,d=1) = J*(3+1,0,0)) (120
+ aq(J”‘(5+ 1,1,d—1) — J(1, 1,0)).

For the first terms in (120), we have two possible cases:
Case (al) Suppose that J*(§ + 1,0,d — 1) — J*(§ +
1,0,0) > 0. From Lemma we have J*(6 + 1,1,d —
1) > J%(1,1,0). Thus, implies that Q*(4,1,0,2) —
Q*(6,1,0,1) > 0.
Case (a2) Suppose that J*(§ + 1,0,d — 1) — J*(§ +

1,0,0) < 0. Since ¢ > 1 — p, then, (119) and (120) imply
that

Q“(4,1,0,2) — Q*(4,1,0,1)

>Q%(5,0,0,2) — Q(5,0,0,1) > 0. (121)

(b) Suppose that p + ¢ < 1 and p**(5,0,0) = 2. Then
(119) is negative. Therefore, J*(§+1,0,d—1)—J*(6+1,0,0)
must be negative. Then, (119) and (120) imply that

Qa(57 1707 2) - Qa((sa 1707 1)

SQQ(6707072) - Qa(550707 1) S 0. (122)

By considering (a) and (b), we have completed the proof.



APPENDIX L
PROOF OF LEMMA [19]

First, when d = 2, J*(d 4+ 1,1,1) is expanded according to
(81), and we have

JE+1,1,1) — J*(1,1,0)
ZJQ((S + 17 17 1) - Qa(lv 1,0, 1)

=6+ ad; (J%(d,1,0) = J°(1,1,0)) (123)

+ab, (J"‘(d, 0,0) — J%(d, 0, 0)) >0

Thus, we only need to consider d > 3 in this proof.
Then, we will use the similar technique that is used in the
proof of Lemma (8} to show the following inequality holds:

J+1,1,d—1) — J%(1,1,0)
>a92d),_, (Ja(a Td—1,1,1) — JY(1,1, 0))
+ a2, (J“(é +d—1,0,1) — J%d 1,0, 0)),
(124)
where al, 5, b, , are defined in (79).

Proof. Note that the optimal decision of (§ + 1,i1,d — 1)
is none and J*(d + 1,l;,d — 1) is expanded according to
®8). Also, J%(1,1,0) < Q%(1,1,0,1) and Q(1,1,0,1) is
expanded according to (110). We get
JE+1,1,d— 1) — J%1,1,0)
>J%6+1,1,d—1) — Q*(1,1,0,1)
=6+ aa} (J2(6 +2,1,d — 2) - J*(1,1,0))

+ab, (Ja(é £2,0,d—2) — J¥2,0, 0)) (125)

>ad (Ja(a +2,1,d—2) — J(1, 1,0))
+ab (J(+2,0,d — 2) = J*(2,0,0)),
where af = gand b} = 1 — ¢ as defined in (79). The optimal

decision of (6+2, 11, d—2) in (125) is none and J*(6+2, 11, d—
2) is expanded similar to (88) according to the following:

J%(80,0,d — 2)

=0y + Osza((SO +1,0,d — 3) + Ol(]. —p)Ja(50 +1,1,d — 3),

J*(60,1,d —2)
=0 + a(l — q)J*(do + 1,0,d — 3) + aqJ“ (6o + 1,1,d — 3),
(126)
where ) is arbitrary. Also,
J*(1,1,0) < Q*(1,1,0,1) < Q*(2,1,0,1)
~1 4 agJ*(1,1,0) + o(1 — q)J*(3,0,0). (127)
Thus, (125),(126) and give
JUE+1,1,d—1) — J(1,1,0)
zaQa’Q(J“((S—i—Q,l,d—?.) - Ja(1,1,o)) (128)

+ a2b’2(Ja(5 +2,0,d—3) — Ja(s,o,O)).

By using recursion for another d —4 times, we can finally
get - note that if d = 3, then we have already proved

@29 in (129).

XX

Now, we show Lemma |19} The value function J*(§ +
d —1,11,1) in (124) is expanded according to (81). Also, we
have J"‘( -1, O ,0) < Q*(d—1,0,0,1). Similar to {I27),

J%(1,1,0) < Q*(1,1,0,1) < Q%(d — 1,0,0,1).  (129)
Thus, gives:
JOE+1,1,d—1) — J(1,1,0)
zad—lag,l(ﬂ(m,o) - Ja(1,1,o)) (130)

+ad M, (J"‘(d, 0,0) — J%(d, 0, 0)) >0,

where a;_,,b/,_, is described in (79). Thus, we complete the
proof of Lemma

APPENDIX M
PROOF OF LEMMA [{1]

Recall that we use pu®*(-) to denote the discounted prob-
lem’s optimal decisions. From Lemma [/ it is sufficient
to show that: for all discount factor < 1, the optimal
decisions p**(0,0,0) = 1if (p,q,d) € Bi(a) UBy(a). We
use 1157"(6,0,0) to denote the optimal decision of the state
(6,0,0) at j*" iteration according to the value iteration @7).
From Lemma [f[c), to prove that p**(6,0,0) = 1 for all 4,
we will show that 157" (8,0,0) = 1 for all  and the iteration
j. We show this by using induction on j.

The value function J§(-) = 0 and cost function is § for
both choices. Thus, for j = 0, we directly get u?’*(d, 0,0) =
1.

Suppose that (15" (6,0,0) = 1 for j = n — 1 > 0, we will
show that 15°"(9,0,0) = 1 for j = n. To show this, we need
to show:

(i) The supermodularity holds for all § > 2:

Qg (67 Oa Oa 1) - Qg((s - 1) 07 07 1) (131)
SQa(é 0,0, 2) - Qg((s - 1507072)'
Thus, from [36], u%*(4, 0, 0) is non-increasing in 4.
(i) The optimal decision p2*(1,0,0) = 1, ie,

Q%(1,0,0,2) > Q%(1,0,0,1). From (i) and (ii), the optimal
decision p&*(4,0,0) is 1 for all 4.

We first show (i). For simplicity we define the age differ-
ence function:

L&(6,0,1) = Q9(6,0,0,1) — Q%(6 — 1,0,0,1), (132)
L3(6,0,2) = Q0(6,0,0,2) — Qx(d — 1,0,0,2).
We want to show that
L2(5,0,1) < L3(5,0,2). (133)
First, we derive
n—1
L3(6,0,1) = > (ap)". (134)
i=0
Proof. Similar to (92), we can get
©(6,0,0,1
Qn( ) . (135)
_(5+Oép 1(6+1 0 0)+O[(1— ) n71(1?170)a
thus,
L (6,0, 1)-1+ozp( —1(6+1,0,0) — _1(6,0,0)).

(136)



“(6,0,0) = ... = " (6,0,0) = 1 for all §, we have
Lg((s,o,l) =1+apL® (6 +1,0,1). (137)
Since (137) holds for all §, we can iteratively use (137),

similar to (115), (116), to get

Since pg’

n—1
L3(5,0,1) = > (ap)' + (ap)"L§ (6 +n,0,1).  (138)
i=0
Since L§ (6 +n,0,1) = 0, (I38) directly gives (134). O

Then, we derive L% (4,0, 2) in (I33). Following the same
steps that are used in Lemma |8} we can show that:

L2(5,0,2) Za

@ (T2 (6 L d = k) = S5+ k= 1,1,d— k)

+ 0 by (i (6 + K, 0,d — k) = Jo_ (6 + k= 1,0,d = k),
(139)

where k = min{n,d — 1}, and ax, by, are defined in (79).

If n < d—1, then k = n and the value functions J¢_,(-)
inside are 0. Thus, L,,(5,0,2) = Y7 o'

If n > d—1, then k = d — 1. We will expand all the value
functions in (139). Recall that for all age value 6y > d—1, we
have the same equation as except adding a subscription:

Jr?fd+1(6070’ 1)

=69+ apJy_4(d,0,0) + (1l —p)Jo_
J—q1(00,1,1)

=0 + a(l —q)Jy (d 0, 0) + aqJy_4(d,1,0).

Applying ([140) and (©0) into ( ) we get the following
equation wh1ch is the same as (82), except adding a sub-

scription:

d(da 170)7 (140)

d—2
L%((S, 0, 2 = Z ol + Oéd_l(ad 1+ bd—l)
ta ad( ,(d,1,0) — ;;_d(d,l,()))
(141)
( oa(d,0,0) — J2_4(d,0,0))
= ai £ m.
i=0
Thus,
o [ m if n > d;
Ln(57072) - { ZZI O1 o ifn < d. (142)

Since (p,q,d) € By UBy4, we have Y2 (ap)’ < m. Thus,
from and ([142), we get L,,(6,0,1) < L, (6,0, 2), which
proves condition (i).

We next show (ii). We have a following statement:

Lemma 20. Suppose that k = min{n,d — 1}. Then, we have:

k—1
> af(1-ph)
1=0
+afa (T p(k+1,1,d — k) — J&_,(1,1,0))
(bk - )( nfk(k—’— 1a05d_k) - g,k(k,0,0))
+a’“p’“( o (k+1,0,d—k) — J3_.(k+1,0,0)),
(143)

%(1707072) - Q%(1307O7 1) Z

XXi
where ay, by, are defined in (79).
Proof. See Appendix|N} Note that ay, + by = 1. O

If n < d-1, then & = n. In this case, all the value
functions in (143) (of Lemma [20) are 0. Then,

Qg(1707072) -
>a(l —p)+ ... +a" (1

@, (1,0,0,1)

—p" ) >0, (144)

Thus, #2*(1,0,0) = 1 and (ii) holds.

If n > d— 1 then k£ = d — 1. In (143), we expand
Jn d+1(d L 1) n— d+1(d 0, 1)’ Jn d+1(17170)/ Jn d+1(d_
1,0,0) and Jn a+1(d, 0,0) respectively.

The expansions of J*_ ;. ,(d,1,1),J5_;.,(d,0,1) follow
from (140):

Jh- d+1(d 0,1)

=d d,0,0 1—p)J> (d,1,0
+ap d( )+Oé( ) nfd( ) Ly )a (145)
Jn d+1(da1>1)
=d+a(l-q)J 4(d,0,0) + agJy 4(d,1,0).

The value functions J_;,,(d,0,0), and J5 ;. (d +
1,0,0) are expanded as following:

J’r(ffd+1(607 07 0) S Q%,d+1((507 O, O7 1)

146
=dp + apJ_4(2,0,0) + (1 — p)Jo_,(1,1,0), (146)

where §y > 0.
Also, J§_;,1(1,1,0) are expanded as follows:

Jr? d+1(1a1a0) < Q%—d—i—l(l)LOvl)
<Qn d+1( 1,1,0 1)
=d—1+a(l-q)JS 4(d,0,0)+ agJy 4(1,1,0).

Applying (145),(146) and into (T43), we get
Q%(1,0,0,2) — Q9(1,0,0,1)
>a(l=p)+ ...+ a1 - p?Th)
+ alag(J2_4(d, 1,0) — J& 4(1,1,0))
a(ba — p*) (J5_q(d, 0,0) = J5_4(d,0,0))
+ (ap)d( n—a(d,0,0) = Ji_4(d + 1,0,0)).

Because value function is increasing in age,

(147)

(148)

Ji—a(d,1,0) —
Thus, (148) gives

Q3(170’0,2) - Qz(lvovoa 1)
>a(l—p)+ ..+ a1 (1=p)
+ (ap)(JS_y(d,0,0) — JS_y4(d + 1,0,0)).

4(1,1,0) > 0. (149)

(150)

Since by the hypothesis o (6,0,0) = .. =
pa*4(6,0,0) =1 forall § > 0, 1mplies that

d— o]
= > (ap)' == (op)

1=0 =0
(151)

n— 1

~(d,0,0)—J%_ ,(d+1,0,0)



Thus, [150) and (151) give

O“(1 0,0, 2)— ~(1,0,0,1)
d—1 oo
o' — — (ap)? ap)*
>Z X; (op) ;( p) 152
*Za = > (ap) =m = (ap)' >0,
1=0 1=0

where the last inequality is because (p, ¢,d) € B; UBy.
Thus, (ii) holds. We complete the proof.

APPENDIX N
PROOF OF LEMMA [20]

We show Lemma 20| by usmg recursmn
First of all, same with (T19) and (120), we have

Q2(1,0,0,2) —Qa(1,0,0,1)
—ap(J 1(2,0,d = 1) = J34(2,0, 0))
+a(l — )( (2,1,d—1)— _1(1,1,0)).
Note that 1 — p® = 0. Thus, (I53) is the same with (T43) if

k=1.
Note that J
7?71(25070) < Q

(153) is as follows:

(153)

,(1,1,0) < * ,(1,1,0,1), and

1(2,0,0,1). Then, the second term of

o (2,1,d-1)—JF 1(1,1,0)
>1 +aq( > 5(3,1,d— 2) _o(1, 1,0)) (154)
+a(l- q)( _5(3,0,d — 2) > 5(2,0, O))
The first term of (153) is as follows:
> 1(2,0,d — 1) —J 1(2,0,0)
>1+a(l—p)(Jy (3,1,d—2) — JF 5(1,1,0)) (155)
+ap( ol 2(3 0,d— 2) (3 0, 0))

Thus, applymg and 1nto w1th k=1, we

get (143) when k = 2 By usmg and [155) iteratively
for min{n, d — 1} — 2 times, we finally derive (143) when
k = min{n,d — 1} (note that if min{n,d — 1} = 1, we have

proved (143) in (153)).

APPENDIX O
PROOF OF LEMMA[{2]
Recall that we use u®*(-) to denote the optimal policy of the

discounted problem. From Lemma 7} it is sufficient to show
that: for all discount factor o, u®*(1,1,0) = 1if (p,q,d) €

Bl(a).

The condition (p,q,d) € Bi(a) implies that
H(p,q,d,a) < 0 and F(p,q,d,a) < 0. From Theorem
u>*(0,1,0) is non-increasing in §. We want to show that
Q°(1,1,0,2) > Q°(1,1,0,1). Then, u®*(3,1,0) = 1 for all
J.

Using the same technique with the proof of Lemma
we get:

Q“(1,1,0,2) — Q*(1,1,0,1)

>h'(d—1) + o al_, (J¥(d,1,1) — J*(1,1,0))
+at by — (1 — @)p?1)(J¥(d,0,1) — J¥(d —
+ a7 (1 — q)p?2(J*(d,0,1) — J%(d,0,0)),

1,0,0))

(156)

XXii
where al;_;,b),_; are defined in (79), and the function A’ (k)
for k € {1,2, ...} is defined as follows:
if k > 2;

k—1 7—1
hl(k):{ozwa(l o )iszzl.

Applying (145), (146) and (147) into (I56) and we get
Q“(1,1,0,2) — Qo‘(l, 1,0, 1)
>a(l—(1—-@)p°)+..+a 11 -(1
+ alaly(J*(d, 1,0) — J*(1,1,0))
a’(by — (1 = g)p?™)(J*(d, 0,0) — J*(d,0,0))
+a(1 - q)p*1(J%(d,0,0) — J*(d + 1,0,0))
>a(l—(1—=@)p°) + ...+ a1 (1= (1 - q)p*?)
+ a(l —q)(ap)*(J*(d,0,0) — J*(d + 1,0,0))
d—2
—Za “1-al-g) S (ap)
i=0
+ a(l —q)(ap)**(J*(d,0,0) — J*(d + 1,0,0)),
where the second inequality is from (T49). From Lemma
we know that y®*(4,0,0) = 1 for all 6. Then, implies
that

—q)p*?)

(157)

J*(d,0,0) — J*(d+1,0,0) = — i(ap)i. (158)
i=0

Thus, becomes

Qa(lalao 2)_@04( )
> Z a'—1—a(l-q) Z(ap)i —a(l=q)(ap)™ " (ap)’

i=0 i=0

—Za—l—al—q)Z( ) :—H(p,q,d,a)z().

=0 1=0 (159)

Thus, p**(1,1,0) = 1.

APPENDIX P
DIAGRAMS AND DERIVATIONS OF STEADY-STATE
DTMCs

This section provides the Markov Chains corresponding to
the cases in the proofs of Theorem [3 Section [7.3] The
Markov chains are described in Fig. |§ . The derlvatlons
of the expected age for each Markov chain are described
later. We need to remark here for the descriptions of the fol-
lowing Markov chains. (i) We sometimes replace two states
by a new “state” in the Markov chains. For example, in Fig.

we include the two states (s+d, 0, 1), (s +d, 1,1) into one

circle (the same occurs for (s +1,0,d — 1), (s+1,1,d — 1),
etc). This means that we only consider the combined proba-
bility distribution of the two states (s + d,0, 1), (s +d, 1,1).
The combination of the two states can largely simplify the
Markov chains figures. Also, it does not affect the deriva-
tions of the expected age. (ii) The values agq, bg, al;, b/, are de-
fined in (79). Suppose that we choose Channel 2 with I; = 0.
Then and imply that the probabilities of returning
back to (d,1,0), and (d, 0, 0) are ag, by respectively (e.g., see
Fig.[8). If [y = 1, then the probabilities are a/;, b); respectively
(e.g., see the left part of Fig.[10).
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Figure 8. The threshold s > d and the optimal decisions p*(1,1,0) =
l”’* (d7 170) = 1'

Referring to Fig. (8} we derive the balance equation on the
states (2,0,0), ..., (d—1,0,0), (d+1,0,0), ..., (s,0,0), and the
d — 1 combined states out of (s,0,0) respectively. Then we
get

7(6,0,0) = p° 4 1n(d +1,0,0)  =d +1,...,5,
7(6,0,0) = (1 — ¢)p°27(1,1,0) 6§ =2,3,....,d — 1, 160)
7(s,0,0) =7(s+1,0,d—1)+n(s+1,1,d — 1)
we=m(s+d—-1,0,1)+n(s+d—1,1,1).

From (160), the balance equation on the state (d, 1, 0) implies

7(d,1,0) = aq7(s,0,0). (161)
The balance equation on the state (d 4 1,0, 0) implies
(1-¢)w(d,1,0) + pm(d,0,0) = w(d+ 1,0,0). (162)

The balance equation on the state 7(d, 0,0) gives
pr(d —1,0,0) + bgp* " 1xw(d +1,0,0) = n(d,0,0). (163)
The above equations give

7(d,1,0) + n(d,0,0)
s—d+1

— p d—3
- (1 — bdps_d — (1 — q)adps_d_l +p)(1 - q)p ’/T(la 13 0)7

(1—qpit
L= bap* T — (1 — qJagp

7(d+1,0,0) = 7(1,1,0).

(164)
Thus, (160) and (164) directly implies that all the states in the
Markov chain can be expressed in terms of 7(1,1,0). Since

the summing up of all the states probabilities are 1, we can
directly get the distribution of 7 (1,1, 0):

pei(s)
(1-q)gi(s)

Where ¢1(s),g1(s) are described in Table 2| The expected
age is the summation of the probability of the state multi-
plied by the state’s age value, which is given by

m(1,1,0)(1 = q)/(pea(s)) % fi(s) = f1(s)/91(s)

The function f1(s) is in Table [2|as well.
Thus, the expected age is f1(s)/g1(s).

m(1,1,0) = (165)

(166)

XXiii
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Figure 9. The threshold s < d and the optimal decisions p*(1,1,0) =

P.2

Referring to Fig. [0} we derive the balance equations on the
states (2,0,0), (3,0,0),...,(s,0,0), and the d — 1 combined
states out of (s,0,0) , and get

m(s,0,0) =7(s+1,0,d—1)+7w(s+d—1,1,d—1)
we=7(s+d—-1,0,1)+n(s+d—1,1,1),
7(6,0,0) = (1 — ¢)p°27(1,1,0) 6§ =2,3,.....

(167)

We then observe the set {(1,1,0),(2,0,0),...,(s,0,0)}: the
inflow of ¢qm(d,1,0) equals to the outflow (s,0,0). Thus,
combined with (167)),

qr(d,1,0) = 7(5,0,0) = (1 — ¢)p*2x(1,1,0).  (168)
The state (d, 1, 0) gives
aq7(d,0,0) = by7(s,0,0) + ba(l — ¢)m(d,1,0),  (169)
thus,
m(d,0,0) = b—dﬂ(&0,0) = b—d(l—q)ps_zw(L 1,0). (170)
adq adq

Thus, (167), (168) and (170) imply that all the states in the

Markov chain can be expressed in terms of 7(1,1,0). Also,
the sums up of the probability of all the states is 1:

m(1,1,0) + iﬂ((;, 0,0) + (d — 1)n(s,0,0) + dn(d,0,0)
6=2
+(d(1 - q) + 1)m(d,1,0) = 1.
(171)
Thus,
p
(1—q)ga(s)

Thus, we give the expected age to be f(s)/g2(s) in Table

7(1,1,0) = (172)

P.3

Referring to Fig. the d — 1 combinations states from
(1,1,0) gives

7(1,1,0) = m(2,0,d — 1) + w(2,1,d — 1)

173
. =7(d,0,1) +7(d, 1,1), 173

the state (1, 1,0) gives
7(1,1,0) = gr(d, 1,0). (174)



Figure 10. The threshold s = 1 and the optimal decisions p*(1,1,0) =
29H*(d> 17 O) =1

Also,
m(d+1,0,0)=7(d+2,0,d—1)+7n(d+2,1,d - 1)
. =m(2d,0,1) +7(2d,1,1) = (1 — ¢)w(d, 1,0).

(175)
The state of (d,0,0) gives
(1 — bg)(d,0,0) = bym(1,1,0) + bar(d, 1,0),  (176)
thus, .
7(d,0,0) = %ﬁ(d, 1,0). az7)

Thus, all state distributions can be expressed in terms of
m(d,1,0), and the expected age is fo/go.

P4

Figure 11. The threshold s > d and the optimal decisions p*(1,1,0) =
1, 1*(d,1,0) = 2.

Referring to Fig. the states (2,0,0),...,(d — 1,0,0),
(d+1,0,0),...,(s,0,0), and d — 1 states from (s, 0,0) give:
7(6,0,0) = p°~2(1 — ¢)w(1,1,0) § =2,3,....,d — 1,
7(6,0,0) = p°~97(d,0,0) § =d+1,...,s,
7(5,0,0) = m(s+1,0,d— 1) + (s +1,1,d — 1)
we=m(s+d—-1,0,1)+7(s+d—1,1,1).
The combination of states (d, 0,0) and (d, 1, 0) gives
7(s,0,0) + pr(d —1,0,0) = 7(d,0,0).

Equation (I78) implies that w(d — 1,0,0) =
q)7(1,1,0), thus,

(178)

(179)
P -
A _dQ)w(L 1,0).

p
7m(d—1,0,0) = 1o pd
(180)

W(d, 0, 0) = F

The state (d, 1,0) gives
7(d, 1,0)(1 — @) = aqm(s,0,0) = agp®~n(d,0,0). (181)

XXiv

Thus, all the states distributions in the Markov chain can
be expressed in terms of 7w(1,1,0). The expected age is

f3(s)/g3(s)-

P.5

Figure 12. The threshold s > d and the optimal decisions p*(1,1,0) =
n*(d,1,0) = 2.

Referring to Fig. the balance equations of the d — 1
states from (s,0,0) and states (d + 1,0,0),...,(s,0,0) are
given by:

7(5,0,0) =m(s +1,0,d — 1) + w(s +1,1,d — 1)

vo=m(s+d—1,01) +7(s+d—1,1,1), (182)
7(8,0,0) = p°~97(d,0,0), §=d+1,...,s.
The combination of (d, 0, 0), (d, 1,0) gives
7m(1,1,0) + 7(s,0,0) = w(d, 0,0), (183)
thus, using (I82), we get
7(1,1,0) = (1 — p*~ %7 (d,0,0). (184)
By looking at 7(d, 1,0),
(1 —al)n(d,1,0) = aqm(s,0,0) + a,m(1,1,0),  (185)
thus,
r(d,1,0) = % +1(fda,_ %) 0.0,0.  (186)
d

Thus, all the states distributions in the Markov chain can be
expressed in terms of 7(d, 0, 0). Similar to previous sections,
the distribution can be solved and the expected age is

f1(8)/ga(s)-

P.6

Figure 13. The optimal decisions p*(4,0,0) = 1 and p*(4,1,0) = 2 for
allé > 1.



Referring to Fig. the balance equations of the states
(d+1,0,0), ... give

7(6,0,0) = p°~4n(d,0,0) 6 =d+1,d+2,...

The state (1,1,0) and the d — 1 combinations states from
(1,1,0) imply that

7(1,1,0) = w(2,0,d — 1) + w(2,1,d — 1)

(187)

= 7(d,0,1) + 7(d,1,1), (188)
7(1,1,0) = (1 — p)(w(d,0,0) + 7(d + 1,0,0) + ...)
From (187),(188) we can get
7m(1,1,0) = 7(d,0,0). (189)

The d — 1 combinations states from (d, 1,0) implies that
m(d,1,0) =nw(d+1,0,d—1)+n(d+1,1,d— 1)

=7m(2d—-1,0,1) +7(2d — 1,1,1). (190)
The state (d, 1,0) gives
hm(1,1,0) + bym(d, 1,0) = 7(d, 0,0). (191)
thus, .
7(d,1,0) = b—,w(d 0,0). (192)

Thus, all the states probabilities can be expressed in terms
of m(d,0,0). By normalizing, we get m(d,0,0) = 1/g¢(. Then
the expected age is £/ g0.

APPENDIX Q
PROOF OF LEMMA [T4]

We rewrite 3.:

. fils)
I= i€{l1,3,4 193
Bi= . min L G) {1,3,4}, (193)
! = min fa(s), (194)

se{l,...d} ga(s)

Further, we rewrite and (58):

hi(c)= min fi(s) —cgi(s), i € {1,3,4},  (195)
se{d+1,...}

hy(c) = se?zl,i,l,l.d} f2(s) = cga(s). (196)

From Table [2} it is easy to find that there exists a value
d' > O such that g;(s) > d for all 5 and i. Also, g;(s) is upper

bounded. Thus, from [195) and (196), h}(c) =

is equivalent to ¢ = = whlch proves our result.

APPENDIX R
PROOF OF LEMMA [15]

Notice that (p,¢,d) € BoUBg if and only if 1 — p < 1/d.
Suppose that r;(c, s) = fi(s) — cgi(s).
We find that:

p= (=1 (fi(s +1) — fi(s)) - (1 -

where [} is not related to ¢, s and is described in Table

Also,
~0i(s)) = o,

d(1=p))s+1; (197)

P (gi(s + 1) (198)

XXV

where o; is not related to ¢, s and are described in Table@as

well. Thus, (197) and (198) give:
p*(sfl)(ri(c, s+1)—ri(c,s))
= (1fd(1—p)>s+l;fco

Note that (199) holds for i € {1, 2, 3,4}. Since 1 — (1 —p)d >
0, (fori € {1,3,4})and (for i = 2) are the minimum
point of 7;(c, s). Thus, we complete the proof.

(199)
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