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ABSTRACT

In this paper, we analyze the impact of data freshness on real-time

supervised learning, where a neural network is trained to infer a

time-varying target (e.g., the position of the vehicle in front) based

on features (e.g., video frames) observed at a sensing node (e.g.,

camera or lidar). One might expect that the performance of real-

time supervised learning degrades monotonically as the feature

becomes stale. Using an information-theoretic analysis, we show

that this is true if the feature and target data sequence can be closely

approximated as a Markov chain; it is not true if the data sequence

is far from Markovian. Hence, the prediction error of real-time

supervised learning is a function of the Age of Information (AoI),

where the function could be non-monotonic. Several experiments

are conducted to illustrate the monotonic and non-monotonic be-

haviors of the prediction error. To minimize the inference error

in real-time, we propose a new “selection-from-buffer” model for

sending the features, which is more general than the “generate-at-

will” model used in earlier studies. By using Gittins and Whittle

indices, low-complexity scheduling strategies are developed to min-

imize the inference error, where a new connection between the

Gittins index theory and Age of Information (AoI) minimization is

discovered. These scheduling results hold (i) for minimizing general

AoI functions (monotonic or non-monotonic) and (ii) for general

feature transmission time distributions. Data-driven evaluations

are presented to illustrate the benefits of the proposed scheduling

algorithms.
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1 INTRODUCTION

In recent years, the proliferation of networked control and cyber-

physical systems such as autonomous vehicle, UAV navigation,

remote surgery, industrial control system has significantly boosted

the need for real-time prediction. For example, an autonomous

vehicle infers the trajectories of nearby vehicles and the intention

of pedestrians based on lidars and cameras installed on the vehi-

cle [19]. In remote surgery, the movement of a surgical robot is

predicted in real-time. These prediction problems can be solved by

real-time supervised learning, where a neural network is trained to

predict a time varying target based on feature observations that are

collected from a sensing node. Due to data processing time, trans-

mission errors, and queueing delay, the features delivered to the

neural predictor may not be fresh. The performance of networked

intelligent systems depends heavily on the accuracy of real-time

prediction. Hence, it is important to understand how data freshness

affects the performance of real-time supervised learning.

To evaluate data freshness, a metric Age of information (AoI) was
introduced in [15]. LetUt be the generation time of the freshest fea-

ture received by the neural predictor at time t . Then, the AoI of the
features, as a function of time t , is defined as ∆(t) = t −Ut , which is

the time difference between the current time t and the generation

time Ut of the freshest received feature. The age of information

concept has gained a lot of attention from the research commu-

nities. Analysis and optimization of AoI were studied in various

networked systems, including remote estimation, control system,

and edge computing. In these studies, it is commonly assumed that

the system performance degrades monotonically as the AoI grows.

Nonetheless, this is not always true in real-time supervised learning.

For example, it was observed that the predictor error of day-ahead

solar power forecasting is not a monotonic function of the AoI,

because there exists an inherent daily periodic changing pattern in

the solar power time-series data [24].

In this study, we carry out several experiments and present an

information-theoretic analysis to interpret the impact of data fresh-

ness in real-time supervised learning. In addition, we design buffer

management and transmission scheduling strategies to improve the

accuracy of real-time supervised learning. The key contributions

of this paper are summarized as follows:

https://doi.org/10.1145/3492866.3549711
https://doi.org/10.1145/3492866.3549711
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• We develop an information-theoretic approach to analyze

how the AoI affects the performance of real-time supervised

learning. It is shown that the prediction errors (training error

and inference error) are functions of AoI, whereas they could

be non-monotonic AoI functions — this is a key difference

from previous studies on AoI functions, e.g., [17, 26, 28, 29].

When the target and feature data sequence can be closely

approximated as a Markov chain, the prediction errors are

non-decreasing functions of the AoI. When the target and

feature data sequence is far from Markovian, the prediction

errors could be non-monotonic in the AoI (see Sections 2-3).

• We conduct several experiments and observe that, due to

long-range dependence, response delay, and/or communica-

tion delay, the target and feature data sequence can be far

from Markovian and the corresponding prediction errors are

non-monotonic AoI functions. In certain scenarios, even a

fresh feature (AoI=0) may generate larger prediction errors

than stale features (AoI > 0), i.e., the freshest feature may

not be the best feature; see Fig. 2 for an illustration.

• We propose buffer management and transmission schedul-

ing strategies to minimize the inference error. Because the

inference error could be a non-monotonic AoI function, we

introduce a novel “selection-from-buffer” model for feature

transmissions, which is more general than the “generate-at-

will” model used in many earlier studies, e.g., [26, 28, 32].

If the AoI function is non-decreasing, the “selection-from-

buffer” model achieves same performance as the “generate-

at-will” model; if the AoI function is non-monotonic, the

“selection-from-buffer” model can potentially achieve better

performance.

• In the single-source case, an optimal scheduling policy is de-

vised to minimize the long-term average inference error. By

exploiting a new connection with the Gittins index theory

[9], the optimal scheduling policy is proven to be a threshold

policy on the Gittins index (Theorems 4.1-4.2), where the

threshold can be computed by using a low complexity algo-

rithm like bisection search. This scheduling policy is more

general than the scheduling policies proposed in [26, 28].

• In the multi-source case, a Whittle index scheduling policy

is designed to reduce the weighted sum of the inference

errors of the sources. By using the Gittins index obtained in

the single-source case, a semi-analytical expression of the

Whittle index is obtained (Theorems 5.1-5.2), which is more

general than the Whittle index formula in [29, Equation (7)].

• The above scheduling results hold (i) for minimizing general

AoI functions (monotonic or non-monotonic) and (ii) for

general feature transmission time distributions. Data driven

evaluations show that “selection-from-buffer” with optimal

scheduler achieves up to 3 times smaller inference error

compared to “generate-at-will,” and 8 times smaller infer-

ence error compared to periodic feature updating (see Fig.

5). Whittle index policy achieves up to 2 times performance

gain compared to maximum age first (MAF) policy (see Fig.

6.

1.1 Related Works

In recent years, AoI has become a popular research topic [33]. Av-

erage AoI and average peak AoI are studied in many queueing

systems [15, 28, 32]. As surveyed in [26], there exist a number of

applications of non-linear AoI functions, such as auto-correlation

function [17], estimation error [16, 20, 27], and Shannon’s mutual

information and conditional entropy [26]. In existing studies on

AoI, it was usually assumed that the observed data sequence is Mar-

kovian and the performance degradation caused by information

aging was modeled as a monotonic AoI function. However, practical

data sequence may not be Markovian [12, 26, 30]. In the present

paper, theoretical results and experimental studies are provided to

analyze the performance of real-time supervised learning for both

Markovian and non-Markovian time-series data. In [34], impact of

peak-AoI on the convergence speed of online training was analyzed.

Unlike online training in [34], our work considers offline training

and online inference.

Moreover, there are significant research efforts on the optimiza-

tion of AoI functions by designing sampling and scheduling policies.

Previous studies [1, 14, 20, 26, 28, 29] focused on non-decreasing

AoI functions. Recently, a Whittle index based multi-source sched-

uling policy was derived in [2] to minimize Shannon’s conditional

entropy that could be a non-monotonic function of the AoI. The

Whittle index policy in [2] requires that (i) the state of each source

evolves as binary Markov process, (ii) the AoI function is concave

with respect to the belief state of the Markov process, and (iii) the

packet transmission time is constant. The results in [1, 2, 14, 20,

26, 28, 29] are not appropriate for minimizing general (potentially

non-monotonic) AoI functions, as considered in the present paper.

2 INFORMATION-THEORETIC MEASURES

FOR REAL-TIME SUPERVISED LEARNING

2.1 Freshness-aware Learning Model

Consider the real-time supervised learning system illustrated in

Fig. 1, where the goal is to predict a label Yt ∈ Y (e.g., the location

of the car in front) at each time t based on a feature Xt−∆(t ) (e.g.,
a video clip) that was generated ∆(t) seconds ago. The feature,

Xt−∆(t ) = (Vt−∆(t ), . . . ,Vt−∆(t )−u+1
) is a time sequence with length

u (e.g., each video clip consisting ofu consecutive video frames). We

consider a class of popular supervised learning algorithms called

Empirical Risk Minimization (ERM) [10]. In freshness-aware ERM

algorithms, a neural network is trained to construct an action a =
ϕ(Xt−∆(t ),∆(t)) ∈ A where ϕ : X×D 7→ A is a function of feature

Xt−∆(t ) ∈ X and its AoI ∆(t) ∈ D. The performance of learning

is measured by a loss function L : Y × A 7→ R, where L(y,a)
is the incurred loss if action a is chosen by the neural network

when Yt = y. We assume that Y, X, and D are discrete and finite

sets. The loss function L is determined by the targeted application
of the system. For example, in neural network based estimation,

the loss function is usually chosen as the square estimation error

L2(y, ŷ) = ∥y − ŷ∥2, where the action a = ŷ is an estimate of

Yt = y. In softmax regression (i.e., neural network based maximum

likelihood classification), the action a = QY is a distribution of

Yt and the loss function L
log
(y,QY ) = −log QY (y) is the negative



How Does Data Freshness Affect Real-time Supervised Learning? MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

!"#$%$%&'(#)#

*"+,$-)$.%'/0'

1+2"#3'1+)4."5

6+7&78'9$,+.',#)#:+);

*"+,$-)+,'9$,+.'<"#=+'

#)')$=+''''t

∆(t)>&+'.<'?%<."=#)$.%

t−∆(t)− 1

@

@

-#=+"#
9$,+.'-3$A Xt−∆(t)

Channel

(a) Video prediction Task

0 5 10 15AoI

0

0.01

0.02

0.03

M
S

E

(b) Training Error vs. AoI

0 5 10 15

AoI

0

0.01

0.02

0.03

M
S

E

(c) Inference Error vs. AoI

Figure 1: Performance of supervised learning based video prediction. The experimental results in (b) and (c) are regenerated from [18]. The

training and inference errors are non-decreasing functions of the AoI.

log-likelihood of the label value Yt = y. Therefore, the loss function
L characterizes the goal and purpose of a specific application.

2.2 Offline Training Error

The real-time supervised learning system that we consider con-

sists of two phases: offline training and online inference. In the

offline training phase, the neural network is trained using a train-

ing dataset. Let PỸ0,X̃−Θ,Θ
denote the empirical distribution of the

label Ỹ0, feature X̃−Θ, and AoI Θ in the training dataset, where the

AoI Θ ≥ 0 of the feature X̃−Θ is the time difference between Ỹ0 and

X̃−Θ. In ERM algorithms, the training problem is formulated as

errtraining = min

ϕ∈Λ
EY ,X ,Θ∼PỸ

0
,X̃−Θ,Θ

[L(Y ,ϕ(X ,Θ))], (1)

where Λ is the set of functions that can be constructed by the neural

network, and errtraining is the minimum training error. The optimal

solution to (1) is denoted by ϕ∗PỸ
0
,X̃−Θ,Θ

.

Let Φ = { f : X × D 7→ A} be the set of all functions mapping

from X × D to A. Any action ϕ(x ,θ ) constructed by the neural

network belongs to Φ, whereas the neural network cannot produce

some functions in Φ. Hence, Λ ⊂ Φ. By relaxing the feasible set Λ
in (1) as Φ, we obtain a lower bound of errtraining, i.e.,

HL(Ỹ0 |X̃−Θ,Θ) = min

ϕ∈Φ
EY ,X ,Θ∼PỸ

0
,X̃−Θ,Θ

[L(Y ,ϕ(X ,Θ))], (2)

where HL(Ỹ0 |X̃−Θ,Θ) is a generalized conditional entropy of Ỹ0

given (X̃−Θ,Θ) [5, 8, 11]. Compared to errtraining, its information-

theoretic lower bound HL(Ỹ0 |X̃−Θ,Θ) is mathematically more con-

venient to analyze. The gap between errtraining and the lower bound

HL(Ỹ0 |X̃−Θ,Θ) was studied recently in [23], where the gap is small

if the function spaces Λ and Φ are close to each other, e.g., when

the neural network is sufficiently wide and deep [10].

For notational convenience, we refer to HL(Ỹ0 |X̃−Θ,Θ) as an
L-conditional entropy, because it is associated with a loss function

L. The L-entropy of a random variable Y is defined as [8, 11]

HL(Y ) = min

a∈A
EY∼PY [L(Y ,a)]. (3)

Let aPY denote an optimal solution to (3), which is called a Bayes
action [11]. The L-conditional entropy of Y given X = x is

HL(Y |X = x) = min

a∈A
EY∼PY |X=x [L(Y ,a)]. (4)

Using (4), we can get the L-conditional entropy of Y given X [8, 11]

HL(Y |X ) =
∑
x ∈X

PX (x)HL(Y |X = x). (5)

Similar to (5), (2) can be decomposed as

HL(Ỹ0 |X̃−Θ,Θ) =
∑

x ∈X,θ ∈D

PX̃−Θ,Θ
(x ,θ )HL(Ỹ0 |X̃−θ = x ,Θ = θ ). (6)

We assume that in the training dataset, the AoI Θ is independent of

the label Ỹ0 and feature X̃−µ for all µ ≥ 0. By this assumption and

(6), one can get (see our technical report [25] for its proof)

HL(Ỹ0 |X̃−Θ,Θ)=
∑
θ ∈D

PΘ(θ ) HL(Ỹ0 |X̃−θ ). (7)

By choosing different L in (3), a broad class of L-entropies is
obtained. In particular, Shannon’s entropy is derived if L is the log-

arithmic loss function L
log
(y,QY ) = − logQY (y). More examples

of the loss function L, the definitions of L-divergence DL(PY | |QY ),

L-mutual information IL(Y ;X ), and L-conditional mutual informa-

tion IL(Y ;X |Z ) are provided in [25]. In general, IL(X ;Y ) , IL(Y ;X ),
which is different from f -mutual information. Moreover, a com-

parison among the L-divergence, Bregman divergence [6], and the

f -divergence [4] is provided in [25].

2.3 Online Inference Error

In the online inference phase, the neural predictor trained by (1) is

used to predict the target in real-time. We assume that {(Yt ,Xt ), t ∈
Z} is a stationary process that is independent of the AoI process

{∆(t), t ∈ Z}. Using this assumption, the time-average expected

inference error during the time slots t = 0, 1, . . . ,T − 1 is given by

err
inference

(T ) =
1

T
E

[T−1∑
t=0

p(∆(t))

]
, (8)

where

p(δ ) = EY ,X∼PYt ,Xt−δ

[
L

(
Y ,ϕ∗PỸ

0
,X̃−Θ,Θ

(X ,δ )

)]
, (9)

p(∆(t)) is the expected inference error in time slot t , and ∆(t) is the
inference AoI at time t , i.e., the time difference between label Yt
and feature Xt−∆(t ). The proof of (8) is provided in [25].

Let us define L-cross entropy between Y and Ỹ as

HL(Y ; Ỹ ) = EY∼PY

[
L
(
Y ,aPỸ

)]
, (10)
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and L-conditional cross entropy between Y and Ỹ given X as

HL(Y ; Ỹ |X ) =
∑
x ∈X

PX (x)EY∼PY |X=x

[
L
(
Y ,aPỸ |X̃=x

)]
, (11)

where aPỸ and aPỸ |X̃=x are the Bayes actions associated with PỸ
and PỸ |X̃=x , respectively. If the neural predictor in (9) is replaced

by the Bayes action aỸ0 |X̃−δ=x
, i.e., the optimal solution to (2), then

p(δ ) becomes an L-conditional cross entropy

HL(Yt ; Ỹ0 |Xt−δ )=
∑
x ∈X

PXt−δ (x)EY∼PYt |Xt−δ =x

[
L
(
Y ,aỸ0 |X̃−δ=x

)]
.(12)

If the function spaces Λ and Φ are close to each other, the difference

between p(δ ) and HL(Yt ; Ỹ0 |Xt−δ ) is small.

3 INTERPRETATION OF FRESHNESS IN

REAL-TIME SUPERVISED LEARNING

In this section, we study how the training AoI Θ and the inference

AoI ∆(t) affect the performance of real-time supervised learning.

3.1 Training Error vs. Training AoI

We first consider the case of deterministic training AoI Θ = θ .
Given Θ = θ , HL(Ỹ0 |X̃−Θ,Θ) in (7) becomes simply HL(Ỹ0 |X̃−θ ),
which is a function of θ . One may expect that the training error

would grow with the AoI θ . If Ỹ0 ↔ X̃−µ ↔ X̃−µ−ν is a Markov

chain for all µ,ν ≥ 0, by the data processing inequality for L-
conditional entropy [5, Lemma 12.1], one can show thatHL(Ỹ0 |X̃−θ )
is a non-decreasing function of θ . Nevertheless, the experimental

results in Figs. 1-2 and [24, 25] show that the training error is a

growing function of the training AoI θ in some applications (e.g.,

video prediction), whereas it is a non-monotonic function of θ in

other applications (e.g., temperature prediction and actuator state

prediction with delay). As we will explain below, a fundamental

reason behind these phenomena is that practical time-series data

could be either Markovian or non-Markovian. For non-Markovian

(Ỹ0, X̃−µ , X̃−µ−ν ), HL(Ỹ0 |X̃−θ ) is not necessarily monotonic in θ .
Next, we develop an ϵ-data processing inequality to analyze

information freshness for bothMarkovian and non-Markovian time-

series data. To that end, the following relaxation of the standard

Markov chain model is needed, which is motivated by [13]:

Definition 3.1 (ϵ-Markov Chain). Given ϵ ≥ 0, a sequence of

three random variables Z ,X , and Y is said to be an ϵ-Markov chain,
denoted as Z

ϵ
→ X

ϵ
→ Y , if

Iχ 2 (Y ;Z |X ) = EX ,Z∼PX ,Z

[
Dχ 2

(
PY |X ,Z | |PY |X

)]
≤ ϵ2, (13)

where

Dχ 2 (PY | |QY ) =
∑
y∈Y

(PY (y) −QY (y))
2

QY (y)
(14)

is Neyman’s χ2
-divergence and Iχ 2 (Y ;Z |X ) is χ2

-conditional mu-

tual information.

A Markov chain is an ϵ-Markov chain with ϵ = 0. If Z → X → Y
is a Markov chain, then Y → X → Z is also a Markov chain [3, p.

34]. A similar property holds for the ϵ-Markov chain.

Lemma 3.2. If Z
ϵ
→ X

ϵ
→ Y , then Y

ϵ
→ X

ϵ
→ Z .

Due to space limitation, all the proofs are relegated to our techni-

cal report [25]. By Lemma 3.2, the ϵ-Markov chain can be denoted

as Y
ϵ
↔ X

ϵ
↔ Z . In the following lemma, we provide a relaxation of

the data processing inequality for ϵ-Markov chain, which is called

an ϵ-data processing inequality.

Lemma 3.3 (ϵ-data processing ineqality). If Y
ϵ
↔ X

ϵ
↔

Z is an ϵ-Markov chain, then

HL(Y |X ) ≤ HL(Y |Z ) +O(ϵ). (15)

If, in addition, HL(Y ) is twice differentiable in PY , then

HL(Y |X ) ≤ HL(Y |Z ) +O(ϵ
2). (16)

Lemma 3.3(b) was mentioned in [24] without proof. Lemma

3.3(a) is new to the best of our knowledge. Now, we are ready to

characterize how H (Ỹ0 |X̃−θ ) varies with the AoI θ .

Theorem 3.4. The L-conditional entropy

HL(Ỹ0 |X̃−θ ) = д1(θ ) − д2(θ ) (17)

is a function of θ , where д1(θ ) and д2(θ ) are two non-decreasing
functions of θ , given by

д1(θ ) =HL(Ỹ0 |X̃0) +

θ−1∑
k=0

IL(Ỹ0; X̃−k |X̃−k−1
),

д2(θ ) =
θ−1∑
k=0

IL(Ỹ0; X̃−k−1
|X̃−k ). (18)

If Ỹ0

ϵ
↔ X̃−µ

ϵ
↔ X̃−µ−ν is an ϵ-Markov chain for every µ,ν ≥ 0, then

д2(θ ) = O(ϵ) and

HL(Ỹ0 |X̃−θ ) = д1(θ ) +O(ϵ). (19)

According to Theorem 3.4, the monotonicity of HL(Ỹ0 |X̃−θ ) in θ
is characterized by the parameter ϵ ≥ 0 in the ϵ-Markov chain

model. If ϵ is small, then Ỹ0

ϵ
↔ X̃−µ

ϵ
↔ X̃−µ−ν is close to a

Markov chain, and HL(Ỹ0 |X̃−θ ) is nearly non-decreasing in θ . If

ϵ is large, then Ỹ0

ϵ
↔ X̃−µ

ϵ
↔ X̃−µ−ν is far from a Markov chain,

and HL(Ỹ0 |X̃−θ ) could be non-monotonic in θ . Theorem 3.4 can be

readily extended to random AoI Θ by using stochastic orders [22].

Definition 3.5 (Univariate Stochastic Ordering). [22] A ran-

dom variable X is said to be stochastically smaller than another

random variable Z , denoted as X ≤st Z , if

P(X > x) ≤ P(Z > x), ∀x ∈ R. (20)

Theorem 3.6. If Ỹ0

ϵ
↔ X̃−µ

ϵ
↔ X̃−µ−ν is an ϵ-Markov chain for

all µ,ν ≥ 0, and the training AoIs in two experiments 1 and 2 satisfy
Θ1 ≤st Θ2, then

HL(Ỹ0 |X̃−Θ1
,Θ1) ≤ HL(Ỹ0 |X̃−Θ2

,Θ2) +O(ϵ). (21)

According to Theorem 3.6, ifΘ1 is stochastically smaller thanΘ2,

then the training error in Experiment 1 is approximately smaller

than that in Experiment 2. If, in addition to the conditions in Theo-

rems 3.4 and 3.6, HL(Ỹ0) is twice differentiable in PỸ0

, then the last

term O(ϵ) in (19) and (21) becomes O(ϵ2).
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Figure 2: Robot state prediction in a leader-follower robotic system. The leader robot uses a neural network to predict the

follower robot’s state. The training and inference errors decrease in the AoI ≤ 25 and increase when AoI ≥ 25.

3.2 Inference Error vs. Inference AoI

According to (4), (5), and (11), HL(Yt ; Ỹ0 |Xt−δ ) is lower bounded
by HL(Yt |Xt−δ ). In addition, HL(Yt ; Ỹ0 |Xt−δ ) is close to its lower

bound HL(Yt |Xt−δ ), if the conditional distributions PYt |Xt−δ and

PỸ0 |X̃−δ
are close to each other, as shown by the following lemma.

Lemma 3.7. If for all x ∈ X

Dχ 2

(
PYt |Xt−δ=x | |PỸ0 |X̃−δ=x

)
≤ β2, (22)

then

HL(Yt ; Ỹ0 |Xt−δ ) =HL(Yt |Xt−δ ) +O(β). (23)

By combining Theorem 3.4 and Lemma 3.7, the monotonicity of

HL(Yt ; Ỹ0 |Xt−δ ) versus δ is characterized in the next theorem.

Theorem 3.8. The following assertions are true:
(a) If {(Yt ,Xt ), t ∈ Z} is a stationary process, thenHL(Yt ; Ỹ0 |Xt−δ )

is a function of the inference AoI δ .
(b) If, in addition, Yt

ϵ
↔ Xt−µ

ϵ
↔ Xt−µ−ν is an ϵ-Markov chain

for all µ,ν ≥ 0 and (22) holds for all x ∈ X and δ ∈ D, then
for all 0 ≤ δ1 ≤ δ2

HL(Yt ; Ỹ0 |Xt−δ1
) ≤ HL(Yt ; Ỹ0 |Xt−δ2

) +O
(
max{ϵ, β}

)
. (24)

According to Theorem 3.8, HL(Yt ; Ỹ0 |Xt−δ ) is a function of the

inference AoI δ . If ϵ and β are close to zero, HL(Yt ; Ỹ0 |Xt−δ ) is
nearly a non-decreasing function of δ ; otherwise, HL(Yt ; Ỹ0 |Xt−δ )
can be far from a monotonic function of δ .

3.3 Interpretation of Experimental Results

We conduct several experiments to study how the training and

inference errors of real-time supervised learning vary with the AoI.

The code of these experiments is provided in an open-source Github

repository.
1

Fig. 1 illustrates the experimental results of supervised learning

based video prediction, which are regenerated from [18]. In this

experiment, the video frame Vt at time t is predicted based on a

featureXt−δ = (Vt−δ ,Vt−δ−1
) that is composed of two consecutive

video frames, where ∆(t) = δ is the AoI. A pre-trained neural

networkmodel called “SAVP" [18] is used to evaluate on 256 samples

of “BAIR" dataset [7], which contains video frames of a randomly

1
https://github.com/Kamran0153/Impact-of-Data-Freshness-in-Learning

moving robotic arm. The pre-trained neural network model can be

downloaded from the Github repository of [18]. One can observe

from Fig. 1(b)-(c) that the training and inference errors are non-

decreasing functions of the AoI, because the video clips Vt are

approximately a Markov chain.

Fig. 2 depicts the performance of robot state prediction in a

leader-follower robotic system. As illustrated in a Youtube video

2
, the leader robot sends its state (joint angles) Xt to the follower

robot through a channel. One packet for updating the leader robot’s

state is sent periodically to the follower robot every 20 time-slots.

The transmission time of each updating packet is 20 time-slots. The

follower robot moves towards the leader’s most recent state and

locally controls its robotic fingers to grab an object. We constructed

a robot simulation environment using the Robotics System Toolbox

in MATLAB. In each episode, a can is randomly generated on a

table in front of the follower robot. The leader robot observes the

position of the can and illustrates to the follower robot how to

grab the can and place it on another table, without colliding with

other objects in the environment. The rapidly-exploring random

tree (RRT) algorithm is used to control the leader robot. Collision

avoidance algorithm and trajectory generation algorithm are used

for local control of the follower robot. The leader robot uses a

neural network to predict the follower robot’s state Yt . The neural
network consists of one input layer, one hidden layer with 256

ReLU activation nodes, and one fully connected (dense) output

layer. The dataset contains the leader and follower robots’ states in

300 episodes of continue operation. The first 80% of the dataset is

used for the training and the other 20% of the dataset is used for the

inference. In Fig. 2, the training and the inference error decreases

in AoI, when AoI ≤ 25 and increases in AoI when AoI ≥ 25. In this

case, even a fresh feature with AoI=0 is not good for prediction.

In this experiment, (Yt ,Xt−µ ,Xt−µ−ν ) is not a Markov chain for

all µ,ν ≥ 0. Hence, the training and the inference error are not

non-decreasing functions of AoI.

To facilitate understanding the experimental results in Fig. 2, we

provide a toy example to interpret it: Let Xt be a Markov chain and

Yt = f (Xt−d ). One can viewXt as the input of a causal system with

delay d ≥ 0, and Yt as the system output. Because Yt = f (Xt−d ), a
stale system inputXt−d at time t −d is informative for inferring the

current output Yt at time t . If the training and inference datasets

2
https://youtu.be/_z4FHuu3-ag

https://github.com/Kamran0153/Impact-of-Data-Freshness-in-Learning
https://youtu.be/_z4FHuu3-ag
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have similar empirical distributions, we can use data processing

inequality to show that HL(Ỹ0 |X̃−δ ) and HL(Yt ; Ỹ0 |Xt−δ ) decrease
with δ when 0 ≤ δ ≤ d and increase with δ when δ ≥ d , which
is similar to Fig. 2. Moreover, HL(Ỹ0 |X̃−d ) is close to zero if the

function spaceΛ is sufficiently large. It is equal to zero ifΛ = Φ. The
leader-follower robotic system in Fig. 2 can be viewed as a causal

system, where the system input is the leader robot’s state, and

the system output is the follower robot’s state. Non-monotonicity

occurs in Fig. 2 because the input of a causal system is used to

predict the system output in this experiment, which is similar to

the toy example. However, the relationship between the system

input and output in Fig. 2 is more complicated than the toy example,

due to the control algorithms used by the follower robot.

Besides these experiments, if there exists response delay, long-

range dependence, and periodic patterns in the target and feature

data sequence, the training and inference errors could also be non-

monotonic functions of the AoI. This phenomenon is observed in

actuator state prediction, temperature prediction, wireless channel

state information prediction, and solar power prediction [24, 25].

4 SINGLE-SOURCE SCHEDULING FOR

INFERENCE ERROR MINIMIZATION

As shown in Section 3, the inference error is a function of the AoI

∆(t), whereas the function is not necessarily monotonic. To reduce

the inference error, we devise a new scheduling algorithm that

can minimize general functions of the AoI, no matter whether the

function is monotonic or not.

4.1 System Model

We consider the networked supervised learning system in Fig. 3,

where a source progressively sends features through a channel to a

receiver. The channel is modeled as a non-preemptive server with

i.i.d. service times. At any time t , the receiver uses the latest received
feature to predict the current label Yt . To minimize the inference

error, we propose a new “selection-from-buffer” model for feature

transmissions, which is more general than the “generate-at-will”

model [32]. Specifically, at the beginning of time slot t , the source
generates a fresh feature Xt and appends it to a buffer that stores

the B most recent features (Xt ,Xt−1, . . . ,Xt−B+1); meanwhile, the

oldest feature Xt−B is removed from the buffer. The transmitter

can pick any feature from the buffer and submit it to the channel

when the channel is idle. A transmission scheduler determines (i)

when to submit features to the channel and (ii) which feature in the

buffer to submit. When B = 1, the “selection-from-buffer” model

reduces to the “generate-at-will” model.

We assume that the system starts to operate in time slot t =
0 with B features (X0,X−1, . . . ,X−B+1) in the buffer. Hence, the

feature buffer is full at all time t ≥ 0. The i-th feature sent over the

channel is generated in time slot Gi , is submitted to the channel

in time slot Si , is delivered and available for inference in time

slot Di = Si + Ti , where Ti ≥ 1 is the feature transmission time,

Gi ≤ Si < Di , and Di ≤ Si+1 < Di+1. The feature transmission

times Ti could be random due to time-varying channel conditions,

congestion, random packet sizes, etc. We assume that the Ti ’s are
i.i.d. with a finite mean 1 ≤ E[Ti ] < ∞. In time slot t = Si , the
(bi + 1)-th freshest feature in the buffer is submitted to the channel,

ACK 

Xt

Receiver

Predictor

Transmitter

∆(t)
Ŷt

Xt−∆(t)

Transmission scheduler 

B − 1

Channel

0 1 ...

...

Figure 3: A networked real-time supervised learning system. At

each time slot t , the transmitter generates a feature Xt and keeps it

in a buffer that stores B most recent features (Xt , Xt−1, . . . , Xt−B+1).

The scheduler decides when to submit features to the channel and

which feature in the buffer to submit.

where bi ∈ {0, 1, . . . ,B − 1}. Hence, the submitted feature is XSi−bi
that was generated at timeGi = Si −bi . Once a feature is delivered,
an acknowledgment (ACK) is fed back to the transmitter in the

same time slot. Thus, the idle/busy state of the channel is known at

the transmitter.

4.2 Scheduling Problem

LetU (t) = maxi {Gi : Di ≤ t} be the generation time of the latest

received feature in time slot t . The age of information (AoI) at time

t is given by [15]

∆(t) = t −U (t) = t −max

i
{Gi : Di ≤ t}. (25)

Because Di < Di+1, ∆(t) can be also written as

∆(t) = t −Gi = t − Si + bi , if Di ≤ t < Di+1. (26)

The initial state of the system is assumed to be S0 = 0,D0 = T0, and

∆(0) is a finite constant.
A scheduling policy is denoted by a 2-tuple (f ,д), where д =

(S1, S2, . . .) determines when to submit the features and f = (b1,b2,

. . .) specifies which feature in the buffer to submit. We consider the

class of causal scheduling policies in which each decision is made

by using the current and historical information available at the

transmitter. Let Π denote the set of all causal scheduling policies.

We assume that the scheduler has access to the distribution of

{(Yt ,Xt ), t ∈ Z} but not its realization, and theTi ’s are not affected
by the adopted scheduling policy.

Our goal is to find an optimal scheduling policy that minimizes

the time-average expected inference error among all causal sched-

uling policies in Π:

p̄opt = inf

(f ,д)∈Π
lim sup

T→∞

1

T
E(f ,д)

[T−1∑
t=0

p(∆(t))

]
. (27)

where p(∆(t)) is the inference error at time slot t , defined in (9),

and p̄opt is the optimum value of (27). Because p(·) is not neces-
sarily a non-decreasing function, (27) is more challenging than the

scheduling problems in [26, 28].

4.3 Optimal Single-source Scheduling

We solve (27) in two steps: (i) Given a fixed feature selection pol-

icy fb = (b,b, . . .) with bi = b for all i , find the optimal feature
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submission times д = (S1, S2, . . .) that solves

p̄b = inf

(fb ,д)∈Π
lim sup

T→∞

1

T
E(fb ,д)

[T−1∑
t=0

p(∆(t))

]
, (28)

(ii) Use the solution to (28) to describe an optimal solution to (27).

It turns out that optimal solution to (28) can be obtained by

using the Gittins index of the following AoI bandit process with a
random termination delayT1: A bandit process ∆(t) is controlled by

a decision-maker that chooses between two actions Continue and

Stop in each time slot. If the bandit process is not terminated in

time slot t , its state evolves according to

∆(t) = ∆(t − 1) + 1, (29)

and a reward [r − p(∆(t))] is collected, where p(·) is defined in (9)

and r is a constant reward. If the Continue action is selected, the

bandit process continues to evolve. If the Stop action is selected, the

bandit process will terminate after a random delay T1 and no more

action is taken. Once the bandit process terminates, its state and

reward remain zero. The total profit of the bandit process starting

from time t is maximized by solving the following optimal stopping

problem:

sup

ν ∈M
E

[ν+T1−1∑
k=0

[r − p(∆(t + k))]

����∆(t) = δ

]
, (30)

where ν ≥ 0 is a history-dependent stopping time andM is the set

of all stopping times of the bandit process {∆(t + k),k = 0, 1, . . .}.

Following the derivation of the Gittins index in [9, Chapter 2.5],

the decision-maker should choose the Stop action at time

min

t ∈Z
{t ≥ 0 : γ (∆(t)) ≥ r }, (31)

where

γ (δ )= inf

ν ∈M,ν,0

E

[∑ν−1

k=0
p(∆(t + k +T1))

���� ∆(t) = δ

]
E[ν | ∆(t) = δ ]

(32)

is the Gittins index, i.e., the value of reward r for which the Con-

tinue and Stop actions are equally profitable at state ∆(t) = δ . As
shown in [25], (32) can be simplified as

γ (δ ) = inf

τ ∈{1,2, ... }

1

τ

τ−1∑
k=0

E [p(δ + k +T1)] , (33)

where τ is a positive integer.

Theorem 4.1. If |p(δ )| ≤ M for all δ and the Ti ’s are i.i.d. with a
finite meanE[Ti ], thenд = (S1(βb ), S2(βb ), . . .) is an optimal solution
to (28), where

Si+1(βb ) = min

t ∈Z

{
t ≥ Di (βb ) : γ (∆(t)) ≥ βb

}
, (34)

Di (βb ) = Si (βb )+Ti is the delivery time of the i-th feature submitted
to the channel, ∆(t) = t − Si (βb ) + b is the AoI at time t , γ (δ ) is the
Gittins index in (33), and βb is the unique root of

E


Di+1(βb )−1∑
t=Di (βb )

p
(
∆(t)

) − βb E [Di+1(βb ) − Di (βb )] = 0. (35)

The optimal objective value to (28) is given by

p̄b =
E
[∑Di+1(βb )−1

t=Di (βb )
p
(
∆(t)

) ]
E [Di+1(βb ) − Di (βb )]

. (36)

Furthermore, βb is exactly the optimal value to (28), i.e., βb = p̄b .

The optimal scheduling policy in Theorem 4.1 has an intuitive

structure. Specifically, a feature is transmitted in time-slot t if two
conditions are satisfied: (i) The channel is idle in time-slot t , (ii) the
Gittins index γ (∆(t)) exceeds a threshold βb (i.e., γ (∆(t)) ≥ βb ),
where the threshold βb is exactly equal to the minimum time-

averaged inference error p̄b . The optimal objective value p̄b is

computed by solving (35). Three low-complexity algorithms for

solving (35) were provided in [20, Algorithms 1-3]. In practical

supervised learning algorithms, the features are shifted, rescaled,

and clipped during the data preprocessing step, which can improve

the convergence speed. Because of these operations, the inference

error is finite in practice (See Figures 1-2 for a few example), and

the condition |p(δ )| ≤ M for all δ in Theorem 4.1 is not restrictive

in practice.

Theorem 4.1 is proven by directly solving the Bellman optimality

equation of the Markov decision process (28), whereas the tech-

niques for minimizing non-decreasing AoI functions in, e.g., [26, 28],

could not solve (28). We remark that if p(δ ) is non-monotonic, then

γ (δ ) is not necessarily monotonic. Hence, (34) in general could not

be rewritten as a threshold policy of the AoI ∆(t) in the form of

∆(t) ≥ β . This is a key difference from the minimization of non-

decreasing AoI functions, e.g., [26, Eq. (48)]. The adoption of the

Gittins index γ (δ ) as a tool for solving (28) is motivated by a similar-

ity between (28) and the restart-in-state formulation of the Gittins

index [9, Chapter 2.6.4]. This connection between the Gittins index

theory and AoI minimization was unknown before.

Next, we present an optimal solution to (27).

Theorem 4.2. If the conditions of Theorem 4.1 hold, then there
exists an optimal solution (f ∗,д∗) to (27) that satisfies:

(a) f ∗ = (b∗,b∗, . . .), where b∗ is obtained by solving

b∗ = arg min

b ∈{0,1, ...,B−1}
βb , (37)

and βb is the unique root to (35).
(b) д∗ = (S∗

1
, S∗

2
, . . .) , where

S∗i+1
= min

t ∈Z

{
t ≥ S∗i +Ti : γ (∆(t)) ≥ p̄opt

}
, (38)

S∗i +Ti is the delivery time of the i-th feature,γ (δ ) is the Gittins
index in (33), and p̄opt is the optimal objective value of (27),
determined by

p̄opt = min

b ∈{0,1, ...,B−1}
βb . (39)

Theorem 4.2 tells us that, to solve (27), a feature is transmitted

in time-slot t if two conditions are satisfied: (i) The channel is idle

in time-slot t , (ii) the Gittins index γ (∆(t)) exceeds a threshold p̄opt
(i.e., γ (∆(t)) ≥ p̄opt ), where the threshold p̄opt is the optimal objec-

tive value of (27). The optimal objective value p̄opt is determined

by (39).

In the special case of non-decreasing p(·) studied in [26, 28], the

Gittins index in (33) can be simplified as γ (δ ) = E[p(δ +T1)] and the

optimal solution to (37) is b∗ = 0 such that it is optimal to always
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Figure 4: A networked intelligent system, where m sources send

features over a shared channel to the corresponding neural predic-

tors. At any time, at most one source can occupy the channel.

select the freshest feature from the buffer. Hence, Theorem 3 in [26]

is recovered from Theorem 4.2, and the “generate-at-will” model

can achieve the minimum inference error in this special case.

If p(·) is non-monotonic, as in the cases of Fig. 2, the “selection-

from-buffer” model could achieve better performance than the

“generate-at-will” model, and the optimal scheduler is provided

by Theorem 4.2.

5 MULTIPLE-SOURCE SCHEDULING

5.1 System Model and Scheduling Problem

Consider the networked intelligent system in Fig. 4, wherem sources

send features over a shared channel to the corresponding neural

predictors at the receivers. At time slot t , each source l maintains a

buffer that stores the Bl most recent features (Xl,t , . . . , Xl,t−Bl+1
).

When the channel is free, at most one source can select a feature

from its buffer and submit the selected feature to the channel.

A centralized scheduler makes two decisions in each time slot:

(i) which source should submit a feature to the shared channel

and (ii) which feature in the selected source’s buffer to submit. A

scheduling policy is denoted by π = (πl,bl )l=1,2, ...,m,bl=0,1, ...,Bl−1
,

where πl,bl = (dl,bl (0),dl,bl (1), . . .) anddl,bl (t) ∈ {0, 1} represents
the scheduling decision for the (bl + 1)-th freshest feature Xl,t−bl
of source l in time slot t . If source l submits the feature Xl,t−bl in
its buffer to the channel in time slot t , then dl,bl (t) = 1; otherwise,

dl,bl (t) = 0. Let cl,bl (t) ∈ {0, 1} denote the channel occupation

status of the (bl + 1)-th freshest feature Xl,t−bl of source l in time

slot t . If source l submits the feature Xl,t−bl in its buffer to the

channel in time slot t , then the value of cl,bl (t) becomes 1 and

remains 1 until it is delivered; otherwise, cl,bl (t) = 0. It is required

that

∑m
l=1

∑Bl−1

bl=0
cl,bl (t) ≤ 1 for all t . Let Π denote the set of all

causal scheduling policies.

Let Gl,i , Sl,i , Dl,i , and Tl,i denote the generation time, channel

submission time, delivery time, and transmission time duration of

the i-th feature sent by source l , respectively. The feature trans-
mission times Tl,i ≥ 1 are independent across the sources and

i.i.d. among the features from the same source. We assume that the

Tl,i ’s are not affected by the adopted scheduling policy. The age of

information (AoI) of source l at time slot t is given by

∆l (t) = t −max

i
{Gl,i : Dl,i ≤ t}. (40)

Algorithm 1 Whittle Index Policy with Selection-from-Buffer

1: Do forever:

2: Update ∆l (t) for all l ∈ {1, 2, . . .m}.
3: Calculate the Whittle indexWl,bl (∆l (t)) for all l ∈ {1, 2, . . .m}

and bl ∈ {0, 1, . . . ,Bl − 1} using (45)-(47).

4: if the channel is idle and maxl,bl Wl,bl (∆l (t)) ≥ 0 then

5: (l∗,b∗l ∗ ) ← arg maxl,bl Wl,bl (∆l (t)).

6: Source l∗ submits its feature Xl ∗,t−b∗l∗
to the channel.

7: else

8: No source is scheduled, even if the channel is idle.

9: end if

Our goal is to minimize the time-average weighted sum of the

inference errors of them sources, which is formulated by

inf

π ∈Π
lim sup

T→∞

1

T

m∑
l=1

wl Eπ

[T−1∑
t=0

pl (∆l (t))

]
, (41)

s.t.

m∑
l=1

Bl−1∑
bl=0

cl,bl (t) ≤ 1, t = 0, 1, 2, . . . , (42)

where pl (∆l (t)) is the inference error of source l at time slot t and
wl > 0 is the weight of source l .

5.2 Multiple-source Scheduling

Problem (41) can be cast as a Restless Multi-arm Bandit (RMAB)

problem by viewing the features stored in the source buffers as

arms, where (l ,bl ) is an arm associated with the (bl + 1)-th freshest

feature of the source l and the state of the arm (l ,bl ) is the AoI

∆l (t) in (40). Finding the optimal solution for RMAB is generally

PSPACE hard [21]. Next, we develop a low-complexity scheduling

policy by using both Gittins and Whittle indices.

By relaxing the per-slot channel constraint (42) as the following

time-average expected channel constraint

lim sup

T→∞

1

T

T−1∑
t=0

m∑
l=1

Bl−1∑
bl=0

E[cl,bl (t)] ≤ 1, (43)

and taking the Lagrangian dual decomposition of the relaxed sched-

uling problem (41) and (43), we obtain following per-arm scheduling

problem:

inf

πl,bl ∈Πl,bl
lim sup

T→∞

1

T
Eπl,bl

[T−1∑
t=0

wlpl (∆l (t))+λcl,bl (t)

]
, (44)

where Πl,bl is the set of all causal scheduling policies of arm (l ,bl ).

Definition 5.1 (Indexability). [31] Let Ωl,bl (λ) be the set of all
AoI values δ such that if the channel is idle and ∆l (t) = δ , the opti-
mal action to (44) is dl,bl (t) = 0. Then, the arm (l ,bl ) is indexable
if λ1 ≤ λ2 implies Ωl,bl (λ1) ⊆ Ωl,bl (λ2).

Theorem 5.2. If |pl (δ )| ≤ M for all δ and the Tl,i ’s are indepen-
dent across the sources and i.i.d. among the features from the same
source with a finite mean E[Tl,i ], then all arms are indexable.

Given indexability, the Whittle indexWl,bl (δ ) [31] of the arm
(l ,bl ) at state δ isWl,bl (δ ) = inf{λ ∈ R : δ ∈ Ωl,bl (λ)}.
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Figure 5: Time average inference error (MSE) vs. the scale parame-

ter σ of discretized i.i.d. log-normal transmission time distribution

for single-source scheduling (in robot state prediction task).

Theorem 5.3. If the conditions of Theorem 5.2 hold, then the Whit-
tle indexWl,bl (δ ) is given by

Wl,bl (δ )=
wl
E[Tl,1]

E
[
z(Tl,1,bl ,δ ) +Tl,2

]
γl (δ )

−
wl
E[Tl,1]

E


Tl,1+z(Tl,1,bl ,δ )+Tl,2−1∑

t=Tl,1

pl (t + bl )

 , (45)

where γl (δ ) is the Gittins index of an AoI bandit process for source l ,
determined by

γl (δ ) = inf

τ ∈{1,2, ... }

1

τ

τ−1∑
k=0

E
[
pl (δ + k +Tl,2)

]
, (46)

and

z(Tl,1,bl ,δ ) = inf

z∈Z
{z ≥ 0 : γl (Tl,1 + bl + z) ≥ γl (δ )}. (47)

Finding a (semi-)analytical expression of the Whittle index for

minimizing non-monotonic AoI functions is in a challenging task.

In Theorem 5.3, this challenge is resolved by using the Gittins

index γl (δ ) to solve (44), where the solution techniques of (28) are

employed. The Whittle index scheduling policy for reducing the

weighted-sum inference error is described in Algorithm 1, where all

sources remain silent when the channel is idle, ifWl,bl (∆l (t)) < 0

for all l and bl .
In the special case that (i) the AoI function p(·) is non-decreasing

and (ii) the transmission time is fixed as Tl,i = 1, it holds that

γl (δ ) = pl (δ + 1) and z(Tl,1,bl ,δ ) = max{δ − bl − 1, 0}. Hence,

Wl,0(δ ) = wl

[
δ pl (δ + 1) −

δ∑
t=1

pl (t)

]
(48)

for δ ≥ 1 and bl = 0. By this, the Whittle index in Section IV of [29,

Equation (7)] is recovered from Theorem 5.3.

6 DATA DRIVEN EVALUATIONS

In this section, we illustrate the performance of our scheduling

policies, where the inference error function p(δ ) is collected from

the data driven experiments in Section 3.3.
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Figure 6: Time-average weighted sum of the inference errors (Nor-

malizedMSE) vs. theweightw1 of Source 1 formulti-source schedul-

ing, where the number of sources ism = 2 and the weight of Source

2 is w2 = 1.

6.1 Single-source Scheduling Policies

We evaluate the following four single-source scheduling policies:

1. Generate-at-will, zero wait: The (i + 1)-th feature sending

time Si+1 is given by Si+1 = Di = Si + Ti and the feature

selection policy is f = (0, 0, . . .), i.e., bi = 0 for all i .
2. Generate-at-will, optimal scheduling: The policy is given by

Theorem 4.1 with bi = 0 for all i .
3. Selection-from-buffer, optimal scheduling: The policy is given

by Theorem 4.2.

4. Periodic feature updating: Features are generated periodi-

cally with a period Tp and appended to a queue with buffer

size B. When the buffer is full, no new feature is admitted to

the buffer. Features in the buffer are sent over the channel

in a first-come, first-served order.

Fig. 5 illustrates the time-average inference error achieved by the

four single-source scheduling policies defined above. The inference

error function p(δ ) used in this evaluation is illustrated in Fig. 2(c),

which is generated by using the leader-follower robotic dataset and

the trained neural network as explained in Section 3.3. The i-th
feature transmission time Ti is assumed to follow a discretized i.i.d.

log-normal distribution. In particular, Ti can be expressed as Ti =
⌈αeσZi /E[eσZi ]⌉, where Zi ’s are i.i.d. Gaussian random variables

with zero mean and unit variance. In Fig. 5, we plot the time average

inference error versus the scale parameter σ of discretized i.i.d. log-

normal distribution, where α = 1.2, the buffer size is B = 30,

and the period of uniform sampling is Tp = 3. The randomness

of the transmission time increases with the growth of σ . Data-
driven evaluations in Fig. 5 show that “selection-from-buffer” with

optimal scheduler achieves 3 times performance gain compared

to “generate-at-will,” and 8 times performance gain compared to

periodic feature updating.

6.2 Multiple-source Scheduling Policies

Now, we evaluate the following three multiple-source scheduling

policies:

1. Generate-at-will, maximum age first (MAF), zero wait: At

time slot t , if the channel is free, this policy will schedule
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the freshest generated feature from source arg maxl ∆l (t);
otherwise no source is scheduled.

2. Generate-at-will, Whittle index policy: Denote

W0(t) = max

l
Wl,0(∆l (t)), l

∗
0
= arg max

l
Wl,0(∆l (t)). (49)

If the channel is free andW0(t) ≥ 0, the freshest feature of

the source l∗
0
is scheduled; otherwise no source is scheduled.

3. Selection-from-buffer, Whittle index policy: The policy is

described in Algorithm 1.

In Fig. 6, we plot the time average weighted sum of inference

errors versus weight w1, where the number of sources is m = 2

and weightw2 = 1. The inference error function p1(δ ) is illustrated
in Fig. 2(c). The inference error function p2(δ ) is illustrated in Fig.

1(c), which is generated by using the pre-trained neural network

on “BAIR" dataset from [18]. The transmission times for Source 1

and Source 2 are T1,i = 1 and T2,i = 4 for all i , respectively. The
buffer sizes are B1 = B2 = 30. The weightw1 is associated with a

non-monotonic AoI function. The performance gain of “selection-

from-buffer, Whittle index policy” increases as w1 grows. Due to

limited space, more numerical results are provided in [25].

7 CONCLUSIONS

In this paper, we interpreted the impact of data freshness on the

performance of real-time supervised learning. We showed that the

training error and the inference error of real-time supervised learn-

ing could be non-monotonic AoI functions if the target and feature

data sequence is far from a Markov model. Our experimental results

suggested that the data sequence can be far from Markovian due

to response delay, communication delay, and/or long-range depen-

dence. To minimize the time-average inference error, we adopted a

new feature transmission model called “selection-from-buffer” and

designed an optimal single-source scheduling policy. The optimal

single-source scheduling policy is found to be a threshold policy

on the Gittins index. Moreover, we developed a Whittle index pol-

icy for multiple-source scheduling and provided a semi-analytical

expression for the Whittle index. Our numerical results validated

the efficacy of the proposed scheduling policies.
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