From Social Trust Assisted Reciprocity (STAR) to Utility-Optimal Mobile Crowdsensing

Xiaowen Gong\(^1\), Xu Chen\(^1\), Junshan Zhang\(^1\), H. Vincent Poor\(^2\)

\(^1\)School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ
\(^2\)Department of Electrical Engineering, Princeton University, Princeton, NJ

Motivation & Challenge

Effective *incentive design* is essential for realizing mobile crowdsensing, since sensing tasks incur overhead (e.g., resource consumption, privacy loss). Most existing work use a (virtual) currency to stimulate users to participate in crowdsensing, which typically incurs a high implementation overhead.

Social relationships increasingly influence people’s behaviors due to the explosive growth of online social networks. We exploit *Social Trust Assisted Reciprocity (STAR)*, a synergistic marriage of social trust and reciprocity.

STAR: Social Trust Assisted Reciprocity based Incentive Mechanism

System model

- Users’ sensing requests are modeled by a request graph; the flow on a request edge represents the amount of sensing service provided by a user to another
- Social trust structure among users is modeled by a social graph; the flow on a social edge represents the amount of social credit transferred from a user to another, and is constrained by the social credit limit

A social trust assisted reciprocity cycle is a directed cycle in the social-request graph. The aggregate flow of balanced flows along STAR cycles should satisfy the capacity constraints:

\[
-S_{ij} \leq f_{ij}^S \leq S_{ij}, \quad f_{ij}^S = -f_{ji}^S, \quad \forall e_{ij} \in E^S
\]

\[0 \leq f_{ij}^R \leq R_{ij}, \quad \forall e_{ij} \in E^R.
\]

Conditions for satisfying all sensing requests

Define users’ request surplus/deficiency and the aggregate surplus/deficiency. Based on this we construct an extended social graph.

\[
P_i = \sum_{j: e_{ij} \in E^R} R_{ji} - \sum_{j: e_{ij} \in E^S} R_{ij} + P_i = \sum_{i: P_i > 0} P_i - \sum_{i: P_i < 0} P_i
\]

Theorem: All sensing requests can be satisfied under STAR if and only if \(P \) is equal to the maximum flow value from \(s \) to \(d \) in the extended social graph.

Utility maximization for sensing service

The maximum utility of sensing service provided under STAR is equal to the maximum utility of a circulation flow in the social-request graph:

\[
\text{maximize } \sum_{i,j: e_{ij} \in E^R} U_{ij} f_{ij}^R
\]

subject to constraints (1), (2), (3).

Algorithm 1: Find the optimal flow for problem (4) in social-request graph \(G \)

input : Social-request graph \(G \)

output: The optimal flow for problem \((4) \)

1. Initialize an empty flow \(f \) in \(G \);
2. while There exists a cycle of positive weight in the residual graph \(G_f \) of flow \(f \) do
3. Find a cycle \(c \) of positive weight in \(G_f \);
4. Compute the residual capacity \(r_c \) of cycle \(c \);
5. Augment flow \(f \) with a balanced flow of value \(r_c \) along cycle \(c \);
6. end
7. return Flow \(f \);