VARIATIONAL PRINCIPLE FOR SPREADING SPEEDS AND GENERALIZED PROPAGATING SPEEDS IN TIME ALMOST PERIODIC AND SPACE PERIODIC KPP MODELS

WENXIAN SHEN

Abstract. Spatial spread and front propagation dynamics is one of the most important dynamical issues in KPP models. Such dynamics of KPP models in time independent or periodic media has been widely studied. Recently, the author of the current paper with Huang in [?] established some theoretical foundation for the study of spatial spread and front propagation dynamics of KPP models in time almost periodic and space periodic media. A notion of spreading speed intervals for such models was introduced in [?] and was shown to be the natural extension of the classical concept of the spreading speeds for time independent or periodic KPP models and can be used for more general time dependent KPP models. A notion of generalized propagating speed intervals of front solutions and a notion of traveling wave solutions to time almost periodic and space periodic KPP models were also introduced in [?], which are the generalizations of wave speeds and traveling wave solutions in time independent or periodic KPP models. The current paper is to gain more qualitative and quantitative understanding of the spatial spread and front propagation dynamics of KPP models in time almost periodic and space periodic media. By applying the principal Lyapunov exponent and principal Floquet bundle theory for time almost periodic parabolic equations, we provide various useful estimates for spreading and generalized propagating speeds for such KPP models. Under the so called linear determinacy condition, we show that the spreading speed interval in any given direction is a singleton (called the spreading speed). Moreover, in such case, we establish a variational principle for the spreading speed and prove that there is a front solution of speed \(c \) in a given direction if and only if \(c \) is greater than or equal to the spreading speed in that direction. Both the estimates and variational principle provide important and efficient tools for the spreading speeds analysis as well as the spreading speeds computation. Based on the variational principle, the influence of time and space variation of the media on the spreading speeds is also discussed in the paper. It is shown that the time and space variation cannot slow down the spatial spread and it indeed speeds up the spatial spread except certain degenerate cases, which provides deep insights into the understanding of the influence of the inhomogeneity of the underline media on the spatial spread in KPP models.

Department of Mathematics, Auburn University, Auburn, AL 36849
E-mail address: wenxish@auburn.edu

Received by the editors May 10, 2008 and, in revised form, November 20, 2008.

2000 Mathematics Subject Classification. Primary 35K55, 35K57; Secondary 35B15, 92D25.

Key words and phrases. Almost periodic KPP model, spreading speed interval, generalized propagating speed interval, traveling wave solution, front solution, principal Lyapunov exponent, principal Floquet bundle, variational principle.

Partially supported by NSF grant DMS-0504166.