Spectral Theory for General Nonautonomous/Random Dispersal Evolution Operators

W. Shen
Department of Mathematics and Statistics
Auburn University
Auburn, AL 36849, U.S.A.

and

G. T. Vickers
School of Mathematics and Statistics
The University of Sheffield
Sheffield S3 7RH, U.K.

Abstract. We investigate the spectral theory of the following general non-autonomous evolution equation
\[\partial_t u(t, x) = A(u(t, \cdot))(x) + h(t, x)u(t, x), \quad x \in D, \]
where D is a bounded subset of \mathbb{R}^N which can be a smooth domain or a discrete set, A is a general linear dispersal operator (for example a Laplacian operator, an integral operator with positive kernel or a cooperative discrete operator) and $h(t, x)$ is a smooth function on $\mathbb{R} \times \bar{D}$. We first study the influence of time dependence on the principal spectrum of dispersal equations and show that the principal Lyapunov exponent of a time-dependent dispersal equation is always greater than or equal to that of the time-averaged one. Several results about the principal eigenvalue of time-periodic parabolic equations are extended to general time-periodic dispersal ones. Finally, the investigation is generalized to random time-dependent dispersal equations.

\footnote{Partially supported by NSF grant DMS-0504166}