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Solutions to Selected Problems
of the Web Chapters

Chapter 14

14.1.P p. ??
↓

1. The two 5 by 5 matrices comprised of zeros
everywhere, except for a 1 in positions (1,5)
or (1,2) both have the 5 fold eigenvalue zero,
but a 1-dimensional kernel, or only 4 corre-
sponding linearly independent eigenvectors.
According to Chapter 9.1 or 9.1.D they can-
not be diagonalized.

3. For a non-diagonalizable example, expand
the solution of problem 1. to 12 by 12. For
a diagonalizable triangular matrix, use an
arbitrary 12 by 12 upper triangular matrix
with distinct diagonal entries. Such a matrix
has 12 distinct eigenvalues and is therefore
diagonalizable.

5. Look at the eigenspace for λ = −1, or at

the kernel of A + I =


 1 0 1
−3 0 −3
−1 0 −1


. It

has dimension two, so there are two linearly
independent eigenvectors for λ = −1. Now
compute trace(A) = −3 = −1−1+λ3, mak-
ing λ = −1 a triple eigenvalue for A. There-
fore the Jordan normal form of A is J =
diag(J(−1, 2), J(−1, 1)).

7. For Example 4:
•

• • •
;

for Problem 5:
•
• •

.

9. We can find the eigenvalues of A =(
a b
−b a

)
from det(A − λI) =

det

(
a− λ b
−b a− λ

)
= (a − λ)2 + b2 =

0 as λ1,2 = a ± bi. We find the com-
plex eigenvectors by looking at A −

(a + bi)I =

(
−bi b
−b −bi

)
as

(
1
i

)
,

and from A − (a − bi)I =

(
bi b
−b bi

)

as

(
−1
i

)
. Now form the eigenvector

column matrix X =

(
1 −1
i i

)
with

X−1 =
1

2

(
1 −i
−1 −i

)
. Then X−1AX =

1

2

(
1 −i
−1 −i

)(
a b
−b a

)(
1 −1
i i

)
=(

a+ bi 0
0 a− bi

)
.

11. Since trace(C) = −6 − 2 + 10 = 2 = λ1 +
λ2 + λ3 and λ1 = −1 and λ2 = 2 are given,
we must have λ3 = 1. Therefore C has three
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62 Solutions to Chapter 14: 14.1.P

distinct eigenvalues and is diagonalizable ac-
cording to Chapter 9. The Jordan normal
form of C is diag(−1, 2, 1).

13. Let the size of A be n by n. 4 foldness of
an eigenvalue refers to the algebraic multi-
plicity; therefore n = 4. Since geom. mult.
≤ alg. mult., we may have 1, or 2, or 3, or
4 linearly independent eigenvectors for this
single eigenvalue. Giving rise to the follow-

ing Jordan diagrams in turn:

•
•
•
•

in case

of geometric multiplicity 1, or
•
•
• •

or

• •
• •

in case of geometric multiplicity 2,

or
•
• • •

in case of geometric multi-

plicity 3, or to • • • • if A is diago-
nalizable.

15. Here n = 6 and
diag(J(λ, n1), J(λ, n2), ..., J(λ, nk)) with

k ≤ 6 and
k∑
i=1

ni = 6.

17. The Jordan normal form J of A has three
separate Jordan blocks for λ. One of these
must be 4 by 4, while the other two have
sizes that will add up to 8. Therefore J will
contain the string J(λ, 4), J(λ, n1), J(λ, n2))
with n1 + n2 = 4 and ni ≥ 1. This gives
us two possibilities: n1 = 1, n2 = 3 or
n1 = 2 = n2. The third possible case n1 = 3
and n2 = 3 is only a reordering of the first
mentioned one. So for λ there are precisely
two variations possible in the Jordan normal
form for A.

19. The maximal index must be six since there
must be seven linearly independent eigenvec-
tors for our 12 fold eigenvalue. The minimal
index is two, provided 5 Jordan blocks of
size 2 occur together with two 1 by 1 Jor-
dan blocks. Any index in between 2 and 6
can also occur.

21. (a) A’s Jordan normal form has one 2 by 2
block and 1 by 1 blocks else.

(b) A’s Jordan normal form has one 3 by 3
block and 1 by 1 blocks else, or it has two 2
by 2 blocks and 1 by 1 blocks else.
(c) There are three Jordan blocks for λ.
Their possible sizes are 1, 1, 4; or 1, 2, 3;
or 2, 2, 2, respectively.

23. (a) Simply multiply J−1 · J out for the ma-
trix J−1 as given and you should obtain I.
(b) J(λ, k)−1 is tridiagonal with its n fold
eigenvalue 1

λ
appearing on the diagonal.

Since rank(J(λ, k)−1− 1
λ
I) = k− 1 from the

formula for the inverse in part (a), J(λ, k)−1

must be similar to a single Jordan block of
the form J

(
1
λ
, k
)
.

And if X−1AX = J is a Jordan form ma-
trix, then J−1 = X−1A−1X , or A−1 and
J−1 are also similar, hence have the same
Jordan normal form. But if J = diag(Ji),
then J−1 = diag(J−1i ), so the Jordan normal
form of the inverse of a nonsingular matrix
A has the same Jordan normal form struc-
ture as A, except instead of the eigenvalues
λi for A it has the eigenvalues

1
λi
.

25. We have trace(A) = λ1 + λ2 = 4 and
det(A) = λ1λ2 = 4, so that λ1 = λ2 = 2
is a double eigenvalue for A. Looking at the
kernel of A− 2I we find its dimension equal
to 1. Therefore A is not diagonalizable with

the Jordan normal form J =

(
2 0
1 2

)
.

27. (a) Every matrix A = A(α) has only one
linearly independent eigenvector for its dou-
ble eigenvalue λ since rank(A − λI) =

rank

(
0 α
0 0

)
= 1. Therefore each A(λ) is

similar to J(λ, 2) =

(
λ 0
1 λ

)
. If α = 0,

then A = λI = diag(J(λ, 1), J(λ, 1)) is not
similar to J(λ, 2).
(b) Analogous to part (a), if

∏
αi 6= 0, then

rank(A−λI) = 1 and A is similar to a single
Jordan block J(λ, k). If at least one off di-
agonal entry λj = 0, then rank(A− λI) ≥ 2
and A is similar to a Jordan form with at
least two Jordan blocks for λ.
(c) Both B − λI and C − λI have rank 1
for their double eigenvalue λ. Hence both B
and C have the same Jordan normal form
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J = J(λ, 2) =

(
λ 0
1 λ

)
. I.e., X−1BX =

J and Y −1CY = J for two matrices X
and Y , making C = Y X−1BXY −1 =
(XY −1)−1B(XY −1) similar.

29. (a) Aek = aek.

(b) A =



1 0 0 0
1 −3 0 0
0 0 1 0
0 0 1 2


 and B =



−3 0 0 0
0 −3 1 0
0 0 1 0
0 0 0 2


 are both diagonaliz-

able, but



−3 0 0 0
α −3 1 0
0 0 1 0
0 0 0 2


 is not for any

α 6= 0.
(c) In our triangular matrix examples,
nonzero entries in columns and rows that
have the same diagonal entry seem to de-
termine diagonalizability.

31. (a) A =

(
i 1
0 1

)
has one complex eigen-

value λ = i and one real eigenvalue λ = 1.

(b), (c) A =

(
−1 + i 3
i 2− i

)
has de-

terminant (−1 + i)(2 − i) − 3i = −1 and
trace 1. Thus its characteristic polynomial
is fA(x) = x

2 + x − 1 with the roots x1,2 =

− 12±
√
1
4 + 1 ∈ R. These are the eigenvalues

of A /∈ Rn,n.

14.2.P p. ??
↓

1. We can use vector iteration of Section

9.1 with x =



0
2
−1
1


 for example and

obtain




...
...

...

x Ax A2x A3x A4x

...
...

...



=



0 −10 −10 −20 −60
2 −1 −2 6 −8
−1 3 6 2 24
1 −3 4 −2 −4


 with

the reduced row echelon form

1 0 0 4 0
0 1 0 2 4
0 0 1 0 2
0 0 0 0 0


. Therefore according

to Section 9.1, the roots of the polyno-
mial x3 − 2x − 4 are three eigenvalues of
A. The roots are 2 (found by guessing) and
−1 ± i (then found by long division and
the quadratic formula). The fourth root is
2 from the trace condition. A row reduc-
tion of A − 2I4 shows this matrix to have
rank 3. Thus A has only one eigenvector
for its double real eigenvalue 2. A there-
fore has the real Jordan normal form J =
diag(J(2, 2), J(−1, 1, 2)).
To start out with computing det(A − λI4)
seems much harder.

3. For the real matrix A all complex eigenval-
ues such as λ and µ come doubly as λ, µ and
as λ, µ. Thus the real principal subspace as-
sociated with λ is 6 dimensional, and the
one for µ has dimension 4. Since the size of
A is 13 by 13, this makes ν have algebraic
multiplicity 3 as a root of the characteristic
polynomial of A. Finally ν can have the ge-
ometric multiplicities 1, 2, or 3.
The possible real Jordan forms of A consist
of any combination from the following three
Jordan block groups: for λ = 2 + 3i:
J(2, 3, 6), diag(J(2, 3, 4), J(2, 3, 2)), or
diag(J(2, 3, 2), J(2, 3, 2), J(2, 3, 2));
for µ = 1 − 2i: J(1,−2, 4) or
diag(J(1,−2, 2), J(1,−2, 2));
and for ν = 7: J(7, 3), diag(J(7, 2), J(7, 1)),
or diag(7, 7, 7).

5. (a) Jek = λek.
(b) The index of λ is k.
(c) Since (J −λI)k = Ok and (J −λI)k−1 is
the matrix of all zeros except for a 1 in posi-
tion (k,1), and since a principal vector of in-
dex k for A must lie in the kernel of (J−λI)k

but not in the kernel of (J−λI)k−1, this prin-
cipal vector must be a multiple of e1.
(d) ek−j+1 ∈ Pj(λ).
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7. vA =

(
1 z z2 ... zn−1

)



0 −a0

1
...

. . .
...

1 −an−1




=
(
z z2 ... −a0 − a1z − ...− an−1zn−1

)
= z

(
1 z z2 ... zn−1

)
since zn +

an−1z
n−1 + ...+ a1z + a0 = 0.

9. The given matrix B =

(
−2 2i
1 3

)
has two

distinct complex eigenvalues since its charac-

teristic polynomial is λ2−λ−6−2i. Thus B

is similar over C to a complex diagonal ma-

trix diag(λ1, λ2), or X
−1BX =diag(λ1, λ2).

Thus B = (X diag(λ1, λ2)X
T )(X−T IX−1)

expresses B as the product of two complex

symmetric matrices.

11. A =

(
−2 1
4 −4

)
=

=

(
0 1
1 −2

)(
0 −2
−2 1

)
.

13. Note that(
−1 0
0 1

)(
a b
b a

)(
−1 0
0 1

)
=

(
a −b
−b a

)
and that

(
−1 0
0 1

)−1
=(

−1 0
0 1

)
.

14.3.P p. ??
↓

1. (a) For Example 9 we use the product rule of
calculus twice in each component function,
abbreviate cos t by C and sin t by S, and
obtain :

x′(t) = cet



3S + C + 3tS − tC

−tS
S + C + tS
S − tC


 +

cet



3C − C + 3S − C + 3tC + tS

−S − tC
C − S + S + tC
C − C + tS


 =

= cet



5S + 3C + 4tS + 2tC
−S − tC − tS
S + 2C + tS + tC
S − tC + tS


.

And

Ax = cet



4 7 −1 −6
−2 −3 2 3
0 1 2 −1
0 −1 0 1


 ·

·



3S + C + 3tS − tC

−tS
S + C + tS
S − tC


 = cet·




12S + 4C + 12tS − 4tC − 7tS − S − C − tS − 6S + 6tC
−6S − 2C − 6tS + 2tC + 3tS + 2S + 2C + 2tS + 3S − 3tC

−tS + 2S + 2C + 2tS − S + tC
tS + S − tC




= cet



5S + 3C + 4tS + 2tC
−S − tC − tS
S + 2C + tS + tC
S − tC + tS


 as before.

(b) In Example 10 we have computed the
solution as x(t) = ce−t(1 + t) + ke3t.
Consequently x′(t) = −cte−t + 3ke3t,
x′′(t) = −ce−t + cte−t + 9ke3t, and
x′′′(t) = 2ce−t − cte−t + 27ke3t. Therefore
x′′′ − x′′ − 5x′ − 3x = 0.

7. The solution w(t) of w′(t) =
diag(J(2, 2), J(−1, 1, 2))w(t) in terms of the
Jordan basis U of A is given according to

(??) and (??) by w(t) =




ce2t

cte2t

ke−t sin t
ke−t cos t


.

Since the solution x(t) of x′ = Ax is re-
lated to w and the Jordan normal form
J = U−1AU of A according to the formula
x = Uw, we need to compute the eigenvec-
tor/principal vector matrix U for A and J
next.
With B = A − 2I we compute B2 =

−12 −10 −36 14
−14 −20 −42 8
14 20 42 −8
2 10 6 6


 and its RREF



1 0 3 −2
0 1 0 1
0 0 0 0
0 0 0 0


. Clearly x(2) =
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2
−1
0
1


 ∈ ker((A − 2I)2) is a princi-

pal vector for λ = 2 of order two since

(A − 2I)x(2) =



3
0
−1
0


 = x(1) is an eigen-

vector of A.
For the complex root λ = −1 + i we look at
the kernel of A− (−1+ i)I via the RREF of

this matrix:



1 0 0 −1 + i
0 1 0 i
0 0 1 −i
0 0 0 0


. A com-

plex eigenvector for λ = −1+ i is the vector

1− i
−i
i
1


.

Thus U =



2 3 1 −1
−1 0 0 −1
0 −1 0 1
1 0 1 0


 trans-

forms A to its Jordan form J . Note that the
columns of U contain the principal vector
chain in descending order for λ = 2 first and
then the real and the complex part vectors
for the complex eigenvalue follow.

Therefore x(t) =



2 3 1 −1
−1 0 0 −1
0 −1 0 1
1 0 1 0


w(t)

= Uw(t) solves the original DE
x′ = Ax. Here x(t) computes to be

ce2t(2 + 3t) + ke−t(sin t− cos t)

−ce2t − ke−t cos t
−cte2t + ke−t cos t
ce2t + ke−t sin t


.

9. [The solution to this problem goes along the
same path as that of Problem 7 above (and
built on that of Problem 1 of 14.2.P). For
brevity, here are the main steps of a solu-
tion:]
B has the double complex conjugate eigen-
value pair 1± 2i.
The RREF of (B − (1 + 2i)I)2 is



1 0 1 + i −4− 2i
0 1 1 −5 + i
0 0 0 0
0 0 0 0


 and x(2) =



4 + 2i
5− i
0
1


 is a complex principal vector of

order 2 for 1+ 2i since (B− (1+ 2i)I)x(2) =

5− i
12− 5i
12− 5i
5− i


 =: x(1) ∈ ker(B− (1 + 2i)I) is

an eigenvector for 1 + 2i.
From (??) we obtain the real Jordan
basis for B from the real and imagi-
nary parts vectors of x(2) and x(1): X =

4 2 5 −1
5 −1 12 −5
0 0 12 −5
1 0 5 −1


 transforms B to its

real Jordan normal form J = X−1BX =
J(1, 2, 4) that is comprised of a single 4-
dimensional real Jordan block for 1 + 2i.
Next, according to (??) , the solution to
the Jordan form DE w′(t) = J(1, 2, 4)w(t) is

given as w(t) = cet



sin(2t)
cos(2t)
t sin(2t)
t cos(2t)


. Finally

x(t) = Xw(t) = cet



4S + 2C + 5tS − tC
5S − C + 12tS − 5tC

12tS − 5tC
S + 5tS − tC




solves the original DE x′(t) = Bx(t). Here
we have abbreviated sin(2t) by S and cos(2t)
by C.

11. Following Section 14.3 (b), we form the as-
sociated 5th degree polynomial p(r) = r5 −
5r4+5r3+5r2−6r. Its roots are −1, 0, 1, 2,
and 3. The associated transposed compan-

ion matrix C =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 6 −5 −5 5




is diagonalizable since p has distinct roots.
Thus J = diag(−1, 0, 1, 2, 3) = X−1CX for
the matrix X with the eigenvectors of C as
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its columns. For λ = −1, an eigenvector is

x1 =




1
−1
1
−1
1


; for λ = 2 it is x2 = e1; for

λ = 1 it is x3, the vector of all ones; for λ = 2

it is x4 =




1
2
4
8
16


; and for λ = 3 we have

x5 =




1
3
9
27
81


 as the corresponding eigen-

vector of C.
The Jordan normal form solution w(t) of
w′(t) = Jw(t) has the totally separated form

w(t) =




ce−t

d
ket

`e2t

me3t


 since J is diagonal. And

the solution to the original 5th order DE is
equal to the first entry x(t) = y1(t) of y(t) =
Xw(t), or to x(t) = ce−t+d+ket+`e2t+me3t

for arbitrary constants c, d, k, `,m, since the
first row of X is the vector of all ones.

14.R p. ??
↓

1. (a) See Theorem 7.2.
(b) See the Determinant Proposition, part
(12), in Section 8.1.
(c), ..., (h) Similar matrices have the same
characteristic and minimal polynomials.

3. (a) Each individual Jordan block is associ-
ated with a principal vector of order equal
to the size of the block.
(b) If λ ∈ R, then the above statement re-
mains true. But if λ /∈ R, then the index of
λ = a + bi is equal to half the size m of the
largest real Jordan block J(a, b, 2m) associ-
ated with λ.

5. Since (A − λI)kx = 0 and (A − λI)k−1x 6=
0, we likewise have (A − λI)k−2y = (A −
λI)kx = 0 and (A − λI)k−3y = (A −
λI)k−1x 6= 0, provided k > 2.

7. 1 by 1 matrices are the only such matrices.

9. A = diag(J(0, 3), J(−2, 4)) and B =
diag(J(0, 3), J(0, 2), J(−2, 4), J(−2, 3)) for
example, or any matrices similar to these.

11. To find the minimal sized matrix B with
the same minimal polynomial (x − 2)4(x +
1)5x as J , we must only allow one prop-
erly sized Jordan block for each dis-
tinct eigenvalue, or B must be similar to
diag(J(2, 4), J(−1, 5), J(0, 1)). This B has
size 4 + 5 + 1 = 10 by 10.

13. Clearly A2 is similar to J2 if A is to J , which
we assume to be the Jordan normal form
of A. If all eigenvalues of A are nonzero,
i.e., if A is nonsingular, then A2 has the
same Jordan structure as A for the squared
eigenvalues of A from the previous problem.
If A is singular, i.e., if the Jordan normal
form J of A has a Jordan block of the form
J(0, k), then J(0, k)2 is similar to the matrix
diag(J(0, k/2), J(0, k/2)) if k is even, and to
diag(J(0, (k + 1)/2), J(0, (k − 1)/2)) if k is
odd. This specifies the Jordan form of A2 in
terms of the Jordan form J of A completely.

Appendix D

A.D.P p. ??
↓ 1. f(x, y) = xT


 2 0 0
0 −1 1/2
0 1/2 4


 = xTSx.

But S is not positive definite since eT2 Se2 =
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−1 and therefore the bilinear form f does
not define a norm on R3.

3. (a) All example functions, except (5) are bi-
linear forms.
(b) We need to check whether ...(x, x) > 0
for all x 6= 0:
In (1), h(e1, e1) = 0, i.e., h does not define
an inner product.

In (2) the defining matrix

(
4 2
1 1

)
can

be replaced by the symmetric matrix(
4 3/2
3/2 1

)
which has two positive real

eigenvalues, hence is positive definite. This
makes h an inner product.
In (3) `(e2, e2) = −1 contradicts ` being an
inner product.
In (4) the defining matrix is positive definite
and thus m is an inner product.
In (6) p(e1, e1) = 0, hence p cannot be an
inner product.

5. If the weight function w > 0 and f 6= 0, then

〈f, f〉 =
1∫
0

f2w dx > 0 since f2w > 0 on

at least one subinterval of [0, 1], establishing
property (d) of an inner product. The other
defining properties (a), (b), and (c) follow
readily from the linearity of integrals.

7. We take w(x) := x + 1 > 0 on [0, 1). Then
1∫
0

f(x)g(x)w(x) dx =
1∫
0

(x−1/2)(x+1) dx 6=

0 and thus with respect to the inner product

〈f, g〉 =
1∫
0

fgw dx the two given functions f

and g are not perpendicular.

9. First level Gram–Schmidt:
v1 = f = 1;
v2 = 〈v1, v1〉g − 〈g, v1〉v1 = x− 1/2;
v3 = 〈v1, v1〉h− 〈h, v1〉v1 = x2 − 1/3;
Second level Gram–Schmidt:
v3 = 〈v2, v2〉v3 − 〈v3, v2〉v2 =

x2

12 −
3x
40 +

7
720 .

Students should check that the finally com-
puted vi are mutually orthogonal.

11. We verify conditions (1), (2), and (4) of
Proposition 4:
(1) and (2) are obvious; for (4) we use the
triangle inequality for numbers n times:

‖x+ y‖1 =
∑
i

|xi + yi| ≤
∑
i

(|xi|+ |yi|) =

=
∑
|xi|+

∑
i

|yi| = ‖x‖1 + ‖y‖1.

‖x‖1 is not an induced norm, because it
violates the parallelogram law: For x =(
1
−1

)
and y =

(
0
1

)
we have x + y =(

1
2

)
and x − y =

(
1
−2

)
with ‖x‖21 =

4, ‖y‖21 = 1, ‖x+y‖
2
1 = 9, and ‖x−y‖

2
1 = 9.

Therefore 12
(
‖x+ y‖21 + ‖x− y‖

2
1

)
= 9 6=

5 = ‖x‖21 + ‖y‖
2
1.

13. (a) From the parellelogram identity ‖v‖2 =
1
2

(
‖u+ v‖2 + ‖u− v‖2

)
− ‖u‖2 = 1

2 (36 +

25)− 16 = 15.5, or ‖v‖ =
√
15.5. Note that

d(u, v) = ‖u− v‖ = 5 as given.
(b) If ‖u‖ = 7, then from part (a) ‖v‖2 =
61
2 − 49 < 0 which is impossible.

15. If x =
k∑
i=1

αiui then ‖x‖2 =

〈
k∑
i=1

αiu,
k∑
j=1

αjuj〉 =
k∑
i=1

αi〈ui,
k∑
j=1

αjuj〉 =

k∑
i=1

αi〈ui, αiui〉 =
k∑
i=1

|αi|2. And 〈x, uj〉 =

〈
k∑
i=1

αiui, uj〉 = αj completes one direction

of the statement.
Conversely assume that V has an ONB of the
form {u1, ..., uk, uk+1, ..., un} where the first
k basis vectors are as given. Then for any

x ∈ V we have x =
n∑
i=1

αiui. Consequently

‖x‖2 = 〈x, x〉 = 〈
n∑
i=1

αiu,
n∑
j=1

αjuj〉 =

n∑
i=1

|αi|2. If we assume that ‖x‖2 =
k∑
i=1

|αi|2,

then αj = 0 for j = k + 1, ..., n, or x ∈
span{u1, ..., uk}.

17. (a) d(x, y) = ‖x − y‖ = | − 1| ‖x − y‖ =
‖y − x‖ = d(y, x).
(b) d(x, y) = ‖x−y‖ = ‖(x−z)−(y−z)‖ ≤
‖x− z‖+ ‖y − z‖ = d(x, z) + d(y, z).
(c) ‖x− y‖2 =

√
12 + 42 + 52 + 02 =

√
52.

‖x− y‖∞ = max{|xi − yi|} = 5.
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19. (a) ‖x‖ = 4, ‖y‖ =
√
6.

(b) d(x, y) = ‖x− y‖ =
√
20.

(c) ‖y − x‖ = d(x, y) =
√
20 from part (b).

(d) ‖x+ y‖2 = 24.

(e) cos∠(x, y) = x∗y

‖x‖ ‖y‖
=
1− 3i

4
√
6
and

∠(x, y) = complex arccos
(
1−3i
4
√
6

)
. [Complex

trigonometric functions are defined over C in
books and courses on complex analysis.]

21. (a) Write out f(p+r, q), f(p, q), and f(r, q)
and compare. likewise for f(p, q + s).
(b) Since a polynomial of degree 0, 1, or
2 can have at most two zeros unless it is
the zero polynomial, the induced function

N(p) :=
√
p2(1) + 2p2(2) + 3p2(3) : P2 → R

satisfies property (d) of Definition 1. The
properties (a) through (c) are obviously true.
Thus N is a norm on P2 by Proposition 4.
(c) N is no longer definite for polynomials
of degree exceeding 3 since such polynomials
may have the zeros 1, 2, and 3 without being
the zero function themselves. So N(p) = 0
does no longer imply p = 0 ∈ Pm for m > 2.
(d) N(2x2 − 3x) = ‖2x2 − 3x‖ =√
(2 − 3)2 + 2(6− 6)2 + 3(18− 9)2 =

√
28.

1−x2−x3+4x ∈ P3 and 1−x2−x3+4x /∈ P2.
But N is no longer a norm in P3; therefore
asking for the length or the “induced norm”
of the second polynomial makes no sense.
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