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Appendix D

Inner Product Spaces

The inner product, taken of any two vectors in an arbitrary vector space, generalizes the
dot product of two vectors in Rn or Cn.

For two column vectors x and y ∈ Rn we can form two different vector products, namely

• the outer product

xyT :=



x1
...
xn


( y1, ..., yn ) =



x1y1 . . . x1yn
...

...
xny1 . . . xnyn


 ∈ Rn,n

and

• the standard inner product

xT y :=
(
x1, ..., xn

)
y1
...
yn


 = x1y1 + ...+ xnyn ∈ R .

Here we interpret the two respective vectors as 1 by n or n by 1 matrices and multiply
according to the rules of matrix multiplication. The outer product is a dyadic product
since it creates an n by n dyad from two vectors, of which the first appears in column and
the second in row form. It allows us to express matrix multiplication as a sum of rank
1 dyadic generators; see Sections 6.2, 10.2, and the proof of Lemma 3 in Section 12.2. A
matrix product can be written as the sum of dyads of the columns and rows of the two
matrix factors as follows:
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AmnBnk =


 | |
a1 . . . an
| |





− b1 −
...

− bk −




=


 |
a1
|


( − b1 −

)
+ ... +


 |
an
|


( − bk −

)
∈ Rm,k ,

where the vectors ai denote the columns of the first factor A and the bj denote the rows
of the second factor B.

The standard inner product xT y of two vectors in Rn is the same as the dot product
x · y ∈ R of the two vectors. It was introduced in Chapter 1 and interprets the first factor
as a row and the second one as a column vector. The inner or dot product is also handy
to express matrix multiplication, namely

AmnBnk =



− ã1 −

...
− ãm −




 | |

b̃1 . . . b̃k
| |


 =



ã1 · b̃1 . . . ã1 · b̃k
...

...

ãm · b̃1 . . . ãm · b̃k


 ∈ Rm,k ,

where the ãi now denote the rows of A and the b̃j the columns of the second factor B. In
addition, the inner or dot product helps define angles and orthogonality of two vectors in
R
n, see Chapters 10 through 12.

We start by listing four fundamental properties of the standard inner product of two
vectors .. · .. : Rn × Rn → R.

Proposition 1: (Real Inner Product)

The standard inner product of two vectors x and y ∈ Rn is defined as

x · y := xT y =
(
x1, ..., xn

)
y1
...
yn


 = n∑

i=1

xiyi ∈ R .

It satisfies the following four properties:

(a) x · y = y · x for all x, y ∈ Rn;

(b) x · (y + z) = x · y + x · y for all x, y, z ∈ Rn;

(c) (αx) · y = x · (αy) = α(x · y) for all x, y ∈ Rn and all α ∈ R.

(d) x · x ≥ 0 for all x ∈ Rn, and x · x = 0 ∈ R if and only if x = 0 ∈ Rn. J

For two complex vectors x, y ∈ Cn, several modifications are in order in the definition
and the properties of an inner product due to the effects of complex conjugation, see
Appendix A.
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Proposition 2: (Complex Inner Product)

The standard inner product of two vectors x and y ∈ Cn is defined as

x · y := x∗y =
(
x1, ..., xn

)
y1
...
yn


 = n∑

i=1

xiyi ∈ C .

It satisfies the following four properties:

(a) x · y = y · x for all x, y ∈ Cn;

(b) x · (y + z) = x · y + x · y for all x, y, z ∈ Cn;

(c) (αx) · y = x · (αy) = α(x · y) for all x, y ∈ Cn and all α ∈ C.

(d) x · x ≥ 0 for all x ∈ Cn, and x · x = 0 ∈ C if and only if x = 0 ∈ Cn. J

Proof: We deduce the four properties for the complex inner product only.
The properties of the real inner product in Proposition 1 follow immediately by
dropping all complex conjugation bars in this proof.

(a) x ·y =
∑
i xiyi =

∑
i xiyi =

∑
i yixi = y · x since double conjugation c gives

c back for any c in C.

(b) x · (y + z) =
∑
i xi(yi + zi) =

∑
i xiyi +

∑
xizi = x · y + x · z.

(c) (αx) · y =
∑
i (αxi)yi = α

∑
i xiyi = αx · y and

∑
i (αxi)yi =

∑
i xi(αyi) =

x · (αy).

(d) x ·x =
∑
i |xi|

2 ≥ 0 as the sum of real squares. And equality holds precisely when
|xi| = 0 for each i = 1, ..., n, or when x = 0 ∈ Cn.

The standard dot or inner product of Rn (or Cn) serves very well in many aspects of
linear algebra, such as when defining angles, orthogonality, and the length of vectors. More
generally, an inner product can be defined in an arbitrary vector space V by requiring the
four properties of a dot product; see Appendix C for abstract vector spaces.

Definition 1: Let V be an arbitrary vector space over a field of scalars F.

(1) A function 〈.., ..〉 : V × V → F that maps any two vectors f and g ∈ V to the
scalar 〈f, g〉 in F is bilinear if 〈.., ..〉 is linear in each of its arguments, i.e., if
〈αf +βg, h〉 = 〈αf, h〉+〈βg, h〉 and 〈x, δu+εv〉 = 〈x, δu〉+〈x, εv〉 for all scalars
α, β, δ, ε ∈ F and all vectors x, u, v, f, g, h ∈ V .

(2) A bilinear function 〈.., ..〉 : V × V → C (or R), operating on a complex (or
real) vector space V , is an inner product on V if it satisfies the following four
properties.

(a) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ;

(b) 〈x, (y + z)〉 = 〈x, y〉 + 〈x, y〉 for all x, y, z ∈ V ;

(c) 〈(αx), y〉 = 〈x, (αy)〉 = α〈x, y〉 for all x, y ∈ V and all α ∈ C.
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(d) 〈x, x〉 ≥ 0 for all x ∈ V , and 〈x, x〉 = 0 ∈ C if and only if x = 0 ∈ V . J

Note that if V is a vector space with the scalar field R, then the complex conjugation in
parts 2(a) and 2(c) above should simply be dropped.

For V = Rn and two vectors x, y ∈ Rn, the standard dot product 〈x, y〉 := x · y clearly
defines an inner product on Rn. We can express the dot product as x · y = xT Iy via the
n by n identity matrix I. The matrix In is symmetric with n positive eigenvalues equal
to 1 on its diagonal. Positive definite matrices generalize the properties of I; see Section
11.3. For example, every positive definite matrix P = P T ∈ Rn,n can be expressed as a
matrix product P = ATA with a nonsingular real square matrix A. For any P = ATA that
is positive definite, we may set 〈x, y〉P := xTPy = xTATAy = (Ax)T · (Ay) and thereby
obtain an inner product 〈x, y〉P := Rn×Rn → R that differs from the ordinary dot product
x·y = 〈x, y〉I . All one needs to do to verify this statement, is to show that 〈.., ..〉P is bilinear
and satisfies the four standard properties of an inner product of Definition 1, see Problem
2 below.

Proposition 3: (a) Every bilinear form f(x, y) : Rn × Rn → R can be expressed as
f(x, y) = xTSy for a real symmetric n by n matrix S.

(b) If P = P T ∈ Rn,n is a positive definite real matrix, then 〈x, y〉P := xTPy ∈ R
defines an inner product on Rn.

(c) If P = P ∗ ∈ Cn,n is a positive definite complex matrix, then 〈x, y〉P := x∗Py ∈
C defines an inner product on Cn. J

Example 1: (a) To write f(x, y) = 3x1y1−2x1y2+3x3y2−x2y2+4x4y4 : R4×R4 → R
in the form xTSy with S = ST ∈ R4,4, we define the diagonal entries sii of S
as the coefficients of xiyi in f , or as s11 = 3, s22 = −1, s33 = 0, and s44 = 4.
For i > j we set the off-diagonal entries sij in S equal to half the coefficient of
xiyj and then define sji = sij. Thus s12 = −1 = s21 and s32 = 1.5 = s23. Thus

S =



1 −1
−1 0 1.5

1.5 −1
4


 = ST .

(b) Determine whether 〈x, y〉 := xT
(
10 3
3 1

)
y is an inner product on R2.

Clearly 〈x.y〉 is bilinear in both x and y ∈ R2 since it is matrix generated. The

generating matrix S :=

(
10 3
3 1

)
with 〈x.y〉 = 〈x.y〉S = xTSy is symmetric,

i.e., S = ST , and hence its eigenvalues are real according to Section 11.1. Using
the trace and determinant conditions of Theorem 9.5, we observe that the two
eigenvalues of S add to 11 and multiply to 10 − 9 = 1. Thus both eigenvalues
of S must be positive real, making S = ST positive definite and 〈x.y〉 = 〈x.y〉S
an inner product on R2 according to Proposition 3.
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(c) Determine whether 〈u, v〉 := uT
(
0 1
1 0

)
v is an inner product on C2.

Clearly the function 〈u.v〉maps any two complex 2-vectors to a complex number

and it is bilinear. For X =

(
0 1
1 0

)
= X∗ we observe that X

(
1
1

)
=

(
1
1

)

and X

(
−1
1

)
=

(
1
−1

)
= −

(
−1
1

)
. Therefore X has the eigenvalues 1

and –1 and X is not positive definite. Thus 〈u, v〉 = 〈u, v〉X is not necessarily
an inner product on Cn since Proposition 3 does not apply. In fact, 〈u, v〉X
violates the fourth property (d) of inner products for u = v = e1 6= 0 ∈ C2:

〈e1, e1〉X =
(
0 1

)( 0 1
1 0

)(
0
1

)
=
(
0 1

)( 1
0

)
= 0 ∈ C .

Therefore 〈u, v〉X is not an inner product on C2. J

Inner products can help us measure and navigate in abstract vector spaces, such as
in spaces of functions. As an example, we now consider the space of continuous functions
F[0,1] := {f : [0, 1] → R | f continuous} defined on the interval [0, 1] ⊂ R. This space is

infinite dimensional, see Section 7.2(b). By setting 〈f, g〉 :=
1∫
0

f(x)g(x) dx for all functions

f, g ∈ F[0,1], we have made F[0,1] into an inner product space. Clearly 〈f, g〉 is linear
in both of its function variables f and g since integration is linear in the sense that∫
u+ v dx =

∫
u dx+

∫
v dx. Identities such as

〈αu+ βv,w〉 =

∫
(αu+ βv)w dx = α

∫
uw dx+ β

∫
vw dx = α〈u,w〉 + β〈v,w〉

prove the properties (b) and (c) of an inner product. Next we observe that property (a)
holds since 〈f, g〉 =

∫
fg dx =

∫
gf dx = 〈g, f〉. And the first part of property (d)

〈f, f〉 =
1∫
0

f2(x) dx ≥ 0 holds for any integrable function f since f2(x) ≥ 0. To show that

〈f, f〉 = 0 for f ∈ F[0,1] implies that f = 0 on [0, 1] requires more thought: Every function
f ∈ F[0,1] is continuous. If f is not the zero function on [0, 1], then f(x0) 6= 0 for some
x0 ∈ [0, 1]. By continuity there is an interval [a, b], 0 ≤ a < b ≤ 1, with x0 ∈ [a, b] and
f(x) > ε > 0 for some given ε > 0 and all x ∈ [a, b]. Using the additivity of the integral
over its domain of integration, we observe that

〈f, f〉 =

1∫
0

f2(x) dx =

a∫
0

f2 dx+

b∫
a

f2 dx+

1∫
b

f2 dx

≥

b∫
a

f2 dx ≥ (b− a)ε2 > 0 .

Consequently if f is continuous and 〈f, f〉 = 0, then f = 0 on [0, 1]. Thus
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〈f, g〉 :=

1∫
0

f(x)g(x) dx

is an inner product on F[0,1] = {f : [0, 1] → R | f continuous }. Different inner product
can be defined on F[0,1] by setting

〈f, g〉w :=

1∫
0

f(x)g(x)w(x) dx

for an arbitrary continuous weight function w ∈ F[0,1] that is positive on [0, 1], see Prob-
lem 5.

Inner products define angles and orthogonality in abstract vector spaces V just as the
standard dot products do in Rn and Cn; recall Section 10.1. If both f and g 6= 0 ∈ V and
V is an inner product space with the inner product 〈.., ..〉, then the angle between f and
g is defined with respect to a given inner product 〈.., ..〉 by the formula

cos∠(f, g) := 〈f, g〉

〈f, f〉
1
2 〈g, g〉

1
2

.

And f ∈ V is orthogonal to g ∈ V , or f ⊥ g ∈ V , if 〈f, g〉 = 0 for the inner product
〈.., ..〉 of V . Here 〈f, g〉 may be complex for two functions f and g when V is a complex
vector space. In this case the complex valued cosine function cos(z) is used.

Example 2: (a) In V = F[0,1] with the inner product 〈f, g〉 :=
1∫
0

2f(x)g(x) dx, find the

angle between the two functions f(x) = 1 and g(x) = x ∈ V .
To find the angle we have to evaluate three different inner products: 〈f, g〉 =
1∫
0

2x dx = x2 |
1

0
= 1, 〈f, f〉 =

1∫
0

2 dx = 2x |
1

0
= 2, and 〈g, g〉 =

1∫
0

2x2 dx =

2x3

3 |
1

0
= 2
3 . Therefore cos∠(f, g) =

〈f, g〉

〈f, f〉
1
2 〈g, g〉

1
2

=
1

√
2
√
2
3

=

√
3

2
. And the

angle between f and g has the radian measure of arccos
(√
3
2

)
. Note that the

inner product contains the weight function w(x) = 2.

(b) Show that the two functions h(x) = 1 and k(x) = x− 12 are orthogonal in V of
part (a) with its given inner product.

We evaluate 〈h, k〉 =
1∫
0

2(x− 12) dx =
1∫
0

2x dx−
1∫
0

dx = x2 |
1

0
−x |

1

0
= 1−1 = 0.

(c) Find an orthogonal basis for the subspace span{x, x2} ⊂ F[0,1] with respect to

the inner product 〈f, g〉 :=
1∫
0

f(x)g(x) dx.
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Here we use the modified Gram–Schmidt process of Chapter 10 for the functions
u1 = x and u2 = x

2.

v1 := u1 = x ;

v2 := 〈v1, v1〉u2 − 〈u2, v1〉v1 .

We have 〈v1, v1〉 =
1∫
0

x2 dx = x3

3 |
1

0
= 1
3 and 〈u2, v1〉 =

1∫
0

x3 dx = x4

4 |
1

0
= 1
4 .

Thus v1 = x and v2 =
1
3u2−

1
4v1 =

1
3x
2− 14x are orthogonal in F[0,1] with respect

to the particular inner product. Normalizing the vi with respect to the given

inner product 〈.., ..〉 makes w1 =
1√
〈v1, v1〉

v1 =
√
3 x and w2 =

1√
〈v2, v2〉

v2 =

4
√
5 x2 − 3

√
5 x since 〈v1, v1〉 = 1/3 and 〈v2, v2〉 = 1/(122 · 5). The students

should check this assertion by evaluating 〈v1, v2〉 =
1∫
0

v1(x)v2(x) dx, 〈v1, v1〉,

and 〈v2, v2〉. J

Inner products define vector norms in a natural way.

Proposition 4: If 〈.., ..〉 is an inner product on a real vector space V , then

‖x‖〈..,..〉 := 〈x, x〉
1/2 : V → R

defines a vector norm for every x ∈ V with the following properties:

(1) ‖x‖〈..,..〉 ≥ 0 for all x ∈ V , and ‖x‖〈..,..〉 = 0 ∈ R if and only if x = 0 ∈ V .

(2) ‖αx‖〈..,..〉 = |α|‖x‖〈..,..〉 for all vectors x ∈ V and all scalars α ∈ R.

(3) |〈x, y〉| ≤ ‖x‖〈..,..〉‖y‖〈..,..〉 for all vectors x, y ∈ V .
(Cauchy–Schwarz inequality)

(4) ‖x+ y‖〈..,..〉 ≤ ‖x‖〈..,..〉 + ‖y‖〈..,..〉 for all vectors x, y ∈ V .
(triangle inequality)

J

A vector norm ‖..‖ is called induced by the inner product 〈.., ..〉 if ‖..‖ = 〈.., ..〉1/2 as it is
in Proposition 4. General vector norms without an underlying inner product can, however,
be solely defined by the three norm defining properties (1), (2), and (4) of Proposition 4.
Proofs of both the Cauchy–Schwarz and the triangle inequality for the standard euclidean
norm ‖x‖ =

√
x∗x of Rn or Cn are outlined in Section 10.1 and Problems 23 and 26 in

Section 10.1.P.

Definition 2: A function g(x) : V → R is a vector norm on a real vector space V if it
satisfies the properties (1), (2), and (4) of Proposition 4.
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Example 3: The function g(x) :=
n
max
i=1
{|xi|} : Rn → R is a vector norm on Rn.

To see this we check the three conditions of a vector norm: Clearly g(x) ≥ 0
for all x ∈ Rn, and g(x) = 0 if and only if max |xi| = 0 ∈ R, or if and only
if x = 0 ∈ Rn, establishing property (1). Next g(x) satisfies property (2) since
g(αx) = max{|αxi|} = max{|α||xi|} = |α|max{|xi|} = |α|g(x). Finally, the triangle
inequality |α+ β| ≤ |α|+ |β| for scalars α, β ∈ R helps us prove property (4):

g(x+y) = max{|xi+yi|} ≤ max{|xi|+ |yi|} ≤ max{|xi|}+max{|yi|} = g(x)+g(y) .

Thus g(x) is a vector norm.
In Example 5 we learn that g is not induced by any inner product of Rn. J

A vector norm ‖..‖ measures the length of vectors in V , just as the standard euclidean
norm ‖u‖ :=

√
uTu measures the length of vectors in Rn via the standard dot product.

Example 4: (a) Find the length of the standard unit vector e1 ∈ R2 in terms of the

vector norm that is induced by the inner product 〈x, y〉 = xT
(
10 3
3 1

)
y of

Example 1(a).
We compute

‖e1‖
2
〈..,..〉 = 〈e1, e1〉〈..,..〉 =

(
1 0

)( 10 3
3 1

)(
1
0

)
=
(
1 0

)( 10
3

)
= 10 .

Therefore ‖e1‖〈..,..〉 =
√
10.

(b) Find the norm of the function f(x) = x2 in the function space V of Example
2(a).

We have 〈f, f〉 =
1∫
0

2x4 dx = 2x5

5 |
1

0
= 2
5 , giving f the length, or norm ‖f‖〈..,..〉 =

〈f, f〉1/2 =
√
2
5 .

(c) Find the length of the vector w =


 1
−1
2


 for the norm that is induced by

the inner product 〈x, y〉 := xT


 2 0 00 1 0
0 0 3


 y on R3.

Clearly the matrix


 2 0 00 1 0
0 0 3


 is positive definite as a positive diagonal ma-

trix. Therefore 〈.., ..〉 is an inner product according to Proposition 3. Next we
compute the induced vector norm of w:
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‖w‖2〈..,..〉 = 〈w,w〉 =
(
1 −1 2

) 2 0 00 1 0
0 0 3




 1
−1
2




=
(
1 −1 2

) 2
−1
6


 = 2 + 1 + 12 = 15 ,

or ‖w‖〈..,..〉 =
√
15. Note that in the euclidean norm ‖w‖2 :=

√
wT Iw =

√
wTw =

√
6.

(d) Show that for x =

(
x1
x2

)
∈ R2, the function f(x) =

√
3x21 + 4x1x2 + 3x

2
2 :

R
2 → R is an induced vector norm.

We have f2(x) = 3x21 + 4x1x2 + 3x
2
2 =

(
x1 x2

)( 3 2
2 3

)(
x1
x2

)
=

xT
(
3 2
2 3

)
x; see Example 6 in Section 11.3 for more on quadratic forms

such as f . The matrix A :=

(
3 2
2 3

)
= AT is real symmetric with eigenvalues

that sum to its trace 6 and that multiply to its determinant 9− 4 = 5, accord-
ing to Theorem 9.5. Thus the eigenvalues of A are 5 and 1, making A positive

definite and 〈x, y〉 := xT
(
3 2
2 3

)
y an inner product on R2 due to Proposition

3. This inner product induces f(x) as a norm on R2. J

All inner products ‖..‖〈..,..〉 that are induced by an inner product 〈.., ..〉 satisfy the
parallelogram identity.

Proposition 5: If ‖..‖〈..,..〉 is the induced vector norm for the inner product 〈.., ..〉 of an
arbitrary real vector space V , then the parallelogram identity

1

2

(
‖x+ y‖2〈..,..〉 + ‖x− y‖

2
〈..,..〉

)
= ‖x‖2〈..,..〉 + ‖y‖

2
〈..,..〉

holds for all x, y ∈ V . J

The parallelogram identity states that the sum of the squared lengths of the two sides x
and y of any parallelogram equals the average of the lengths of its two diagonals x+y and
x− y squared for any induced vector norm.

Proof: To prove the parallelogram identity in a real vector space we expand its left hand
side by using the properties of the norm inducing inner product.



W-60 Appendix D:

1

2

(
‖x+ y‖2〈..,..〉 + ‖x− y‖

2
〈..,..〉

)
=
1

2
(〈x+ y, x+ y〉+ 〈x− y, x− y〉)

=
1

2
〈x, x〉+ 〈x, y〉+

1

2
〈y, y〉+

1

2
〈x, x〉 − 〈x, y〉+

1

2
〈y, y〉

= 〈x, x〉+ 〈y, y〉 = ‖x‖2〈..,..〉 + ‖y‖
2
〈..,..〉 .

Example 5: Themaximum vector norm ‖x‖∞ :=
n
max
i=1
{|xi|} of Rn from Example 3 is

not induced by any inner product of Rn since it does not satisfy the parallelogram
identity.

For example, in R2 we have for x =

(
1
1

)
and y =

(
0
1

)
that ‖x‖∞ = ‖y‖∞ =

1 = ‖x− y‖∞ and ‖x+ y‖∞ = 2 since x+ y =

(
1
2

)
and x− y =

(
1
0

)
. Thus

1

2

(
‖x+ y‖2∞ + ‖x− y‖

2
∞

)
=
1

2
(4 + 1) =

5

2
6= 2 = 1 + 1 = ‖x‖2∞ + ‖y‖

2
∞ .

J

Proposition 4 makes every inner product space a normed vector space. However, in
Example 5 and more generally in functional analysis, it has been shown that not all
vector norms derive from inner products. To complete our elementary explorations of
inner product spaces and normed vector spaces, we mention without proof that all normed
vector spaces whose norm ‖..‖ satisfies the parallelogram identity of Proposition 5 can be
made into an inner product space by setting

〈x, y〉 :=
‖x+ y‖2 − ‖x‖2 − ‖y‖2

2
.

Moreover, the parallelogram identity can be generalized to complex vector spaces, but this
is beyond the scope of this appendix and elementary linear algebra.

A.D.P Problems

1. Show that the function f(x, y) = 2x1y1 −
x2y2+4x3y3+x2y3 : R

3×R3 → R is a bilin-
ear function for x, y ∈ R3. Is this function an
inner product on R3? Does f induce a norm
on R3?

2. (a) Show that 〈x, y〉A := xTAy is a bilinear
function for every real n by n matrix A.

(b) Show that if P = PT ∈ Rn,n is posi-
tive definite, then P can be expressed as

P = ATA for some nonsingular real ma-
trix A.
(Hint: Use Chapter 11: Diagonalize P or-
thogonally as UTPU = D =

√
D
√
D for

a positive diagonal matrix D and extract
P from this matrix equation.)

(c) Show: If P = PT ∈ Rn,n is positive def-
inite, then 〈x, y〉P := xTPy is an inner
product on Rn.
(Hint: Use part (b).)
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3. Test whether the following functions are (a)
bilinear and (b) inner products on their re-
spective spaces:

(1) h(x, y) = xT


 0 0 0
0 4 2
0 1 1


 y for x, y ∈

R3.

(2) k(x, y) = xT
(
4 2
1 1

)
y for x, y ∈ R2.

(3) `(x, y) = xT
(
4 2
1 −1

)
y for x, y ∈ R2.

(4) m(x, y) = xT
(
4 1
1 1

)
y for x, y ∈ R2.

(5) n(x, y) = 2x21 − 3x1y1 + 4y
2
1 on R

2.
(6) p(x, y) = −x1y2 on R2.

4. (a) Find the length of the two vec-
tors x =

(
1 ... 1

)
and y =(

1 0 ... 0 −1
)
∈ Rn for both the

standard euclidean vector norm and for
the maximum vector norm.

(b) Find the cosine of the angle between x
and y ∈ Rn in part (a) for
(1) the standard inner product and the

(2) inner product xT



3 1 0

1
. . .

. . .

. . .
. . . 1

0 1 3


 y

of Rn.

5. If w(x) > 0 is continuous on the
interval [0, 1], prove that 〈f, g〉w :=
1∫
0

f(x)g(x)w(x) dx is an inner product on

the space of continuous functions F[0,1].

6. Construct a positive and continuous weight
function w(x) so that the two functions
f(x) = 1 and g(x) = x ∈ F[0,1] become or-
thogonal with respect to the inner product

〈f, g〉w :=
1∫
0

f(x)g(x)w(x) dx, if possible.

7. Construct a positive and continuous weight
function w(x) so that the two functions
f(x) = 1 and g(x) = x − 1

2 ∈ F[0,1] are not
orthogonal with respect to the inner product

〈f, g〉w :=
1∫
0

f(x)g(x)w(x) dx, if possible.

8. Orthogonalize the two functions f(x) =
1 and g(x) = x ∈ F[0,1] with respect
to the weighted inner product 〈f, g〉w :=
1∫
0

f(x)g(x)x2 dx.

9. Orthogonalize the three functions f(x) =
1, g(x) = x, and h(x) = x2 in F[0,1]
with respect to the inner product 〈f, g〉 :=
1∫
0

f(x)g(x) dx.

10. Show that the standard euclidean vector
norm ‖x‖ :=

√
xTx for x ∈ Rn satisfies the

parallelogram identity.

11. Show that ‖x‖1 :=
n∑
i=1

|xi| is a vector norm

on Rn. Is it induced by an inner product or
not?

12. Examine whether the vector norm ‖x‖1 of
R
n in the previous problem is an induced
vector norm.

13. (a) Assume that the norm ‖..‖ is an induced
norm on V . If ‖u‖ = 4, ‖u + v‖ = 6,
and ‖u− v‖ = 5, what is the length of v?
What is the distance between u and v?

(b) Repeat part (a) for ‖u‖ = 7.

14. Let V be a real inner product space. Let ‖..‖
be the vector norm that is induced by the
inner product 〈.., ..〉 on V . Show that

〈x, y〉 =
‖x+ y‖2 − ‖x− y‖2

4

holds for all x, y ∈ V .

15. Let {u1, ..., uk} be an orthonormal set of
vectors in an inner product space of fi-
nite dimension n ≥ k. Prove that x ∈
span{u1, ..., uk} if and only if ‖x‖2 =
|〈x, u1〉|2 + ... + |〈x, uk〉|2 for the induced
vector norm.

16. (a) Does 〈x, y〉 := x∗
(
2 −i
i 1

)
y define an

inner product on C2?

(b) Repeat part (a) for 〈x, y〉 :=

x∗
(
i i
i 1

)
y.

(c) Repeat part (a) for 〈x, y〉 := x1y1−2x2y2.
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(d) Are any of the functions in parts (a)
through (c) bilinear?

17. In a normed vector space V we define the
distance function between any two vectors
as d(x, y) := ‖x− y‖. Show that

(a) d(x, y) = d(y, x),

(b) d(x, y) ≤ d(x, z)+ d(z, y) for all x, y, and
z ∈ V .

(c) Evaluate the distance between
x =

(
1 −2 4 −3

)
and y =(

0 2 −1 −3
)
∈ R4 for the eu-

clidean norm and the maximum norm.

18. (a) Assume that 〈x, y〉H := xTHx and
〈x, y〉K := xTKx are two bilinear forms
on Rn with H and K both n by n and
positive definite.
If 〈x, y〉H = 〈x, y〉K for all x, y ∈ Rn,
show that H = K as matrices.

(b) Show: If xTAy = 0 for a real symmetric
matrix A and all vectors x, y ∈ Rn, then
A = On.

19. Let x =
(
2− i 1 + i 3

)
and y =(

i 2 −i
)
∈ C3. For the standard eu-

clidean vector norm of C3, compute

(a) ‖x‖ and ‖y‖, (b) the distance d(x, y),
(c) ‖y − x‖, (d) ‖x+ y‖2, and
(e) the angle between x and y ∈ C3.

20. In F[0,1] with the standard inner prod-

uct 〈f, g〉 :=
1∫
0

f(x)g(x) dx, determine the

‘length’ of the two functions f(x) = 3x − 2
and g(x) = x2 + x ∈ F[0,1], as well as the
cosine of the angle between f and g.

21. Consider the function f(p, q) : Pn×Pn → R
defined by f(p, q) = p(1)q(1) + 2p(2)q(2) +
3p(3)q(3), where Pn denotes the real variable
polynomials of degree not exceeding n.

(a) Show that f is bilinear on Pn × Pn.

(b) Show that f induces a norm ‖..‖ on Pm
for all m ≤ 2.

(c) Show that f does not induce a norm on
any Pm if m > 2.

(d) Find ‖2x2 − 3x‖ and ‖1− x2 − x3 + 4x‖
in the vector norm that is induced by f .

(e) Write down a formula for the induced
norm ‖p‖ and p ∈ P2.
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