Immigration, International Capital Flows, and Long Run Income Distribution In Canada

DON P. CLARK AND HENRY THOMPSON

I. Introduction

One of the most controversial issues regarding the effects of immigration and capital flows on a recipient country concerns the income distributional impacts of international factor migration. A survey of theoretical international migration impacts can be found in the literature [Greenwood, 1983]. Although governments recognize that factor movement policies designed to achieve certain national objectives will raise returns to some domestic productive factors and lower returns to others, little is known about the exact pattern of induced factor reward changes.

A five sector general equilibrium model is used to derive the long-run income distributional consequences of immigration and capital flows in Canada. This is achieved through identification of factor friendship patterns. Two factors are natural friends (natural enemies) if an exogenous increase in the supply of one increases (reduces) the other’s payment [Ruffin, 1981]. Factor friendship patterns will aid in identifying long run winners and losers under a variety of factor movement policies.

Canada is an ideal recipient country for this study since its immigration is carefully controlled and extremely selective. Factor movement policies are well-documented [DeVoretz and Maki, 1980, 1983; Parai, 1975; Hawkins, 1972, 1974]. Policy changes since 1967 have increasingly reflected manpower needs of the country, with immigration continuing to serve as an important source of labor skills in short supply. Immigrants are heavily concentrated in professional and technical occupations, while immigration of unskilled labor is discouraged.1

II. Model

A number of authors [Jones, 1965; Chang, 1979; Takayama, 1982] have developed the general equilibrium model utilized in this study.2 Let \(w \) represent the vector of endogenous factor payments and \(v \) represent exogenous factor endowments. With constant returns to scale, non-joint production results in endogenous outputs \(x \), determined by world prices \(p \) which are exogenous for a price taking economy.

Firms minimize cost by adjusting unit factor inputs \((w) \), insuring conditions of full employment and competitive pricing hold. This general equilibrium setting is summarized by the matrix expression

\[
\begin{bmatrix}
S & A \\
A' & O
\end{bmatrix}
\begin{bmatrix}
dw \\
dx
\end{bmatrix}
=
\begin{bmatrix}
dv \\
dp
\end{bmatrix}
\]

Factor inputs are displayed in the \(A \) matrix; \(A' \) represents its transpose. Substitution terms in the symmetric matrix \(S \) describe aggregate adjustment in factor inputs with changing factor payments. The system determinant \(D \),

1Although other major receiving nations relate immigration policy to manpower policy, the Canadian situation is unique. Canadian immigration policy is the recognized “servant” of manpower policy. Immigration programs are carried out by the Department of Manpower and Immigration [Hawkins, 1972, pp. 338-39].

2A comprehensive survey of research on applied general equilibrium trade models is presented by Shoven and Whalley [1984]. Models reviewed display considerable differences in dimensionality, parameter specification, other underlying assumptions, and inclusion of policy regimes. All of these studies have the goal of assessing aggregate welfare effects of trade policy. The present study uses a simple general equilibrium production model to evaluate long run comparative static results in order to arrive at policy conclusions. No assumptions regarding values of key parameters are made, as in the other studies mentioned. Since labor is disaggregated into several groups, the focus here is on distributional rather than aggregate welfare consequences of policy.
has the sign \((-1)^r\) r, where \(r\) is the number of factors [Chang, 1979].

Comparative static effects of changing factor endowments upon factor payments, the \(\partial w_h / \partial v_i\) results, are represented by \(w_{ik}\). Due to symmetry, \(w_{ik} = w_{ki}\). The two factors \(h\) and \(k\) are called natural friends if \(w_{hk} > 0\), and are called natural enemies if \(w_{hk} < 0\).

Labor migration or capital flow will affect factor payments, except in well-known “even” cases, where the number of factors \(r\) equals the number of goods \(n\). It is known that \(w_{ii} < 0\) for every factor \(i\), where \(r > n\). Note that with prices unchanged at world levels, real income for owners of a factor moves in the same direction as the factor payment.

Consider cofactors of the \(w_{ik}\) migration partial derivatives, \(W_{ik} \equiv D w_{ik}\). Given a model with five productive sectors, utilizing six factors leads to relatively simple solutions of the \(W_{ik}\)'s. Substitution terms play no role in determining their values, as is always the case with one more factor than good.

Notice that cofactor \(W_{ik}\) will have the same sign as \(w_{ik}\), since \(D\) is positive. It can readily be shown using Cramer's rule that

\[
W_{ik} = (-1)^{k+i} A_{ik} A_{ii} , \tag{1}
\]

where \(A\) represents the determinant of \(A\) with row \(i\) deleted.\(^3\)

Solving for factor inputs requires separating factor payments from factor shares, which is difficult for capital. Equivalent results can be obtained, however, from direct factor shares, \(f \equiv w'd\). Letting \(w_{ik}\) represent the product of all factor payments except \(w_i\), and \(F\) the matrix of factor share terms, one can show that

\[
f = w_{ik} A . \tag{2}
\]

Solutions are expressed using (1), (2), and

\[
V_{ik} \equiv w_{ik} w_{ik} w_{ik} . \tag{3}
\]

Results acquire more meaning when transformed into relative elasticities. Let \(E_{ik}\) represent the elasticity of \(w_{ik}\) with respect to \(v_i\), and \(e_{ik}\) that elasticity relative to \(E_{ik}\). That is, \(E_{ik} = (v_i / w_{ik})w_{ik}\) and \(e_{ik} = E_{ik} / E_{ik}\). If factors \(h\) and \(k\) are friends, \(e_{ik}\) will be negative, since \(E_{ik} < 0\). It follows from (3) that

\[
e_{ik} = (Y_i / Y_k) (V_{ik} / V_{kk}) , \tag{4}
\]

where \(Y_i\) represents total income of factor \(i\), \(Y_k\) \(w_i v_i\). Relative elasticities are calculated according to (4) from national income statistics.\(^5\)

III. Methodology and Data

Factor shares in national income are calculated from national income statistics reported in a United Nations [1982] publication. National income components include compensation of employees and net operating surplus. The latter is comprised of four property incomes: corporate profits, income of unincorporated enterprises, rental income, and net profits. Together, these components constitute claims of workers and capital owners responsible for producing each sector's output.\(^6\)

Figures on compensation of employees by sector are reported in the United Nations [1982] publication. Total employee compensation is allocated between each sector's occupational groupings by combining data on average income from wages and salaries by

\(^3\)Estimating absolute elasticities of \(w_{ik}\) with respect to \(v_k\) would require a complete model specification, including substitution terms. Alternatively, an econometric estimate of only one absolute elasticity would lead to a solution of the entire matrix of solutions derived in this paper.

\(^4\)Reported estimates will be of a comparative static nature, based on a complete general equilibrium model. This differs from the usual econometrically obtained elasticities, which involve partial equilibrium modeling.

\(^5\)Relative friendship elasticities are calculated from 1970 Canadian factor shares. Relying upon data from one point in time does not limit usefulness of results, since relative factor shares tend to remain constant for long time periods. Examination of Canadian relative factor shares in a United Nations [1982] publication confirms this.

\(^6\)See the Appendix for proofs of (1), (2), and (4). General properties of these results are developed in the literature [Thompson, 1984], where friendship is shown to be intransitive.
occupation and sector from Statistics Canada [1975], with figures on the number of workers by occupation and industry from an International Labor Organization [1980] publication. Five occupational groups are identified: professional, technical, administrative, and managerial (L1); clerical and sales (L2); service (L3); agriculture, forestry, fishing, and hunting (L4); and production and transport equipment operators (L5).

Net operating surplus is derived from United Nations [1982] figures on Gross Domestic Product and employee compensation by sector. Gross Domestic Product is comprised of net operating surplus, employee compensation, capital consumption allowance and indirect taxes. Since figures on capital consumption allowance and indirect taxes are not broken down by sector, it is necessary to allocate these charges to each sector on the basis of corresponding rates in the United States. Net operating surplus is then calculated as the difference between Gross Domestic Product and its remaining three components: employee compensation, capital consumption allowance, and indirect taxes.7

Income payments to the five labor groups and capital owners are aggregated to form five sectors: agriculture, manufacturing, construction, utilities, and other services.8 Dividing payments to each factor by each sector’s contribution to national income yields the 1970 Canadian factor share (F) matrix, presented in the Appendix.

IV. Results

Relative friendship elasticities (ε_{MA}) for Canada are presented in Table 1. Each column identifies effects of a change in the endowment of one factor upon payment to each factor.9 A positive (negative) value for an elasticity indicates that factors are enemies (friends). An increase in the supply of one factor raises (reduces) payments to its friends (enemies). Relative strengths of these relationships are reflected by magnitudes of the ε_{MA} terms.

Table 1
Relative Friendship Elasticities (ε_{MA})

<table>
<thead>
<tr>
<th>Endowment change</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paymen</td>
<td>1.057</td>
<td>-0.657</td>
<td>-0.823</td>
<td>-0.303</td>
<td>-0.345</td>
<td>1.069</td>
</tr>
<tr>
<td>ment</td>
<td>0.910</td>
<td>0.566</td>
<td>0.709</td>
<td>0.261</td>
<td>0.297</td>
<td>-0.920</td>
</tr>
<tr>
<td>L3</td>
<td>-3.309</td>
<td>2.058</td>
<td>2.578</td>
<td>0.949</td>
<td>1.080</td>
<td>-3.347</td>
</tr>
<tr>
<td>L4</td>
<td>-2.903</td>
<td>1.805</td>
<td>2.261</td>
<td>0.833</td>
<td>0.948</td>
<td>-2.936</td>
</tr>
<tr>
<td>cange</td>
<td>-0.367</td>
<td>0.228</td>
<td>0.286</td>
<td>0.105</td>
<td>0.120</td>
<td>-0.371</td>
</tr>
<tr>
<td>L5</td>
<td>0.989</td>
<td>-0.615</td>
<td>-0.770</td>
<td>-0.284</td>
<td>-0.323</td>
<td>1</td>
</tr>
</tbody>
</table>

*Note: L1 = Professional, technical, managerial, and administrative
L2 = Clerical and sales
L3 = Service
L4 = Agricultural, forestry, fishing, and hunting
L5 = Production and transport equipment operators
K = Physical capital

*Dividing the elasticity in each column by the own elasticity (each of the ε_{MA} by ε_{MK}) would standardize elasticities for each endowment change, but a comparison across columns would be impossible.

7Natural resources play a crucial role in the Canadian economy. The present study includes these with productive capital for several reasons. First, national income statistics do not identify natural resource factor shares, and calculating these would involve arbitrary divisions of the capital stock. Second, natural resources are sector specific. Finally, natural resources as a productive factor are not mobile internationally. A discussion of these and other empirical problems associated with including natural resources as a distinct productive factor is in Posner [1975, pp. 11-2].

8An attempt was made to include as many factors and sectors in the model as possible. Divisions of occupation among labor groups and industries among sectors were dictated by the correspondence between labor and industry classifications used by the various data sources.
Identifying which factors gain or lose with immigration of L_1 is of particular interest, since Canadian policy has placed heavy emphasis on encouraging immigration of this labor group. Each factor, including L_1, is its own enemy. Results show capital and L_1 are enemies as well. Both of these factors are friends of all other labor groups.

When L_1 immigrates, its wage and the capital return fall, while payments to all other labor groups rise. A comparison of e_{AM} magnitudes indicates that service workers (L_3) and agricultural workers (L_4) benefit most when L_1 immigrates. This tendency for L_1 immigration to raise returns to other labor groups may help explain why the Canadian public has shown little interest in immigration policy [Hawkins, 1974, p. 142]. Among capital owners who stand to lose from L_1 immigration is the federal government, which, through various crown corporations, has holdings in a number of industries.

These results mean that productive capital inflow would alter income distribution in the same pattern as L_1 immigration. Recently, the Canadian government has proposed easing controls on foreign investment in order to attract the foreign capital needed to create more jobs. Proposed legislation will replace the 11-year-old Foreign Investment Review Act which limited direct foreign investments in Canada. Canadians now appear to be more receptive to foreign investments.

While results indicate that all labor groups but L_1 will gain from this easing of controls on foreign investment, relative e_{AM} magnitudes mean that service workers (L_3) and agricultural workers (L_4) will benefit most. Reducing the supply of a factor lowers (raises) payments to the factor's friends (enemies). Previous policy, intended to limit direct investment inflows and encourage direct investments abroad, had a favorable impact on payments to skilled L_1 and capital owners in Canada, while lowering returns to the other labor groups.

Labor groups L_2 through L_5 are found to be enemies. Each of these groups is a friend of both L_1 and capital. Increasing the supply of any one of the labor groups L_2 through L_5 would lower payments to each of these, but raise returns to L_1 and capital. Group L_3 has the largest own effect, and L_5 the smallest. Effects of changing the supply of L_2 and L_3 on L_3 and L_4 are particularly large. Magnitudes of elasticities for L_2 and L_3 migration are roughly two-thirds the size of L_1 migration and capital elasticities, and twice the size of L_4 and L_5 elasticities.

V. Conclusion

This study derives long-run income distributional impacts of immigration and capital flows in a general equilibrium model of Canada. While each factor is its own enemy, results indicate that capital and skilled professional labor are enemies as well. Both of these productive inputs are friends of other labor groups, which are common enemies. Factor friendship patterns are useful in evaluating income distributional impacts of a variety of policies designed to influence the international flow of productive labor and capital.
APPENDIX

1. To prove (1), consider this summary of the model’s algebraic statement:

\[
\begin{bmatrix}
S_{sd} & A_{ed} \\
A'_{sd} & O_{sd}
\end{bmatrix}
\begin{bmatrix}
dw \\
dx
\end{bmatrix} =
\begin{bmatrix}
dv \\
dp
\end{bmatrix}
\]

Let all exogenous differentials be zero except for one endowment change, and divide the system by that \(dv_k\) to find

\[
\begin{bmatrix}
S & A \\
A' & O
\end{bmatrix}
\begin{bmatrix}
\partial w / \partial v_k \\
\partial x / \partial v_k
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

with 1 in position \(k\) of the exogenous vector.

Using Cramer’s rule to solve for \(W_{sk}\), the resulting cofactor has 1 in position \(hk\). After deleting column \(h\) and row \(k\), multiply the determinant of the remaining 10x10 submatrix by \((-1)^{hk+k+1}\). The result can be stated

\[
W_{sk} = (-1)^{hk+k+1}
\begin{vmatrix}
S_k & A_k \\
A'^h & O
\end{vmatrix},
\]

where \(M_k(M^h)\) represents matrix \(M\) with row \(k\) (column \(h\)) deleted. Expanding along the last row of this determinant, all substitution terms disappear. What remains can be rearranged to find

\[
W_{sk} = (-1)^{hk+k+1} A'^h A_k = (-1)^{hk+k+1} A_k A .
\]

2. To see the relation between \(F\) and \(A\) in (2), remember that multiplying any row of a matrix by a constant changes the value of its determinant by its product with that constant. Row \(i\) of \(A_k\) is multiplied by \(w_i\), for all \(i\) except \(k\). Hence, \(F = w_A A\).

3. In proving (4), note that by definition, \(E_{sk} / E_{sk} = [(v_k / w_k) w_m] / [(v_k / w_k) w_{mk}]\), which reduces readily to \((Y_k / Y_k) (w_k w_m / w_k w_{mk})\). Also, \(V_{sk} / V_{sk} = w_k w_{mk} / w_m w_{mk}\), so that \(E_{sk} / E_{sk} = (Y_k / Y_k) (V_{sk} / V_{sk})\). Similarly, \(E_{sk} / E_{sk} = w_k w_{mk} / w_k w_{mk}\), so that \(E_{sk} / E_{sk} = (Y_k / Y_k) (V_{sk} / V_{sk})\). Thus, \(e_{sk} = (E_{sk} / E_{sk}) (E_{sk} / E_{sk}) = (Y_k / Y_k) (V_{sk} / V_{sk}) (V_{sk} / V_{sk})\).

4. The calculated factor share matrix is

\[
F = \begin{bmatrix}
.046 & .201 & .130 & .170 & .328 \\
.021 & .126 & .056 & .177 & .241 \\
.003 & .017 & .008 & .023 & .104 \\
.219 & .486 & .008 & .008 & .004 \\
.064 & .162 & .609 & .394 & .067 \\
.647 & .189 & .228 & .256 & .
\end{bmatrix}
\]

where \(A = \) agriculture, \(M = \) manufacturing, \(C = \) construction, \(U = \) utilities, and \(S = \) other services.
REFERENCES

TABLE OF CONTENTS

VOLUME XIV
DECEMBER 1986
NUMBER 4

ARTICLES

The Demand for Heating Fuels: A Disaggregated Modeling Approach
Rodney D. Green, Arlease G. Salley, R. Gail Grass, and Anthony A. Osei
1

Quality Change and the Demand for Hospital Care:
An Econometric Reexamination
Said Atri and Kajal Lahiri
15

Immigration, International Capital Flows, and Long-Run Income:
Distribution in Canada
Henry Thompson and Don P. Clark
24

Inflation and Risk in Naval Shipbuilding Contracts
Lloyd Dwayne Barney, Jr.
30

Marshallian and Schumpeterian Theories of Economic Evolution:
Gradualism Versus Punctualism
Akhtiar A. Awan
37

The Rates of Return on Investment in Education in Michigan
Hamid Beladi, Lawrence P. Brunner, and Habib A. Zuberi
50

Money-Income Causality:
Further Empirical Evidence
Basudeb Biswas and Peter J. Saunders
65

The Impact of Reserve Requirements on Free Bank Failures
Andrew J. Economopoulos
76

The October 1979 Federal Reserve Policy Shift: An Analysis Using Variance Decomposition
Joe Brocato
85

The Effect of Proportional Profit Tax on the Level of Output, Under Uncertainty
Iraj Fooladi
90

ANTHOLOGIES

Rate Schedules and the Law of Demand
C. Vaughan Jones
96

On Estimating the Variance of Permanent Income
Robert G. James
97

The Impact of Income Redistribution on Aggregate Consumption
Abbas Pourgerami, Felipe Perez, and Namatie Traore
98

A Note on Optimal Hedging Under Price and Output Uncertainty
Keehwan Park
99

Insurance Stock Returns and Unanticipated Money
Michael Nieswiadomy and Kenneth L. Smith
100

Export Demand for Indian Jute Goods
Dipendra Sinha
102

Flexible Exchange Rates and Monetary Policy
Ching-Chong Lai
103

Gold Investing Behavior Over the Phases of the Business Cycle
Malek Lashgari
104

Labor Productivity in the Hotel and Catering Sector
A. R. Thurik and W. H. M. Van Der Hoeven
105

Demographic Trends and Saving Propensities: A Revisit with Life Cycle Theory
Emiel W. Owens
106

BOOK REVIEW

Political Economy: A Contemporary Perspective
by
Jack E. Adams
107