The Effect of Charge Limits on Particle Charge Distributions in Nanodusty Plasmas

Romain Le Picard and Steven L. Girshick

Dept. of Mechanical Engineering University of Minnesota, Minneapolis, MN 55455, USA

Acknowledgments

National Science Foundation Department of Energy Plasma Science Center Minnesota Supercomputing Institute

Outline

- Introduction
- Particle charge limits
- Particle charge distributions
- Analytical model for charge distributions with charge limits
- The particle-charge-limited regime
- Conclusions

Motivation

The amount of charge a dust particle can hold is limited, but this has never been taken into account in previous models of charge distributions in dusty plasmas.

Introduction

• Particle charge fluctuates due to discrete charging events

Causes particles to exhibit a **charge distribution**

Maximum number of electrons that can coexist on a given particle

Electron field emission

Draine and Sutin, Astrophysical Journal, 1987

$$q_{\rm lim} = 1 + 0.7 \frac{R^2}{1nm^2}$$

Effective electron affinity

Based on Boufendi, Stoffels, and Stoffels, 1999

Bulk electron affinity

$$\overrightarrow{q_{\text{lim}}} = A_{\infty} \frac{4\pi\varepsilon_0 R}{e^2} + \frac{3}{8}$$

Rayleigh limit

Rayleigh, Phil. Mag., 1882

$$q_{\rm lim} = 8\pi \sqrt{\varepsilon_0 \gamma} R^{3/2}$$
 Surface tension

Maximum number of electrons that can coexist on a given particle

Electron field emission

Draine and Sutin, Astrophysical Journal, 1987

• Solid silicon particles ($A_{\infty} = 4.05 \text{ eV}$ and $\gamma \ge 10^{-1} \text{ N/m}$)

• Solid silicon particles ($A_{\infty} = 4.05 \text{ eV}$ and $\gamma > 10^{-1} \text{ N/m}$)

- Solid silicon particles (A_{∞} = 4.05 eV and γ > 10⁻¹ N/m)
- Rayleigh limit is unimportant for **solid particles**

- Solid silicon particles ($A_{\infty} = 4.05 \text{ eV}$ and $\gamma > 10^{-1} \text{ N/m}$)
- Rayleigh limit is unimportant for **solid particles**

What are effects of charge limits on particle charge distributions?

Particle charge distribution

 Analytical expression for steady-state particle charge distribution from Matsoukas and Russell (1995)

Does not take charge limits into account

Particle charge distribution

Particle charge distribution

Analytical expression

- Modifies distribution w/o charge limits by introducing correction factor
- Derivation: manuscript in preparation

$$n^*(q) \rightarrow n(q)$$
 as $q'_{\lim} \rightarrow \infty$

Analytical expression

- Charge limit treated as free parameter
- Excellent agreement between new analytical expression & Monte Carlo simulations

- Charge limit treated as free parameter
- Excellent agreement for average charge
- Discrepancies in standard deviation at very small charge limit

- Charge limit treated as free parameter
- Excellent agreement for average charge
- Discrepancies in standard deviation at very small charge limit

- Charge limit treated as free parameter
- Excellent agreement for average charge
- Discrepancies in standard deviation at very small charge limit

- Charge limit treated as free parameter
- Excellent agreement for average charge
- Discrepancies in standard deviation at very small charge limit

Electron-to-ion density ratio

- Dust particles deplete electrons
- Silicon nanoparticles of 10-nm diameter
- Charge limit = 14

Electron-to-ion density ratio

- Dust particles deplete electrons
- Silicon nanoparticles of 10-nm diameter
- Charge limit = 14

Electron-to-ion density ratio

- Dust particles deplete electrons
- Silicon nanoparticles of 10-nm diameter
- Charge limit = 14

Without charge limit

 $n_{e}/n_{i}=1$

With charge limit

Criterion for particle-charge-limited regime

Depends on plasma parameters and charge limit

Criterion for particle-charge-limited regime

Depends on plasma parameters and charge limit

Conclusions

- Developed new analytical expression for stationary charge distributions accounting for particle charge limits
- Excellent agreement with Monte Carlo charging model
- Developed criterion for whether one is in the particle-charge-limited regime