

Electric charge and dipole of dust aggregates in the presence of ion flow

Razie Yousefi, Lorin S. Matthews, and Truell W. Hyde

Center for Astrophysics, Space Physics, and Engineering Research Baylor University, Waco, Texas

Outline

- Dusty plasma?
- Dust electric potential
- Charging of the dust: OML theory + ion flow
- Numerical model
- Results
- Conclusions

Dusty Plasma

~ 99% of the visible matter in the universe is Plasma. The rest is Dust

Dusty Plasmas can be found in:

Galaxies Interstellar clouds Stellar winds Protoplanetary disks

Industry Laboratory

Dust electric potential

$$\varphi_{q} = \frac{q_{0}}{4\pi\varepsilon_{0}r} \frac{\exp\left(-k\left(r-a\right)\right)}{\left(1+ka\right)}$$
$$\varphi_{p} = \frac{p_{0}\cos\theta}{4\pi\varepsilon_{0}r^{2}} \exp\left(-k\left(r-a\right)\right) \frac{3\left(1+kr\right)}{k^{2}a^{2}+3ka+3}$$

 q_0 : Charge

 p_0 : dipole moment

 $k: 1/\lambda_D$

 ${\mathcal A}\,$: radius of the dust

 θ : Polar angle

Charging of the dust

Collection of plasma particles

In the presence of ion flow

$$f_{i}(v_{i}) = n_{i} \left(\frac{m_{i}}{2\pi k_{B}T_{i}}\right)^{3/2} \exp\left(\frac{-m_{i}(v_{i}-v_{0i})^{2}}{2k_{B}T_{i}}\right)$$

Sum currents to the dust to derive equilibrium charge

$$\frac{dQ}{dt} = \sum_{j} J_{j} (V_{s})$$

Numerical model

• Finds equilibrium charge,

$$\frac{dQ}{dt} = \sum_{j} J_{j} (V_{s}) = 0$$

Each sphere is divided to a uniform distribution of equal patches.

On each patch, electrons and ions collide with the surface of the dust and stick at the point of contact.

Numerical model

• Finds equilibrium charge,

$$\frac{dQ}{dt} = \sum_{j} J_{j} (V_{s}) = 0$$

Line of sight approximation OML_LOS: All the directions which are blocked by other monomers in an aggregate are eliminated from calculation

Single particle

Single particle

lon flow vel. = 0

Q = 2.17e+4 e P ~ 0 Cm Ion flow vel. = 0.5 Cs

Q = 2.30e+4 e P ~ Pz = 2.7e-21 Cm

Q = 2.44e+4 e P ~ Pz = 5.90e-21 Cm

Single particle

CASPER×

equilibrium charge at different flow velocity

charge at different flow velocity; previous calculation :

Phys. Plasmas 19, 123703 (2012);

Physics-Uspekhi 47, (5) 447-492 (2004);

lon flow vel. (C_s)	$Q_{{\scriptscriptstyle Top}}$ (e)	$Q_{\it Lower}$ (e) ~	fo
0	2.05e+4	2.05e+4	
0.5	2.18e+4	2.05e+4	
1	2.10e+4	2.05e+4	
1.5	2.31e+4	2.05e+4	

Two particle chain formed in the sheath of RF discharge plasma

Dust aggregate

Dust aggregate with irregular shape consisting of spherical monomers

lon flow vel. = 1 Cs

Two particles: comparison with Experiment (I)

Data collected in a RF discharge plasma

Dipole_charge interaction

· CASPER ×

• Total forces acting on the lower particle (P1) in the coordinate system placed on top particle (P2):

$$[F_{tot,1} = Q_1 (E_{Q_2} + E_{p_2})]_x$$

Where drag forces are ignored and electric field (E) is derived from screened electric potential.

- From field equation in the horizontal direction:
 - $\lambda_D \sim 0.05 \text{ mm} \sim 10 \text{R}$ Q1 = -4.0e-15 C P = Pz = 6.1e-21 Cm $\lambda_D = 2.5 \text{ mm} \sim 550 \text{R}$ Q1 = -2.1e-15 C P = Pz = 6.6e-20 Cm

In agreement with the numerical model

Conclusion:

A numerical model is presented which:

- Shows that the electric dipoles are formed on the surface of the non-conducting dust as a result of ion flow.
- Calculates the electric charge and dipole of a particle distribution and dust aggregates in a flowing plasma.
- For particle chain, in a range of ion flow velocities, the lower particle charge is less than top particle charge which is in agreement with the previous numerical and experimental calculations.
- It is shown that dipole charge interaction could be a candidate for explaining the attractive force between charged particles in a flowing plasma.

Thanks for your attention

Questions??..