

PlasmaLab/EKOPlasma – The next laboratory for complex plasma research on the International Space Station

C. A. Knapek

DLR German Aerospace Center, Research Group Complex Plasmas

14th Workshop on the Physics of Dusty Plasmas, 29. May 2015, Auburn

Team:

DLR Wessling		JIHT Moscow	University Auburn
C. A. Knapek	A. Börngen	A. M. Lipaev	U. Konopka
D. P. Mohr	S. Peralta Friedburg	V. Naumkin	
P. Huber	J. G. Prell	V. I. Molotkov	
H. M. Thomas	T. C. Hagl		

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

Complex Plasma experiments on the ISS

IMPF: International Microgravity Plasma Facility

IMPACT: International Multi-user Plasma, Atmospheric and Cosmic dust twin laboratory

 \Rightarrow PlasmaLab orginates from IMPACT

PlasmaLab/EKOPlasma

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- continuation of the succesful Russian (RAS-Joint Institute for High Temperatures) / German (DLR-Research Group Complex Plasma, former MPE) cooperation
- next generation lab for the Russian Module after PK-4 on Columbus: EKOPlasma (<u>Experiment KO</u>mplex <u>Plasma</u>)

PlasmaLab/EKOPlasma

- continuation of the succesful Russian (RAS-Joint Institute for High Temperatures) / German (DLR-Research Group Complex Plasma, former MPE) cooperation
- next generation lab for the Russian Module after PK-4 on Columbus: EKOPlasma (<u>Experiment KO</u>mplex <u>Plasma</u>)

Technological Goals

- expanding the accessible parameter range by orders of magnitudes
- independent control of plasma parameters
- utilization of new technologies, eg. 3D particle diagnostics, high speed recording, ...

 \Rightarrow provide experimental platform for a wide range of scientific topics in the field of complex plasmas:

phase transitions, phase separation, onset of turbulence, waves, ...

The Zyflex Chamber - Design

Material:	Aluminium
Height:	250 mm
Diameter:	270 mm
Weight:	pprox 20 kg
Electrode Ø:	114 mm
Guard rings width:	37.75 mm
Electrode separation:	25 75 mm
Guard ring separation:	25 75 mm

- adaptive inner geometry:
- plasma generation: 4-channel rf generator @ 13.56 MHz
- different electrode types are available
- particle detection: red diode lasers, several cameras

The Zyflex Chamber - Advantages

- larger plasma volume
 - \Rightarrow more homogeneous plasma
 - \Rightarrow lower neutral gas pressures (weaker damping)
 - \Rightarrow large 3D systems
- more control over parameters
 - \Rightarrow adaptive plasma volume
 - \Rightarrow amplitude, phase of rf-channels
 - \Rightarrow neutral gas flow
 - \Rightarrow electron temperature control with special electrodes
- particle dispensers are outside the main plasma volume in the chamber walls
- better diagnostics possible due to technical advances (eg. USB3 cameras, 3D diagnostics, compact lasers)

Electrode Configurations

Grid electrode

Segmented electrode

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Independent Plasma Control

Segmented Electrodes

Different plasma configurations by independent control of 4 rf-channels

PIC Simulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Influence of phase shift between rf signals: Segmented electrode

PIC Simulations

Influence of phase shift between rf signals: Segmented electrode

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへで

Electron Temperature Control

Grid Electrodes

- high energy electrons pass the biased grid
- ionisation behind the grid creates low energy electron population
- \Rightarrow control of electron temperature through grid voltage
- \Rightarrow control of particle charge in that region

イロン 不得 とくほ とくほ とうほ

Electron Temperature Control

Grid Electrodes - First Results

Particle Positions - Experiment 2

 \Rightarrow particle levitation height is influenced by grid voltage

▲□▶▲□▶▲□▶▲□▶ □ のQで

Electron Temperature Control

Grid Electrodes - First Results

Particle Positions - Experiment 2

 \Rightarrow particle levitation height is influenced by grid voltage

more particles needed \Rightarrow experiments in μ g

3D Particle Diagnostics

3D particle coordinates of a small cluster in the Zyflex Chamber, taken with a stereoscopic camera setup 3D particle trajectory of a single particle (time is color coded)

 \Rightarrow Outlook: Improved 3D diagnostics with lightfield cameras (?) for realtime 3D observation of dynamical processes on the ISS

Recent Lab Experiment

Turbulence

- Argon, 10 Pa
- $U_{pp} = 57 \text{ V}$ (top electrode)
- 4.38 μm MeF particles

ヘロマ ヘ動 マイロマー

-

 distance electrodes/guard rings: 75 mm

Recent Lab Experiment

- Argon, 10 Pa
- $U_{pp} = 57 \text{ V}$ (top electrode)
- 4.38 μm MeF particles

 distance electrodes/guard rings: 75 mm

Simple electrodes - guard rings on level with electrodes, 9.19 μm particles

(日)

5.9 Pa, 29.2 V_{pp}

Simple electrodes - guard ring distance decreased, 9.19 μm particles

5.3 Pa, 29.2 V_{pp}

0.85 Pa, 29.2 V_{pp}

A B > A B >

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

ъ

Chamber cleaning in microgravity

Particles: 1.95 μ m SiO₂ and 4.38 μ m MeF guard ring distance < electrode distance

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Chamber cleaning in microgravity

 \Rightarrow particles can be removed from the chamber during 0g when plasma is switched off

- three parabolic flight campaigns and numerous experiments in the lab show promising results
- several electrode types have been tested
- 2D PIC simulations are performed to characterize the plasma conditions for the different rf settings
- first tests with 3D diagnostics were performed
- new technologies for particle diagnostics are available and will be implemented: 3D lightfield cameras, fast USB 3.0 cameras for 2D high speed recording

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 2 parabolic flight campaigns for further testing (2015/1026)
- joint scientific protocol with JIHT, feasibility study (2014-2015)
- pre-development at DLR, manufacturing of bread-board model (2014-2016)
- preliminary design review (2017)
- start of design and qualification from 2017 on
- Iaunch to ISS: 2019 (?)

Thank you!

