Localized viscous heating observed in a two-dimensional strongly coupled dusty plasma

John Goree, Yan Feng* & Bin Liu Univ. of Iowa * Current address: Soochow University, China

Shear flow in 2D dusty plasma

Shear flow in dusty plasma

 $\stackrel{{}_{\scriptstyle \rm I}}{{}_{\scriptstyle \rm I\!I\!I}} {}_{\scriptstyle \rm T\!H\!e} {}_{\scriptstyle \rm U\!NIVERSITY} {}_{\scriptstyle \rm O\!F} {}_{\scriptstyle \rm I\!O\!W\!A}$

Fluids, in general

Transport coefficients

 μ = viscosity

 κ = thermal conductivity

These coefficients are material properties.

<u>Viscous heating:</u> <u>it's where a lot of energy is lost</u>

image: NASA

image: wordpress.com

Viscous heating happens in a sheared flow

Couette flow between two flat plates

moving boundary plate

stationary boundary plate

Viscous heating happens in a sheared flow

"shear"

= transverse gradient of a flow velocity

 $= \partial v_x / \partial y$

Heat generated $\propto (\partial v_x / \partial y)^2$

Hydrodynamic equations for Couette flow

 μ = viscosity κ = thermal conductivity

Solution of the hydrodynamic equations for Couette Flow

stationary boundary plate

- should cause **hot-spots** in a flow
- but they aren't observed

viscous heating:

The University of Iowa

Why aren't the hot spots observed?

For most substances: thermal conductivity κ is so large that $\nabla^2 T$ is tiny.

To observe a hot spot requires a combination of:

- Small *k* thermal conductivity
- Large η viscosity
- Large $\partial v_x / \partial y$ shear
- Instrumentation for in-situ temp measurement

Experimental setup

Argon RF glow discharge:

- gas 15.5 mTorr Argon
- RF low power, 13.6 MHz
- $\lambda_{\rm D}$ 0.53 mm

MF Polymer microspheres:

diameter8.1 μmnumber>11000 particlesinterparticle dist.0.50 mm

charge -

-9700 *e*

The University of Iowa

Narrow field of view

Χ Random motion in a crystalline phase

y

Measurements of particles

• Measure particle *x*, *y* positions

$$X = \frac{\sum(X_i I_i)}{\sum I_i}$$

Track particles from frame to frame

Yields time series for positions & velocities of particles

Manipulating particles using Radiation Pressure Force

Movie of the laser-driven shear flow

Results: profiles of flow velocity & temperature

Confirm the conclusion

To confirm that the peaks are due to viscous heating:

Calculate the Brinkmann number

 $Br = \frac{\eta}{\kappa} \frac{\Delta v_x^2}{\Delta T}$

Confirm that it is of order unity

We require:

Calculate the Brinkmann number

Measure the flow parameters:

 ΔV_x ΔT

Calculate the Brinkmann number

Measure the material properties:

η

K

We do this by <u>fitting</u> the profiles to the hydrodynamic equations.

Calculate the Brinkmann number

We find the Brinkmann number

$$\mathrm{Br} \equiv \frac{\eta}{\kappa} \frac{\Delta {v_x}^2}{\Delta T} \approx 0.5$$

Since Br ~ unity, this result confirms the conclusion:

We have observed spatially-localized viscous heating.

PRL 109, 185002 (2012)

PHYSICAL REVIEW LETTERS

week ending 2 NOVEMBER 2012

Observation of Temperature Peaks due to Strong Viscous Heating in a Dusty Plasma Flow

Yan Feng,* J. Goree, and Bin Liu

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA (Received 20 August 2012; published 31 October 2012)

Profound temperature peaks are observed in regions of high velocity shear in a 2D dusty plasma experiment with laser-driven flow. These are attributed to viscous heating, which occurs due to collisional scattering in a shear flow. Using measurements of viscosity, thermal conductivity, and spatial profiles of flow velocity and temperature, we determine three dimensionless numbers: Brinkman, Br = 0.5; Prandtl, Pr = 0.09; and Eckert, Ec = 5.7. The large value of Br indicates significant viscous heating that is consistent with the observed temperature peaks.

Second derivative of the kinetic temperature

Temperature dependent thermal conductivity $\kappa(T)$

<u>Temperature dependent thermal conductivity κ(T)</u>

Minimizing the residual of the energy equation in no laser region Residual $(\kappa) = (\eta/2\rho)(\partial v_x/\partial y)^2 + [(\kappa_0 + \alpha T)/\rho]\partial^2 T/\partial^2 y + \alpha(1/\rho)\left(\frac{\partial T}{\partial y}\right)^2 - \nu v^2$

Transport coefficients using previous methods

	Our method of minimizing residuals	Previous methods Nosenko and Goree, PRL (2004) Nosenko et al., PRL (2008)
η/ ho		
κ/ρ		
к (Т)/р		

The transport coefficients using our method are consistent with those using different methods.

Validity of transport coefficients in 2D systems

Some theorists argue that transport coefficients in 2D system does not exists, due to non-converging integrals of the Green-Kubo relation for **uniform** system.

For **non-uniform** systems with a gradient, the analogous test would be to determine whether transport coefficients is **independent** of the scale length.

But, our experiment cannot give a clear answer to this question.

Movie of the laser-driven flow in dusty plasma

laser 1

analyzed region

laser 2

Parameters for laser manipulation

Data analysis: characterize nonuniformity in *y*

(1) Divide the field of view into 89 bins (of width $\Delta d = r_{ws}$)

(2) For each frame, **bin** the information (e.g. velocity) of all particles in a stripe

- · Each particle contributes to two stripes, according to a "weight"
- weighting factor: Cloud-in-Cell algorithm

Laser beam 1

Laser beam 2

Scheme for producing counterpropagating flows

F_laser is zero everywhere except within two stripes

Viscosity (η)

A measure of how a fluid flows under the shear stress.

Measuring *n* with shear: Setup

<u>Measuring η with shear: Movie</u>

Movie of suspension with high shear

Measuring *η* with shear

Particle trajectories

y

256 frames averaged in steady-state regime

Measuring *η* with shear: **Result**

Model the velocity profile to continuum, using Navier-Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\mathbf{v})\mathbf{v} = \frac{\nabla \mathbf{v}}{\rho} + \frac{\eta}{\rho}\nabla^2\mathbf{v} + \left[\frac{\zeta}{\rho} + \frac{\eta}{3\rho}\right]\nabla(\nabla g\mathbf{v}) - v_{gas}\mathbf{v}$$

$$\frac{\eta}{\rho} \frac{\partial^2 V_x(y)}{\partial^2 y} - V_{gas} V_x(y) = 0$$

$$v_x(y) = V \sinh(\alpha y) / \sinh(\alpha h)$$

 $\alpha = \sqrt{v_{gas}\rho/\eta}$

h is the width of between flows

Shear viscosity determination in our experiment

Flow velocity profile $\langle v_x \rangle$

Shear viscosity determination in our experiment

 $v_x(y) = V \sinh(\alpha y) / \sinh(\alpha h)$

What is thermal conductivity?

Thermal conductivity (K)

The property of a material's ability to conduct heat.

Measuring κ in dusty plasmas: Setup

Nosenko et al., PRL (2008)

Measuring *k* in dusty plasma

Measuring *k* in dusty plasma

Outside laser-heated region, the temperature is about exponential decay.

 $dT/dy \propto \exp(y/L_{heat})$

Measuring *k* in dusty plasma

Model the dusty plasma suspension to continuum, using fluid equation $cnvg \nabla Tk_{B} = \nabla g(\kappa \nabla T) - 2\nu n(T - T_{0})k_{B} + S_{viscous}$ $\nabla g(\kappa \nabla T) = 2\nu n(T - T_0)k_B$ $dT/dy \propto \exp(y/L_{heat})$ $\kappa = 2\nu n L_{heat}^2 k_B$

Thermal diffusivity χ is $\chi = \kappa/cn = 2\nu L_{heat}^2 k_B/c = 2\nu L_{heat}^2 k_B$

Thermal conductivity determination in our experiment

We use KT_y as the kinetic temperature to determine κ .

Thermal conductivity determination in our experiment

Equation of energy exchange of fluids

For 2D fluids which has a symmetry in the x direction, the energy equation is:

For our dusty plasma, we also need to consider:

- The dissipation due to gas damping
- The energy input due to laser manipulation

The University of Iowa

Dissipation due to gas damping

Gas drag friction coefficient $v = F / m_{dust} v_{dust} = 2.7 \text{ s}^{-1}$

Gas damping force $F = v m_{dust} v_{dust}$

Energy dissipation due to gas damping per unit mass $P = F v_{dust} / m_{dust} = v v_{dust}^2$

Hydrodynamic Equations

Navier-Stokes equation

momentum

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{\nabla p}{\rho} + \frac{1}{\rho}\nabla g(\eta\nabla \mathbf{v}) + \left[\frac{\zeta}{\rho} + \frac{\eta}{3\rho}\right]\nabla(\nabla g\mathbf{v})$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{\nabla p}{\rho} + \frac{\eta}{\rho}\nabla^2\mathbf{v} + \left[\frac{\zeta}{\rho} + \frac{\eta}{3\rho}\right]\nabla(\nabla g\mathbf{v}) \quad \text{force per unit mass}$$

energy

$$\frac{DH}{Dt} = \frac{1}{\rho} \frac{Dp}{Dt} + \frac{1}{\rho} \nabla g(\kappa \nabla T) + \frac{1}{\rho} \Phi$$

energy dissipation per unit mass

Batchelor, An Introduction to Fluid Dynamics (1979)

The University of Iowa

Forces in the momentum equation

Delete?

Momentum equation

The main horizontal forces acting on the dust particles:

- Inter-particle electric repulsion (Coulomb collisions)
 - Responsible for transport coefficients eta kappa
- radiation pressure force from laser manipulation
- gas drag (friction) force

Profile of kinetic energy (contribution due to y-component of

particle velocity)

with the contribution of without the contribution of the flow velocity the flow velocity 1.5 1.5 1 1 $V_{\text{thermal y}}^{2}$ (mm²/s²) V_{y}^{2} (mm²/s²) 0.5 0 0 0 20 40 60 80 60 0 20 40 80 bins in Y bins in Y $2k_{B}T/m_{part} = \frac{1}{N}\sum_{i=1}^{N} [v_{part i} - v_{flow}(y)]^{2}$

 $v_{flow}(y)$ is flow velocity at y, interpolated between grid centers

The University of Iowa

What is thermal conductivity?

Thermal conductivity (κ)

The property of a material's ability to conduct heat.

<u>What is viscosity?</u>

Viscosity (η)

A measure of how a fluid flows under a shear force (shear stress).

$$\eta = \text{shear stress} / \frac{\partial V_x}{\partial y}$$

Example:

Couette flow, apply a stress (force per unit area) to the top plate:

