Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks

Gian Luca Delzanno Xian-Zhu Tang

Los Alamos National Laboratory

Outline

- Motivation: magnetic fusion energy
- Conventional model of dust transport in tokamaks: OML
- Thermionic emission, positively charged dust regime
 - Problems with OML
 - OML⁺ approximation
- Conclusions

Plasma-material interaction in a fusion reactor

- Burning plasmas: intense heat/particle/neutron fluxes to the wall
- Two competing processes:
 - Erosion: TEXTOR limiter tip estimated to 1 m/year gross erosion
 - Redeposition: wall material released as neutrals, ionized and redeposited
- Steady-state fusion reactors rely on a nearly perfect balance between erosion and redeposition
- Greenwald report 07: PFCs and materials TIER 1 (most urgent) R&D challenge in fusion research!

Holes on Tungsten

Existing tokamaks produce dust

- Presence of dust (UFOs) known for a long time
- Produced by plasma-material interaction, maintenance
- Not an issue in short-pulse tokamaks: lower heat load $q_{ref} = 1 \, {
 m MW/m^2}$
- A problem in ITER-era: higher heat load $q_{ref} = 10 \,\mathrm{MW/m^2}$
 - hundreds kgs of dust estimated for ITER
 - dust safety limits
 - Can dust survive in ITER?
- Safety issues & operational issues:
 - Dust penetration. Plasma pollution, disruptions
 - PMI. Survivability, non-local redeposition

Winter, POP 00

Conventional model of dust transport: OML

- Dust charging:
- Dust motion:

$$\frac{dQ_d}{dt} = I_i + I_e + I_{se} + I_{th}$$

$$\begin{aligned} \frac{d\mathbf{x}_d}{dt} &= \mathbf{V}_d \\ m_d \frac{d\mathbf{V}_d}{dt} &= Q_d \left(\mathbf{E} + \mathbf{V}_d \times \mathbf{B} \right) + \\ \mathbf{F}_{i,drag} + \mathbf{F}_{n,drag} + \mathbf{F}_{rocket} \end{aligned}$$

- Dust grain heating:
- Dust mass loss:

$$\frac{d}{dt}\left(C_d m_d T_d\right) = q_e + q_i + q_n - q_{sec} - q_{th} - q_{rad}$$

$$\frac{dm_d}{dt} = \frac{q_{net}}{H_{evap}} \quad \xrightarrow{\text{spherical dust}} \quad 4\pi r_d^2 \rho_d \frac{dr_d}{dt} = \frac{q_{net}}{H_{evap}}$$

- Coupled with the background plasma model
- Currents, ion drag and heat fluxes modeled by the OML theory
- Standard model used by many groups: DUSTT, DTOKS, MIGRAINE, …

Checking OML applicability

• PIC simulations: spherical dust grain in a plasma + thermionic emission. $r_d = \lambda_{De}$, $T_d/T_e = 0.03$

Theory and simulations disagree in the positively charged regime. Good agreement for negatively charged

The disagreement is due to a non-monotonic potential near the dust grain

 In the positively charged regime, a trapped particle thermionic electron population exists

Delzanno et al, PRL 04; POP 05; PRL14

Understanding the disagreement: orbital motion

• Steady state of a collisionless plasma in a central force field

$$v_r^2 + v_\theta^2 - \frac{2e}{m_e}\phi_d = v_r'^2 + v_\theta'^2 - \frac{2e}{m_e}\phi(r), \quad \text{Cons. energy}$$
$$m_e r_d v_\theta = m_e r v_\theta', \quad \text{Cons. angular momentum}$$

+ Liouville's theorem

• Equivalent to radial motion in effective potential

$$v_r^2 - U(r, v_\theta) = v_r'^2$$
$$U(r, v_\theta) \equiv \frac{2e}{m_e} \left[\phi_d - \phi(r)\right] - \left[1 - \left(\frac{r_d}{r}\right)^2\right] v_\theta^2$$
Electrostatic force Centrifugal force

The potential determines the orbit around the grain

• Maxima of the effective potential depend on v_{θ}

$$-\frac{e}{m_e}r_m^3\phi'(r_m) = r_d^2 v_\theta^2$$

Potential well: only 1 solution for $r_d \leq r_m \leq r_{min}$

Critical tangential velocity

$$v_{\theta}^* = \sqrt{-\frac{e}{m_e}r_d\phi_d'}$$

- $v_{\theta} > v_{\theta}^*$ monotonic U-> passing
- $v_{\theta} < v_{\theta}^*$ non-monotonic U-> can be

trapped!

OML misses the emitted electrons trapped/ passing boundary ...

• Full OM trapped/passing boundary of the emitted electrons

$$v_r^2 = U(r_m(v_\theta), v_\theta)$$

 Approximation: slow emitted electrons, see the potential barrier at the minimum of the electrostatic potential r_{min}

$$v_r^2 + \left[1 - \left(\frac{r_d}{r_{min}}\right)^2\right] v_\theta^2 = \frac{2e}{m_e} \left(\phi_d - \phi_{min}\right)$$

• OML trapped/passing boundary [Sodha&Guha, 1971]

$$v_r^2 + v_\theta^2 = \frac{2e}{m_e}\phi_d$$

... when the potential well is deep and localized!

Potential well effects are important for large grains and small dust temperatures

 Solve OML Poisson's equation to calculate the transition from negatively to positively charged dust grain: J_{th} →Q_d=0

Can we develop an OML-like theory when potential well effects are important? OML⁺

- Challenging because OML does not solve Poisson's equation
- Approximate emitted e⁻ T/P boundary

$$v_r^2 + v_\theta^2 = \frac{2e}{m_e} \left(\phi_d - \phi_d^*\right)$$

• Emitted current

$$I_{th} = 4\pi r_d^2 J_{th} \exp\left[-\frac{e\left(\phi_d - \phi_d^*\right)}{T_d}\right] \left[1 + \frac{e\left(\phi_d - \phi_d^*\right)}{T_d}\right]$$

- Recovers OML when potential well effects are unimportant
- Good agreement with PIC

OML overestimates the power collected by the dust grain from background electrons

- Important for dust survivability
- Positively charged dust grains are heated mostly by background electrons [Smirnov et al., PPCF 07]

Conclusions

- Dust transport in tokamaks is very important for ITER
 - Can we really accumulate many kgs of dust? Can dust survive?
- Conventional dust transport model is based on OML
- OML can break in the limit where the dust grain becomes positively charged due to electron emission processes
 - Overestimates the dust collected power
- An OML⁺ approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations

