How many equilibrium states does a 2D elliptical Debye cluster have?

Terry Sheridan
Andrew Kurtz
Nick Wiener

T. E. Sheridan, ONU Physics

Plasma

- plasma - quasineutral gas of charged and neutral particles which exhibits collective behavior (F. F. Chen)
- physics definition - weakly-damped system of many particles which interact through long-range forces

T. E. Sheridan, ONU Physics

Dusty (complex) plasma

- microscopic dust particles (nm to $\mu \mathrm{m}$) in electron-ion plasma
- particles acquire net charge, typically $q<0$ in experiment
- particles interact through Debye potential

$$
V(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} e^{-r / \lambda_{D}}
$$

- can form a strongly-coupled 2D system
- open, dissipative, weakly damped
- condensed matter system inside a plasma with separate physics

T. E. Sheridan, ONU Physics

Is dusty plasma = plasma?

FIG. 4. Normalized, squared breathing frequency minus 3 vs the normalized disk radius $\xi_{0}=R_{0} / \lambda$ for $n=100,320,1000$, and 3200 particles with the Debye shielding parameter $\kappa=0.2,0.5,1,2,5$, and 10 . For a given n, κ increases from left to right. Solid lines are theory using Eqs. (5) and (15) with $\alpha=a / R_{0}=0,0.01,0.02,0.05,0.1$, and 0.2 .

- weakly-damped system of many particles which interact via long-range forces
- large 2 d systems have 3 regimes: Coulomb, plasma, nearest neighbor
- for some parameters dusty plasma = physics plasma

Sheridan, PoP 14, 032108

[^0]
Small dusty plasmas - Debye clusters

- assume (nearly) identical dust particles
- strongly-coupled 2D systems interacting through Debye potential
- just happens to be embedded in electron-ion plasma
- isotropic harmonic well, equilibrium states depend on 2 param's:
n - number of particles
κ - Debye shielding parameter
- limited experimental range: $0.5<\kappa<4$
- why is κ always ~ 1 ?
- biharmonic well, equilibrium states depend on 3 parameters:
n - number of particles
κ - Debye shielding parameter
α^{2} - well anisotropy parameter
- wide experimental range
- rich structure of stable/metastable states

2D dust confinement

electron-ion plasma
sheath confinement aperture electrode
blocking C - negative dc bias

- motes float at sheath edge
- 2D layer
- particles repel one another
- horizontal confinement
from aperture on electrode
- aperture determines 2D well
=> exp'tal control of well shape

Isotropic well - circular Debye clusters

(a)

- observe ground states vs n
- Debye parameter fixed
- hard to change in exp't
- $n=6,7$ have single central particle - $n=8$ is $(1,7)$ for weak

Debye shielding

Biharmonic well - elliptical clusters

FIG. 4. Experimentally measured equilibrium configurations for (a) $n=49$ and (b) 15 particles.

Sheridan, Wells, Herrick and Garee, J. Appl. Phys. 101, 113309

Biharmonic potential well

- generalize isotropic well to 2D biharmonic well

$$
U_{\mathrm{well}}=\frac{1}{2} m \omega_{x}^{2} x^{2}+\frac{1}{2} m \omega_{y}^{2} y^{2}
$$

- anisotropy parameter

$$
\alpha^{2}=\frac{\omega_{y}^{2}}{\omega_{x}^{2}} \geq 1
$$

- larger α^{2} gives "skinnier" well
- forces in $y \gg$ forces in x
\Rightarrow ptcls tend to line up in x
biharmonic well
T. E. Sheridan, ONU Physics

Model

- n identical particles with charge q and mass m at positions $\left\{x_{i}, y_{i}\right\}$
- interact through shielded Coulomb potential
- confined in 2D biharmonic well
- total potential energy

$$
\begin{aligned}
& U=\sum_{i=1}^{n}\left(\frac{1}{2} m \omega_{0 x}^{2} x_{i}^{2}+\frac{1}{2} m \omega_{0 y}^{2} y_{i}^{2}\right)+\sum_{j>i=1}^{n}\left(\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{e^{-r_{i j} / \lambda_{D}}}{r_{i j}}\right) \\
& \text { confining well energy } \text { particle-particle } \\
& \text { interaction energy }
\end{aligned}
$$

- equilibrium configuration is $\left\{x_{i}, y_{i}\right\}$ which minimizes U
- 6 model parameters: $n, m, \omega_{0 x}, \omega_{0 y}, q, \lambda_{\mathrm{D}}$

Non-dimensional model

- non-dimensional potential energy

$$
\frac{U}{U_{0}}=\sum_{i=1}^{n}\left(\xi_{i}^{2}+\alpha^{2} \eta_{i}^{2}\right)+\sum_{j>i=1}^{n}\left(\frac{e^{-\kappa \rho_{i j}}}{\rho_{i j}}\right)
$$

- distances

$$
\xi_{i}=\frac{x_{i}}{r_{0}}, \eta_{i}=\frac{y_{i}}{r_{0}}, \rho_{i j}=\frac{r_{i j}}{r_{0}} \quad \text { where } r_{0}=\left(\frac{2}{m \omega_{x}^{2}} \frac{q^{2}}{4 \pi \epsilon_{0}}\right)^{1 / 3}
$$

- stable/metastable configurations minimize U
- 3 parameters:

$$
n, \alpha^{2}=\frac{\omega_{y}^{2}}{\omega_{x}^{2}}, \kappa=\frac{r_{0}}{\lambda_{D}}
$$

- α^{2} - anisotropy parameters easily varied in experiment
- rich structure of stable and metastable states is accessible
- search for stable/metastable states by rapidly quenching random initial configurations
T. E. Sheridan, ONU Physics

Arrangement transitions in biharmonic well

- theoretical ground state, mode spectra vs anisotropy for $n=9$
- distinct arrangement phases with change in symmetry
- Candido et al., J. Phys: Condens. Matter 10, 11627
T. E. Sheridan, ONU Physics

Arrangement transitions in ∞ harmonic trough

FIG. 1. The $T=0$ structural phase diagram as a function of the inverse screening length κ and the density \tilde{n}_{e}. The plotted quantities are dimensionless, as for all the figures in the paper.

- 4-chain separates 2-chain and 3-chain
- Piacente et al., PRE 70, 036406
T. E. Sheridan, ONU Physics

Zigzag arrangement transition

FIG. 5. Frequency of the lowest eigenmodes during pressure variation. The oscillation pattern of the corresponding eigenmodes is indicated in the insets. Below 7.5 Pa the cluster is in the zigzag state, above that pressure it forms a 1D chain.

- transition from 1D straight line to 2D "zigzag"
- finite analog of 1-chain to 2-chain transition
- shortest wavelength tranverse mode unstable
- caused by change in n, anistropy, shielding

Melzer, PRE 73, 056404
T. E. Sheridan, ONU Physics

D.ONU.T experiment

- Dusty O.N.U. experimenT

2/3 in. CMOS camera 1280×1024
$\mathrm{f} / 2.855 \mathrm{~mm}$ lens

T. E. Sheridan, ONU Physics

Adjustable confining well

T. E. Sheridan, ONU Physics

Equlibrium arrangements vs n

[^1]
Measured zigzag vs anisotropy

- anisotropy changed by adjusting d
- straight line for large anisotropy
- zigzag - 1D to 2D transition
- fat zigzag - all particles on "outside" of cluster

Sheridan and Magyar, PoP 17, 113703

[^2]
What about metastable states?

- metastable - potential barrier blocks rearrangement into lower energy state
- 3 parameter model: n, α^{2}, κ
- effect of α^{2} ?
- large anisotropy $\alpha^{2} \gg 1$
- straight line arrangement, no metastable states
- decrease α^{2}
- line -> zigzag (1-chain -> 2-chain)
- all particles on cluster "edges"
- no "internal" barriers to rearangement (no "jammed" dust) => no metastable states?
- decrease α^{2} some more
- zigzag -> double zigzag (2-chain -> 4-chain)
- appearance of inside particles
=> interior jammed ptcls lead to metastable configurations?
T. E. Sheridan, ONU Physics

Computed number of states for $\kappa=1$

T. E. Sheridan, ONU Physics

Computed states for $n=14$ and 15

- ground +3 metastable configes
- ground state asymmetric 4-chain
- 2-chain zigzags in differing ways
T. E. Sheridan, ONU Physics

Conclusions

- considered Debye clusters in 2D biharmonic well
- arrangement transitions characterized
- as a function of n for fixed anisotropy and Debye shielding
- as a function of anisotropy for fixed n and shielding
- good agreement between experiment and model
- number of metastable states explored with model
- rich structure vs $n(n>10)$ and well anisotropy
- no clear patterns
- metastable states may caused by internal "jamming"

T. E. Sheridan, ONU Physics

[^0]: T. E. Sheridan, ONU Physics

[^1]: T. E. Sheridan, ONU Physics

[^2]: T. E. Sheridan, ONU Physics

