
T. E. Sheridan, ONU Physics

How many equilibrium states does
a 2D elliptical Debye cluster have?

Terry Sheridan
     Andrew Kurtz
     Nick Wiener 



Plasma

T. E. Sheridan, ONU Physics

• plasma - quasineutral gas of charged and neutral particles which 
     exhibits collective behavior (F. F. Chen)
• physics definition - weakly-damped system of many particles
     which interact through long-range forces



Dusty (complex) plasma

T. E. Sheridan, ONU Physics

• microscopic dust particles (nm to µm) in electron-ion plasma
• particles acquire net charge, typically q < 0 in experiment
• particles interact through Debye potential

V (r) =
1

4π�0

q

r
e−r/λD

• can form a strongly-coupled 2D system
• open, dissipative, weakly damped
• condensed matter system inside a plasma with separate physics



Is dusty plasma = plasma?

T. E. Sheridan, ONU Physics

• weakly-damped system of many 
particles which interact via 
long-range forces

• large 2d systems have 3 regimes: 
Coulomb, plasma, nearest 
neighbor

• for some parameters 
dusty plasma = physics plasma

!Eq. "17#$ as ! increases. For !=50 and 100, the computed
curves nearly overlap and are well described by the
asymptotic curve. Three regimes are again evident. The
“Coulomb disk” regime occurs for "br

2 #3.5 and $̄#0.1,
where the breathing frequency is approximately independent
of $̄. For large disks, !0%20, two further regimes are evi-
dent. First, the “condensed matter” regime in which nearest-
neighbor interactions are dominant is found for $̄%1, or
equivalently a%&. In this regime, which is described by
R0!a%&, the breathing frequency increases rapidly with $̄.
The computed points are in good agreement with the pre-
dicted macroscopic behavior. When $̄#1, "br

2 %4, which
represents the bulk plasma regime with many particles in a
Debye circle. The computed data points approach this curve
from below. Computed points for $=1 and 2 have not
crossed the predicted limiting curve, indicating that the
squared breathing frequency may be approaching the pre-
dicted value of 4 "perhaps very slowly# even though the den-
sity is not uniform. The analytical result "heavy dashed line#
accurately summarizes the observed behavior for systems
many Debye lengths in extent. The data points that appear to
be closest to the unbounded plasma limit "n=3200 for $=1
and 2# have values of $̄=0.27 and 0.46, respectively.

IV. CONCLUSIONS

We have considered the emergence of macroscopic
"bulk# behavior in a finite, two-dimensional, strongly
coupled system of n particles interacting via a screened Cou-
lomb "Yukawa# potential with a Debye length &. The par-
ticles are confined in an isotropic parabolic potential well.
An analytical theory for the squared breathing frequency

"i.e., bulk modulus# with a finite particle separation a was
presented and evaluated in the limit of large values of n. In
this limit, we find that the breathing frequency is indepen-
dent of n and depends only on the macroscopic Debye
screening parameter $̄=a /&. The analytical theory was veri-
fied by computing the squared breathing frequency exactly
for n=100−3200 particles. Agreement between the theory
and computations is very good. In particular, as n increases,
the computed values approach the analytically predicted
macroscopic limit.

Three limiting regimes were identified depending on the
ordering of the Debye length &, the disk radius R0, and the
average nearest-neighbor distance a. In the “Coulomb disk”
regime, &!R0, all the particles are in a single Debye circle.
In this regime, the interparticle spacing is unimportant, and
the squared breathing frequency increases linearly with
R0 /&. Disks in this regime do not display bulk behavior be-
cause particles in the center of the disk interact with all other
particles, including edge particles. There are two regimes for
R0!&: the condensed matter regime and the plasma regime.
Both regimes have a macroscopic limit in which we predict
the squared breathing frequency approaches a limiting value
that is independent of n for n large enough. In the condensed
matter regime, R0!a%&, nearest-neighbor interactions are
dominant and the squared breathing frequency increases lin-
early with a /&. In the plasma regime R0!&'a, long-range
interactions are dominant. In this case, there are many par-
ticles in a Debye circle and the disk is many Debye lengths
in extent so that the traditional definition of a plasma1 is
satisfied. In the plasma regime "br

2 &4 independent of a /&.
Fewer particles are required to reach the bulk condensed

FIG. 4. Normalized, squared breathing frequency minus 3 vs the normalized
disk radius !0=R0 /& for n=100, 320, 1000, and 3200 particles with the
Debye shielding parameter $=0.2, 0.5, 1, 2, 5, and 10. For a given n, $
increases from left to right. Solid lines are theory using Eqs. "5# and "15#
with (=a /R0=0, 0.01, 0.02, 0.05, 0.1, and 0.2.

FIG. 5. Normalized, squared breathing frequency vs the macroscopic Debye
shielding parameter $̄=a /&=(!0 for !0=R0 /&=0.1 to 100 in a 1-2-5 se-
quence "solid lines#. Curves for !0=50 and 100 nearly overlap, and are in
good agreement with the predicted bulk limit of Eq. "17# "heavy dashed
line#. Symbols are solutions of the discrete particle model for n=100
−3200 particles. The discrete model results are seen to approach the bulk
limit as n increases.

032108-5 Criterion for bulk behavior of a Yukawa disk Phys. Plasmas 14, 032108 !2007"
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Small dusty plasmas – Debye clusters

T. E. Sheridan, ONU Physics

• assume (nearly) identical dust particles
• strongly-coupled 2D systems interacting through Debye potential

• just happens to be embedded in electron-ion plasma
• isotropic harmonic well, equilibrium states depend on 2 param's:

n - number of particles
! - Debye shielding parameter

• limited experimental range: 0.5 < ! < 4
• why is ! always ~1?

•!biharmonic well, equilibrium states depend on 3 parameters:
n - number of particles
! - Debye shielding parameter
"2 - well anisotropy parameter

• wide experimental range
• rich structure of stable/metastable states



2D dust confinement

T. E. Sheridan, ONU Physics

rf generator

blocking C - negative dc bias

sheath
E

qE

mg

electrode

confinement aperture

electron-ion plasma

• motes float at sheath edge
     • 2D layer
• particles repel one another
• horizontal confinement 
     from aperture on electrode
• aperture determines 2D well

=> exp'tal control of well shape



Isotropic well – circular Debye clusters

T. E. Sheridan, ONU Physics
(�N1 ,�N2) follows the periodic sequence of �5,6�-�6,5�-
�6,6� as N increases one by one from 19 to 30. Figure 3

shows the alternate packing in different shells and the peri-

odic oscillation of Ni as N increases. It corresponds to a

classical periodic table. Unlike the quantum atoms, in which

the addition of electrons is only allowed in the outer orbit,

our packing sequence is generic and similar to the Monte

Carlo simulation for 2D electrons in a parabolic confining

well �i.e., a field generated by a uniform frozen ion back-

ground�, except that Ni may deviate by one for N larger than

16 �7–9�. Many states predicted by the above model with
similar energies such as �1,8�, �1,8,13�, �1,8,14�, �3,9,13�,
etc. have also been observed in our experiment �7�.
To understand the generic structures, three typical equi-

librium states with different N1 are obtained from our 2D

molecular dynamics �MD� simulation at zero temperature,
with weak linear damping, a parabolic confining potential,

and unshielded Coulomb repulsion �Fig. 2�b��. They are
quite similar to our experimental results. For an infinite 2D

system, with mutual Coulomb repulsion, particles should sit

at the triangular lattice sites shown in the background �9�.
However, for a finite N system, the addition of the radial

confining force tends to bend the lattice and form circular

shell structures. The bending causes large strain energy es-

pecially when the radius of the curvature is small �9�. For
structures with two, three, and four particles in the first shell,

the particles of the second shell sit between a circular ring

and a triangular lattice boundary. For example, the second

shell is elliptical for the �2,8� state �Fig. 2�. For the structures
with three or four shells, only the outmost shell is more

circular. The inner parts are more triangularlike to reduce

strain energy. If some magic combinations for the inner

shells such as �1,6�, �2,8�, �3,9�, �4,10�, �1,6,12�, etc. can be
reached, the inner part forms defect-free sixfold packing �7�.
Besides the threefold defects along the outmost shell �a par-
ticle on the unbended edge of a triangular lattice should have

four bonds�, the unpaired intrinsic fivefold and sevenfold de-
fects mainly stay around the second outmost shell if the out-

most shell does not have six particles more than the adjacent

shell �e.g., the 5-7-5 defects in the lower part of the �3,9,14�
states in Figs. 2�a� and 2�b��.
This strongly coupled system supports many interesting

thermally induced collective excitations. Under the shell

FIG. 1. Snapshots of the microimages of the typical cluster

structure at different N. For displaying purposes, the scales are not

the same for the pictures. The typical interparticle spacing is be-

tween 0.3 and 0.7 mm.

FIG. 2. �a� Typical snapshots of the triangulated cluster configu-
rations observed at different N. The gray circles are drawn and

triangulations are made for reference. �b� Three typical structures,
from the 2D MD simulation with unshield Coulomb repulsion, in a

parabolic circular well. The triangular lattices are plotted as refer-

ences to illustrate the bending from the central confining force. In

�a� and �b�, the small triangles and squares in a few images are the
fivefold and sevenfold disclination defects, respectively.

FIG. 3. Occupation number Ni vs N, showing the alternate pack-

ing to different shells and the periodic oscillation of Ni .

RAPID COMMUNICATIONS

R6948 PRE 58JUAN, HUANG, HSU, LAI, AND I

Juan et al., PRE 58, R6947 (1998)

• observe ground states vs n
• Debye parameter fixed
     • hard to change in exp't
• n = 6, 7 have single 
     central particle
• n = 8 is (1,7) for weak
     Debye shielding



Biharmonic well – elliptical clusters

T. E. Sheridan, ONU Physics

and the peak-to-peak voltage was 176 V. An anisotropic po-
tential well was created by using a 2.4 mm thick rectangular
stainless-steel aperture placed on the powered electrode. The
aperture’s opening was 17.5!30.2 mm. The particles were
illuminated using a horizontal laser sheet from a 635 nm
diode laser. Particle positions were extracted from a charge-
coupled device !CCD" video camera digitized at 640!480
pixels with a resolution of 25.9 "m/pixel. The video camera
was aligned so that the major axis of the cluster was parallel
to the “long” axis of the CCD sensor. This corresponds to the
x direction in cluster figures.

Normal mode frequencies were determined in two ways:
by finding the resonance curve using driven oscillations,12

and by using Brownian motion.15 For the forced oscillation
experiments, modes were excited using 5.0% amplitude
modulation of the rf power at frequencies from 0.5–6.0 Hz in
steps of 0.5 Hz. At each driving frequency, 30 video frames
were acquired at rates up to 30 frames/s. Mode frequencies,
damping rates, and temperatures were also determined by
projecting the Brownian particle motions in 4096 frames !30
frames/s" onto the c.m. and breathing modes, and Fourier
analyzing the resulting time series to give resonance curves.

The experimentally measured equilibrium configuration
for n=49 particles is shown in Fig. 4!a". The cluster consists
of three approximately elliptical shells with 11, 17, and 21
particles, whereas the predicted structure was !12, 17, 20".
However, it is often the case that slight variations in particle
size lead to discrepancies in the experimental shell structure
which do not significantly affect the “fluid” mode frequen-
cies. The measured cluster size is xrms=1.70 mm and yrms
=0.92 mm. The motion of the particles at two different driv-
ing frequencies is shown in Fig. 5. In Fig. 5!a", we show the
particle motion at a driving frequency of 2.5 Hz, which is
near the c.m. resonance for y. In this case, the cluster moves
predominantly as a rigid body in the y direction !of course,
the observed motion is a superposition of all normal modes
excited". In Fig. 5!b", we show the particle motion for 4.0
Hz, near the breathing mode resonance. In this case, the mo-
tion of particles is a breathing oscillation predominantly in
the y direction, in agreement with the theoretically predicted
mode structure shown in Fig. 1!b".

The forced oscillation data were analyzed by projecting
the particle positions onto the c.m. and breathing modes us-
ing Eq. !7" and yrms #Eq. !8"$, respectively, to determine the

instantaneous mode amplitudes. The use of yrms to character-
ize the breathing mode is only approximate, but has proven
adequate. The resulting time series were then fitted with a
sinusoid at the driving frequency12 to give the steady-state
amplitude of the forced oscillation. Measured center-of-mass
and breathing resonance curves are shown in Fig. 6. Reso-
nance curves were fitted to

A!#" =
A0

%!#0
2 − #2"2 + 4$2#2

, !11"

as appropriate for a driven, damped harmonic oscillator. The
c.m. mode parameters were #x=8.49 rad/s, #y =14.8 rad/s
with damping rates $x=1.4 s−1 and $y =1.6 s−1. The breath-
ing mode parameters were #br=26.0 rad/s and $br=1.9 s−1.

Analysis of Brownian motion15 gave the following pa-
rameters for the center of mass modes: #x=8.64 rad/s, #y
=14.6 rad/s with damping rates $x=1.8 s−1 and $y =1.9 s−1

and mode temperatures Tx=420 K and Ty =440 K. The
breathing mode parameters were #br=25.7 rad/s, $br
=1.1 s−1, Tbr=270 K. The mode frequencies are in good
agreement with those measured using the forced oscillation
method, while the damping rates agree within experimental
errors. The temperatures of the c.m. modes are in agreement

FIG. 4. Experimentally measured equilibrium configurations for !a" n=49
and !b" 15 particles.

FIG. 5. “Streak” pictures averaged over 30 frames for driven oscillations at
!a" 2.5 Hz, showing predominantly the y c.m. oscillation and at !b" 4.0 Hz,
showing the breathing oscillation.

FIG. 6. Experimentally measured resonance curves for c.m. !x and y, solid
lines" and breathing !broken line" modes for elliptical Debye cluster with
n=49 particles.

113309-4 Sheridan et al. J. Appl. Phys. 101, 113309 !2007"
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Biharmonic potential well 

T. E. Sheridan, ONU Physics

• generalize isotropic well to 2D biharmonic well

• anisotropy parameter

x

y

V

• larger !2 gives "skinnier" well
     • forces in y >> forces in x

! ptcls tend to line up in x

biharmonic well

Uwell =
1

2
mω2

xx
2 +

1

2
mω2

yy
2

α2 =
ω2
y

ω2
x

≥ 1



• equilibrium configuration is {xi, yi} which minimizes U
• 6 model parameters: n, m, !0x, !0y, q, !D 

Model

T. E. Sheridan, ONU Physics

• n identical particles with charge q and mass m at positions {x
i
, y

i
}

• interact through shielded Coulomb potential

• confined in 2D biharmonic well

• total potential energy

U =
n�

i=1

�
1
2
mω2

0xx2
i +

1
2
mω2

0yy2
i

�
+

n�

j>i=1

�
q2

4π�0

e−rij/λD

rij

�

confining well energy particle-particle

interaction energy



• non-dimensional potential energy

• distances

• stable/metastable configurations minimize U
• 3 parameters:

• !2 - anisotropy parameters easily varied in experiment
     •!rich structure of stable and metastable states is accessible
• search for stable/metastable states by rapidly quenching random
     initial configurations

Non-dimensional model

T. E. Sheridan, ONU Physics

U

U0
=

n�

i=1

�
ξ2
i + α2η2

i

�
+

n�

j>i=1

�
e−κρij

ρij

�

n, α2 =
ω2
y

ω2
x

, κ =
r0
λD

whereξi =
xi

r0
, ηi =

yi
r0

, ρij =
rij
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mω2
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2

4πε0
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Arrangement transitions in biharmonic well

T. E. Sheridan, ONU Physics

1/anistropy parameter

11642 L Cândido et al

Figure 14. The mode spectrum as a function of the anisotropy parameter for a cluster of N = 9

particles. The vertical lines indicate the structural transitions for different configurations which

are shown in the insets.

The configurations of the N = 9 system are given as insets in figure 14. We observe

that the spectrum changes discontinuously for α = 0.33, and 0.57, where the structure

of the stable state changes abruptly. At α ≈ 0.4, a plastic deformation occurs in the

cluster, but without any drastic change in the configuration. Consequently, in contrast

to the behaviour of the minimum energy of the stable state, the structural transitions are

reflected in the spectrum of normal modes. Thus, the normal modes are more sensitive to

the exact configurations of the system than the stable-state energy.

5. Summary and conclusions

For the sake of completeness, we have also studied the influence of the screening constant

of the Yukawa potential on the structural transitions driven by the anisotropic confinement.

In figure 15, we depict the maximum distance between two electrons in the N = 50 cluster

as a function of the anisotropy parameter to show the influence of the screening potential

on the first transition, as displayed in figure 10. We observe a shift of the transition point

to lower values of α with increasing κ . But, on increasing κ , beyond κ = 5 we do not

see any significant changes in the critical value of α. This behaviour can be understood as

follows. Increasing the screening brings the particles closer together and as a consequence

the influence of the confinement potential on the stable-state configuration is diminished. As

a result, larger anisotropies are needed, i.e. smaller α-values, in order to drive the stable-state

configuration into a single line.

• theoretical ground state, mode spectra vs anisotropy for n = 9
• distinct arrangement phases with change in symmetry
• Candido et al., J. Phys: Condens. Matter 10, 11627



Arrangement transitions in ! harmonic trough

T. E. Sheridan, ONU Physics
H! =!

i!j

exp"! !#r! i! ! r! j!#$
#r! i! ! r! j!#

+!
i

yi!
2, "1$

where H!=H /E0, !=r0 /", and r! !=r! /r0, with r0
= "2q2 /m#$0

2$1/3 as the unit of length and E0
= "m$0

2q4 /2#2$1/3 as the unit of energy; m and q are the mass
and the charge of the particles, respectively, # is the dielec-
tric constant of the medium the particles are moving in, and

$0 measures the strength of the confining potential. The di-
mensionless time is defined as t!=$0t. Finally, it is possible
to define a dimensionless temperature as T!=T /T0 with T0
=E0 /kB= "m$0

2q4 /2#2$1/3kB
!1.

In our previous work [18] we investigated the ground
state and the melting of this Q1D system. We summarize

here the main results, which we will need in the next sec-

tions. At T=0 the particles crystallize in a chainlike crystal

structure, with a linear density equally distributed among the

chains. In the case of multiple chains, if a is the separation

between two neighboring particles in the same chain, the

chains are staggered by a /2 in the x direction, because this

arrangement minimizes the electrostatic repulsion. The re-

sults for the ground state configuration are summarized in the

phase diagram depicted in Fig. 1.

The dimensionless linear density is defined as ñe=%r0 /a,
where % is the number of chains. For low densities the par-
ticles crystallize in a single chain; with increasing density a

continuous transition (“zigzag” [22]) occurs and the single
chain splits into two chains. On further increasing the density

we found the remarkable behavior that the four-chain struc-

ture is stabilized before the three-chain structure. The 2→4

chain transition occurs through a “zigzag” transition of each

of the chains accompanied by a shift of a /4 along x. This

four-chain configuration has a relatively small stability range

after which it transits to a three-chain configuration through a

discontinuous, i.e., first order, phase transition. For higher

values of the density, the four-chain configuration again at-

tains the lowest energy. A further increase of ñe will lead to

more chains, that is six, seven, and so on. The structural

transitions are discontinuous, i.e., first order, except for the

1→2 transition.

On raising the temperature the ordered structure melts.

We studied in detail the melting for this kind of system in

Ref. [18]. Due to the anisotropy in the two directions, a
different behavior of the system in the x and y directions was

found. Two different melting temperatures Tx and Ty can be

assigned. The main features of the transition from the or-

dered state to the liquid state are (i) a reentrant behavior as a
function of density; (ii) a region in density for which the
system melts first in the unconfined direction and then in the

confined one: this regime resembles the findings of Ref. [21]
in the floating solid regime; (iii) reentrant melting occurring
near the structural transition points. For the nearly Coulomb

limit "!=0.01$ there is no evidence of anisotropic melting,
that is, the system behaves more isotropically. Furthermore,

the Coulomb system has a melting temperature which is on

average 15–20 % higher than for the screened Coulomb in-

terparticle interaction with !=1. On the other hand, for
higher values of !, the system behaves more anisotropically

and the difference between Tx and Ty is enhanced. In the case

!=3 the melting temperature is on average 10–15 % lower

than for the case !=1.

III. NORMAL MODES

In the present paper we are interested in the normal modes

of the chain structures, and in particular how these modes are

modified in the presence of frictional forces. We will con-

sider (1) the uniformly damped motion of a normal mode,
and (2) the damped propagation of a local forced oscillation
of a single particle. For these purposes we review briefly the

normal modes in the absence of friction.

A. Dispersion relations in the absence of friction

In the absence of drag due to the ion gas and exploiting

the standard harmonic approximation, the equations of mo-

tion for small oscillations about the lattice equilibrium posi-

tions in dimensionless units are in the single chain case

d2xi!

dt!2
= !

1

2
!
j

% "2U

" xi! " xj!
%
eq

xj! !
1

2
!
j

% "2U

" xi! " yj!
%
eq

yj!,

"2a$

d2yi!

dt!2
= !

1

2
!
j

% "2U

" yi! " xj!
%
eq

xj! !
1

2
!
j

% "2U

" yi! " yj!
%
eq

yj! ! yi!,

"2b$

where U=exp"!!#r!i!!r! j!#$ / #r!i!!r! j!# is the interparticle interac-
tion potential. Considering the translational invariance of the

system along the x direction, we search for solutions in the

form

"xn!,yn!$ & exp&i"kna ! $t$' , "3$

which results in

&"$2 ! '(y$')(,ij ! D)(,ij'Q(,j = 0, "4$

FIG. 1. The T=0 structural phase diagram as a function of the

inverse screening length ! and the density ñe. The plotted quantities
are dimensionless, as for all the figures in the paper.

PIACENTE, PEETERS, AND BETOURAS PHYSICAL REVIEW E 70, 036406 (2004)

036406-2

• 4-chain separates 2-chain and 3-chain
• Piacente et al., PRE 70, 036406



Zigzag arrangement transition

T. E. Sheridan, ONU Physics

tween the linear chain and zigzag configuration. Interest-
ingly, this is still observable in the established zigzag con-
figuration.

In turn, after the transition into the strict 1D chain
!at 7.5 Pa" the lowest mode is one with pure transverse mo-
tion !in this case, the frequency of this mode is found to be

actually even smaller than that of the center-of-mass mode".
The mode pattern obviously precisely reflects the tendency
to form a zigzag pattern which is still visible in the linear
chain configuration. The fact that this mode has such a low
frequency shows that the 1D chain is very close to the zigzag
transition. Thus, the dynamics directly reflect the static be-
havior of the cluster and contain information on the “other”
side of the transition point.

This lowest-frequency transverse mode in the 1D chain
will now be investigated for the linear chains with different
particle number. This mode appears in the normal mode
spectrum for each particle number that forms a strict 1D
chain. Figure 6 shows the spectral power density of this
transverse mode for the observed chains with particle num-
bers N=4 to 9. The maximum of the spectral power density
is found at quite low frequencies below 3 Hz. It is easily
seen that the maximum of the power density decreases with
particle number, i.e., when approaching the zigzag transition
at N=10. This substantiates the fact that this transverse mode
is responsible for the stability of the cluster against the zig-
zag transition.

D. 1D modes

Finally, we like to investigate the normal modes of strict
1D linear chain configurations in longitudinal and transverse
polarization. The 2N normal modes of a linear chain can be
exactly divided into either motion purely along the linear
chain !N longitudinal modes" or purely perpendicular to the
chain !N transverse modes". For each longitudinal !trans-
verse" mode, we have calculated the corresponding wave
vector k. Here, the spatial Fourier components of the eigen-
vectors el

j !et
j" of the longitudinal !transverse" modes along

the chain are calculated from the relation

Sl,t!k" = #
j=1

N

el,t
j eikyj .

For example, the lowest frequency transverse mode with the
alternating motion in Fig. 5 !at 7.5 Pa" would give a maxi-

FIG. 4. Critical anisotropy parameter ! as a function of particle
number. The horizontal gray bars are the values of ! determined
from the experiment with particle number variation for different "
!compare Table I". The height of the bars indicate the rms errors of
the experiment. The vertical gray bar indicates the region from N
=9 to 10, where the zigzag transition occurs. The circles denote the
!-values for N=13 of the experiment with gas pressure variation.
The critical ! is taken at the highest pressure where the zigzag
pattern still is observed, i.e., at p=6.8 Pa. The solid and dashed line
show the critical ! from the models of Dubin and O’Neil $1% and
Candido et al. $17%, respectively.

FIG. 5. Frequency of the lowest eigenmodes during pressure
variation. The oscillation pattern of the corresponding eigenmodes
is indicated in the insets. Below 7.5 Pa the cluster is in the zigzag
state, above that pressure it forms a 1D chain.

FIG. 6. Gray-scale plot of the spectral power density of the
lowest perpendicular mode as a function of particle number in the
cluster.

ZIGZAG TRANSITION OF FINITE DUST CLUSTERS PHYSICAL REVIEW E 73, 056404 !2006"

056404-5
Melzer, PRE 73, 056404

• transition from 1D straight
     line to 2D "zigzag"
• finite analog of 1-chain to
     2-chain transition
• shortest wavelength tranverse

mode unstable
• caused by change in n, 
     anistropy, shielding



D.ONU.T experiment
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• Dusty O.N.U. experimenT



Adjustable confining well

T. E. Sheridan, ONU Physics

• confining well due to 4 Al bars
     • biharmonic near center
• d adjustable using leadscrew
     •!vary well anisotropy

x

y

z

51.0 mm

55 mm f/2.8
telecentric lens

2 x adapter

1/2 in. CCD
video camera

red laser sheet

powered electrode

d

dust particles
Al confining bars

6.35 mmleadscrew
12.7 mm

red filter



Equlibrium arrangements vs n

T. E. Sheridan, ONU Physics

Sheridan and Wells, PRE 81, 016404

different sets to estimate the spread in the measured frequen-
cies, as can be seen in Fig. 4!b". In comparison to
d=25.4 mm, we observed a larger range of mode tempera-
tures, 300–500 K, indicating that the clusters are somewhat
less stable. The c.m. frequencies are again found to be inde-
pendent of n, and the average c.m. frequencies are
!0x=5.37"0.06 rad /s and !0y =29.7"0.1 rad /s, giving
#2=30.7"0.7. In comparison to the d=25.4 mm case, !0y
has increased as expected, while !0x has decreased slightly,
even though the long side of the rectangular well !50.8 mm"
has not changed. This indicates that decreasing d is pushing
the sheath out of the concave depression formed by the bars.

The Debye shielding parameter $ was estimated by com-
paring measured longitudinal breathing frequencies for sev-
eral of the linear configurations to normal mode frequencies
calculated using the model. Since the breathing oscillation
varies the interparticle spacing, it probes the dependence of
the interparticle potential on particle separation, and there-
fore $. For an unshielded Coulomb interaction $=0, the
squared normalized breathing frequency !!br /!0x"2=3 irre-
spective of n, and the unshielded Coulomb regime is
$%0.2. For the 25.4&50.8 mm2 well with n=4, the experi-
mental value !br=14.08 rad /s, so that !!br /!0x"2=4.05,
giving $#2.6, while for n=5, the experimental value
!br=14.27 rad /s, so that !!br /!0x"2=4.16, giving $#3.1.
The measured values of !!br /!0x"2 are clearly not consistent
with $=0, and we conclude that Debye shielding cannot be

neglected when modeling these clusters. The uncertainty in $
is fairly large, so we take $=3.0. Using this value of $, we
compare the measured cluster width yrms to the dimension-
less cluster width to find r0=1.40 mm, q=−1.3&104e, and
'=0.47 mm. These values of q and ' are consistent with
measurements made in isotropic wells for similar discharge
conditions $7,9,10,15,24%. In this case, the particle separa-
tion, which is a=0.72 mm at the center of the n=5 cluster, is
greater than the Debye length, emphasizing the importance
of Debye shielding.

For d=14.0 mm the Debye shielding parameter was
estimated from the normalized breathing frequencies for
clusters with n=6, 8, and 9 particles. For n=6 we find
!!br /!0x"2=4.32 and 4.38, for n=8, !!br /!0x"2=4.20 and for
n=9, !!br /!0x"2=3.98, 4.24 and 4.78. From this data we
estimate $#4, giving r0=1.65 mm, q=−1.3&104e, and
'=0.41 mm. As we show in the next section, $=4 is very
close to the critical value for the zigzag transition, which
may somewhat explain the spread in the breathing frequen-
cies for n=9. The physical parameters q and ' are consistent
with the values found for the d=25.4 mm well even though
$ is somewhat larger due to the decrease in !0x $Eq. !7"%.

Equilibrium configurations computed from the model $Eq.
!5"% for #2=9.24 and $=3 are shown in Figs. 2!h"–2!n" for
comparison to the experimental configurations. For each
value of n, the experimental and predicted positions are very
similar, and the particle arrangements are identical. In par-
ticular, the zigzag transition occurs at n=6 in both cases, so
that experimentally the critical value nc=6. For #2=9.24 and
$=0, nc=7, which does not agree with the experimental re-
sults. A comparison between the measured configurations
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FIG. 2. $!a"–!g"% Measured particle positions for confining bar
separation d=25.4 mm. $!h"–!n"% Computed positions for
#2=9.24 and $=3. By matching yrms between the experiment and
model, we find r0#1.40 mm. Agreement between measured and
computed configurations is excellent. For n(5 the configurations
are linear, at n=6 a zigzag develops and for n=19 a fully elliptical
cluster with a well-defined shell structure is seen. Both measured
and computed figures have a 1:1 aspect ratio.
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FIG. 3. $!a"–!g"% Measured particle positions for a confining
well with d=14.0 mm. $!h"–!n"% Computed positions for #2=30.7
and $=4. We estimate r0#1.65 mm by comparing yrms for the
model and experiment. For n(9 the configurations are linear, at
n=10 a zigzag develops. For n=17 the cluster remains in a zigzag
configuration. Both measured and computed figures have a 1:1 as-
pect ratio.
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• fixed rectangular well
     25.4 mm x 50.8 mm

• zigzag

• internal ptcls, 3-chain?

• straight line



Measured zigzag vs anisotropy

T. E. Sheridan, ONU Physics
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• anisotropy changed by adjusting d
• straight line for large anisotropy
     

• zigzag - 1D to 2D transition

• fat zigzag - all particles on

     "outside" of cluster

Sheridan and Magyar, PoP 17, 113703



What about metastable states?

T. E. Sheridan, ONU Physics

• metastable - potential barrier blocks rearrangement into lower
energy state

• 3 parameter model: n, !2, !
• effect of !2?
• large anisotropy !2 >> 1

• straight line arrangement, no metastable states 
• decrease !2

• line -> zigzag (1-chain -> 2-chain)
• all particles on cluster "edges"

• no "internal" barriers to rearangement (no "jammed" dust) 
=> no metastable states?

• decrease !2 some more
•"zigzag -> double zigzag (2-chain -> 4-chain)

•"appearance of inside particles
=> interior jammed ptcls lead to metastable configurations?



Computed number of states for ! = 1

T. E. Sheridan, ONU Physics
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• 1-2 stripes for higher !2

• nr. of states increases
roughly with n, !2

• up to 5 states found
• overall rich structure

• rich = unpredictable
• fractal?



Computed states for n = 14 and 15

T. E. Sheridan, ONU Physics
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n = 14, ! = 1, "2 = 7.96 n = 15, ! = 1, "2 = 7.96

• ground state is 2-chain
•!2nd state is symmetric

• 2 -> 4 chain?

• ground + 3 metastable configes
• ground state asymmetric 4-chain
• 2-chain zigzags in differing ways



Conclusions

T. E. Sheridan, ONU Physics

• considered Debye clusters in 2D biharmonic well
• arrangement transitions characterized

• as a function of n for fixed anisotropy and Debye shielding
• as a function of anisotropy for fixed n and shielding
•!good agreement between experiment and model

• number of metastable states explored with model
•!rich structure vs n (n > 10) and well anisotropy
• no clear patterns
• metastable states may caused by internal "jamming" 


