Dust transport in magnetic fusion plasmas

Experimental challenges and opportunities

Zhehui (Jeff) Wang

Los Alamos National Laboratory

(14th WPDP, May 29, 2015)

Dust & Donut

UNCLASSIFIED

Z. Wang Slide 2

Outline

Motivations (ITER \rightarrow Material issues)

- Heat: steady-state
- Transient heat: ELMs & Disruptions

Dust in magnetic fusion plasmas

- Good, Bad & "Dusty"
- Dust for transient heat management

Experimental opportunities and challenges

- Technological advances & new facilities
- Simulations of fusion plasma environment ۲
 - Magnetic field, Te ~ Ti, hot dust, hot surfaces

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

itter poloidal

Heating issues for Q > 5: (steady state) $\Gamma_H \sim r P_f/2b$ (b<1)

Neutrons: (80% E) ~ 1 MW/m² (1000 suns)

Alpha's = 1/4 neutrons

~ 3-30 MW/m²

Photons (hv): ??

(radiative cooling/N₂, Ar)

Federici et al, (2001); Lorte et al, (2007);

Z. Wang Slide 5

UNCLASSIFIED

Edge-localized mode (ELMs): transient heat ~ (7-10%) > 30 MW/m²

Disruption: The biggest "threat" to ITER

Full plasma transient

- Global MHD instability, VDE
- Frequency (~ 10%) x 15000 discharges
- Precursors
- Not fully predictable

Thermal quench

- Thermal plasma Heating/Melting
- Runaway electrons

Current (lp) quench (70% I_0)

- Runaway electrons "halo"
- Electromagnetic forces J (eddy) x B (10-65 MN /60 MN)
- Ip decay rate is critical for ITER:
 - the"goldilocks" rule: between 50 ms and 150 ms

Smirnov, Wesley, et al, NF 39 (1999);

Z. Wang Slide 7

Extreme Heat \rightarrow erosion \rightarrow Dust generation near surfaces (physics + chemistry)

Arc, q > 30 MW/m², Liquid/molten surface

Coagulation

Selwyn (1989) Merlino & Goree (2004)

Redeposition

ITER estimate: 350 MJ, several 10s of kg/disruption

UNCLASSIFIED

Z. Wang Slide 8

Dust is bad, because...

Safety

- Flammability
- Explosion
- Tritium retention/Radioactivity
- 2T/C

Negative impact on fusion

- Plasma core cooling (a few percent of W is sufficient)
- ELMs, Disruptions

UNCLASSIFIED

Problems arise from ITER and MF Reactors

PMI (Intense thermal & nonthermal heat flux)

- SOL, Steady-state Divertor
- Dust production/impurity, safety \rightarrow removal techniques
- ELMs
- Disruptions

Do controlled dust injections supply a solution? (alternatives do exist)

UNCLASSIFIED

"Good" use of dust for ELM pacing

Stopping of energetic particles during disruption

- Energetic ion (p, α) stopping in dust
- Runaway Electrons (10-20 MeV, 10 MA, 20-200 MJ) stopping

Dust transport (experiments)

4400

Nichols et al, JNM (2011)

UNCLASSIFIED

∠. Vang Slide 13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NSTX

Dust plasma for disruption mitigation

ORNL/ITER

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Insufficient dust injection speed

Uncertainties in dust ablation/transport models

Dust ablation models

http://xdb.lbl.gov/Section3/Sec_3-2.html

UNCLASSIFIED

Ablation model

The value of f_s .

Magnetic shielding

Z. Wang Slide 17

 $4\pi r_d^2 q_\infty f_S$

dN

dt

Shielding mechanisms/size dependent)

Electrostatic shielding ($\Delta \Phi = 1-2 \text{ k}_{\text{B}}\text{Te/e}$)

amman

Gas/plasma dynamic (NGPS)

Dust transport, straight trajectories?

• Unbalance heat & particle fluxes \rightarrow Rocket effect.

Dust transport in MF plasmas, a "dusty" problem

- Ablation physics
 - Mass not conserved
 - Rocket effect
- Warm ions, high dust temp.
 - Charge, motion, energy balance

Large gradient

- Radiation zone within closed fluxes
- SOL ~ 1 cm thick, heat flux 30 MW/m², x10 in ITER

Irregular dust geometry, shape, composition

- Point/Sphere approximations break down (Tensor force, fine grid/long computation time)
- Additional degrees of freedom (rotation, spin)

 $\frac{dm_d}{dt}\mathbf{u}_d + m_d\frac{d\mathbf{u}_d}{dt} = \sum_i \mathbf{F}_j$

UNCLASSIFIED

Winter, PoP (2000)

- Motivations (ITER \rightarrow Material issues)
 - Heat: steady-state & transients (ELMs)
 - Disruptions
- Dust in magnetic fusion plasmas
 - Good, Bad & "Dusty"
 - Dusty plasmas for disruption mitigation

Experimental opportunities and challenges

- Technological advances & new facilities
- Simulations of fusion plasma environment
 - Magnetic field, Te ~ Ti, hot dust, hot surfaces

UNCLASSIFIED

Dust ablation measurement through emissions

Dust/condensed matter injection technologies

Performances:

- Velocity
- Mass control;
- Frequency control;
- Material flexibility;

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

New Experimental Facilities (US) → transport/burn-up

HIDRA

Initially: 0.3 T, n=5e18, T=5eV, 30 minutes

UNCLASSIFIED

Z. Wang Slide 23

Physics of warm/hot dust

- Dust charging, growth
 - Hot surfaces, Hot dust
 - Te ~ Ti (ion cyclotron heating)
 - High density (> 10^{16} m³)

Dust transport on/near surfaces

removal methods

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

CMOS

PMI poses new and important problems in the ITER era

• (an unconventional plasma/interdisciplinary problem)

Better understanding of dust physics

• Dust transport is a central issue

Experiments are needed to bridge the knowledge gap,

- 'control dust' inventory and
- ELMs/Disruptions applications;
- Experimental facilities like MDPX can address the dust challenges
 - Charging, growth
 - Removal methods

UNCLASSIFIED

UNCLASSIFIED

Z. Wang Slide 26

