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Motivation 

• Water-ice grain typically assumed spherical in past 

– Grain density assumed to have power law dependence (n ~ r -p) 

• Nonspherical geometry more likely: 

– Water molecule: large dipole moment  attracted to strong E-field 

– Charged sphere: unstable for elliptical deformation  E-field gradient  

• Several observations indicate elongated grains 

• Check spherical assumption using laboratory experiment 
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Upgraded version of Max-

Planck Inst.’s experiment 
[S. Shimizu et al. JGR 2010] 
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More details 

RF generator 

Frequency: 13.56 MHz 

RF power: up to 1-2 W 

Bellows 

Adjustable 

H2O feeding system 

Water tank filled with water 

Residual gas purged by pump 
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Experiment procedure 

• Start cooling process (takes 30 min) 

• Fill the chamber with inert/H gas (100 − 1000 mTorr) 

• Ignite the plasma with rf (few W power) 

• Introduce water vapor (few mTorr) 

 Ice grains spontaneously form and levitate between electrodes  
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Ice grain clouds 
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• Red clouds: Ice grains 

• Large grains levitating near the top and bottom electrodes 

• Ice grains form without nucleation agent: homogeneous nucleation 

Ar 950 mTorr + few mTorr water vapor 

Laser  

sheet 



Typical growth rate 

• Ice grains first grow fast and then size saturates 

  Do not know why growth stops 

• Typical growth time: 1-2 min 
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Pressure effect on size and shape 

• Images taken by telescope lens & digital SLR camera with He-Ne laser 

• Larger and more elongated ice grains form at low ambient gas pressure 
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Aspect ratio & length 

• As ambient gas (Ar) pressure decreases 

– Aspect ratio (=max length/max width) increases from 1 to 5 

– Length increases from 3 μm to 70 μm 

  Nonspherical growth occurs: mean free path > screening length 
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Ambient gas effect 

50 μm 

H plasma 

He plasma 
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Ambient gas effect 

 Ne plasma 

Ar plasma 

50 μm 
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Aspect ratio & length 

• As mass of ambient gas decreases 

– Aspect ratio (=max length/max width) increases then saturated at ~5 

– Length increases from 30 μm to 300 μm 
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Alignment of elongated grains 

• Typically ice grains line up vertically  

• Grains separated with regular space  Coulomb repulsive force  

200 μm 
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Size (length) distribution 

• Size distributions 

closer to log-

normal than 

power law 
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Fractal nature 

• Ice grain composed of different scale 

‘Y’ or ‘V’ branches  

  “fractal” 

• Typical fractal dimension: 1.7 
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In-situ FTIR spectroscopy 

• Infrared absorption spectroscopy used to determine ice grain phase 

(crystalline/amorphous) 

Ice grains 
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Absorption spectroscopy 

• All the absorption spectra: distinct peak at 3.1 μm  crystalline  

 (amorphous ice has no distinct peak) 

• Peak position contains temperature information: ~ 180 K  
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Methanol and acetone ice grains 

• Successful with acetone and methanol 

– large dipole moment 

• Unsuccessful with carbon dioxide  

– no dipole moment 

 Indicates dipole moment likely important for 

ice grain formation and growth 

Acetone ice 

Methanol ice 

50 μm 
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Material Dipole moment 

Acetone 2.91 Debye 

Water 1.85 Debye 

Methanol 1.69 Debye 

CO2 0 



Growth mechanisms 

• Two possible ways 

 (1) Agglomeration of small particles 

– When small particles obtain kinetic energy larger than Coulomb 

repulsive energy, coagulation growth may occur 

– Dust-acoustic wave may provide such energy 

 (2) Accretion of water molecules  

– If above method does not occur, direct accretion of water molecules can 

instead lead to particle growth 

– Details shown on next slide 

• Do not know which one is dominant due to lack of diagnostic 
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Dipole-related accretion model 

• Consider ice grain deformed as below: 

– Electrons on surface concentrate on sharp edges  E-field gradient 

– Water molecules within screening length attracted to sharp edges 
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Dipole-related accretion model 

• Ice grain becomes more elongated 

• Analogous to iron filings attracted to ends of bar magnet 

• Requires collisionless trajectory of water molecules  
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Collisional regime 

• Suppose water molecule attracted to sharp edge has a collision  

• When collision with light gas such as H or He: 

– Water molecule scatters little and keep its original course 

• When collision with heavy gas like Ar or Kr:  

– Water molecule scatters significantly, deflects from its original course 

Collision with 
H or He Collision with 

Ar or Kr 

23 



Conclusion 

• Laboratory experiment creates ice dusty plasma 

• Several ice grain diagnostics developed and used 

– Laser diffraction, laser extinction, laser scattering 

– Long-distance microscope, high speed camera, FTIR spectroscopy 

• Findings: 

– Nonspherical growth typically occurs in collisionless regime 

– Nonspherical growth occurs even in collsional regime if ambient gas 

mass is light 

– Elongated ice grains tend to align along the electric field direction 

• Future work: 

– Lower experiment temperature to obtain amorphous ice grains 

– Measure water vapor temperature and density  
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Alignment of ice grains 

• Similar size and shape grains tend to levitate on same horizontal 

plane (by force balance) 

• Since ice grains elongated: 

– q/2 on one end, q/2 on the other end 

• Vertical alignment preferred to minimize electric potential energy 
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