Formation of elongated, fractal-like water-ice grains in extremely cold weakly ionized plasma

K.-B. Chai and Paul Bellan Applied Physics, Caltech

Motivation

- Water-ice grain typically assumed spherical in past
 - Grain density assumed to have power law dependence $(n \sim r^{-p})$
- Nonspherical geometry more likely:
 - Water molecule: large dipole moment \rightarrow attracted to strong E-field
 - Charged sphere: unstable for elliptical deformation \rightarrow E-field gradient
- Several observations indicate elongated grains
- Check spherical assumption using laboratory experiment

Apparatus

K.-B. Chai and P. Bellan, Geophys. Res. Lett, 40, 6258 (2013)

Photo

More details

RF generator

Frequency: 13.56 MHz RF power: up to 1-2 W

Adjustable electrodes

Fine bellows: enable us to adjust gap distance

H₂O feeding system

Water tank filled with water Residual gas purged by pump

Experiment procedure

- Start cooling process (takes 30 min)
- Fill the chamber with inert/H gas (100 1000 mTorr)
- Ignite the plasma with rf (few W power)
- Introduce water vapor (few mTorr)
 - \rightarrow Ice grains spontaneously form and levitate between electrodes

Ice grain clouds

Ar 950 mTorr + few mTorr water vapor

- Red clouds: Ice grains
- Large grains levitating near the top and bottom electrodes
- Ice grains form without nucleation agent: homogeneous nucleation

Typical growth rate

- Ice grains first grow fast and then size saturates
 → Do not know why growth stops
- Typical growth time: 1-2 min

Pressure effect on size and shape

Composite image

- Images taken by telescope lens & digital SLR camera with He-Ne laser
- Larger and more elongated ice grains form at low ambient gas pressure

Aspect ratio & length

- As ambient gas (Ar) pressure decreases
 - Aspect ratio (=max length/max width) increases from 1 to 5
 - Length increases from 3 μm to 70 μm
- \rightarrow Nonspherical growth occurs: mean free path > screening length

Ambient gas effect

Ambient gas effect

Aspect ratio & length

- As mass of ambient gas decreases
 - Aspect ratio (=max length/max width) increases then saturated at ~5
 - Length increases from 30 µm to 300 µm

Alignment of elongated grains

- Typically ice grains line up vertically
- Grains separated with regular space \rightarrow Coulomb repulsive force

Size (length) distribution

Fractal nature

- Ice grain composed of different scale
 'Y' or 'V' branches
 - \rightarrow "fractal"
- Typical fractal dimension: 1.7

In-situ FTIR spectroscopy

 Infrared absorption spectroscopy used to determine ice grain phase (crystalline/amorphous)

Absorption spectroscopy

- All the absorption spectra: distinct peak at 3.1 µm → crystalline (amorphous ice has no distinct peak)
- Peak position contains temperature information: ~ 180 K

Methanol and acetone ice grains

- Successful with acetone and methanol
 - large dipole moment
- Unsuccessful with carbon dioxide
 - no dipole moment
- → Indicates dipole moment likely important for ice grain formation and growth

Material	Dipole moment
Acetone	2.91 Debye
Water	1.85 Debye
Methanol	1.69 Debye
CO ₂	0

Growth mechanisms

- Two possible ways
 - (1) Agglomeration of small particles
 - When small particles obtain kinetic energy larger than Coulomb repulsive energy, coagulation growth may occur
 - Dust-acoustic wave may provide such energy
 - (2) Accretion of water molecules
 - If above method does not occur, direct accretion of water molecules can instead lead to particle growth
 - Details shown on next slide
- Do not know which one is dominant due to lack of diagnostic

Dipole-related accretion model

- Consider ice grain deformed as below:
 - Electrons on surface concentrate on sharp edges \rightarrow E-field gradient
 - Water molecules within screening length attracted to sharp edges

Dipole-related accretion model

- Ice grain becomes more elongated
- Analogous to iron filings attracted to ends of bar magnet
- Requires collisionless trajectory of water molecules

Collisional regime

- Suppose water molecule attracted to sharp edge has a collision
- When collision with light gas such as H or He:
 - Water molecule scatters little and keep its original course
- When collision with heavy gas like Ar or Kr:
 - Water molecule scatters significantly, deflects from its original course

Conclusion

- Laboratory experiment creates ice dusty plasma
- Several ice grain diagnostics developed and used
 - Laser diffraction, laser extinction, laser scattering
 - Long-distance microscope, high speed camera, FTIR spectroscopy
- Findings:
 - Nonspherical growth typically occurs in collisionless regime
 - Nonspherical growth occurs even in collsional regime if ambient gas mass is light
 - Elongated ice grains tend to align along the electric field direction
- Future work:
 - Lower experiment temperature to obtain amorphous ice grains
 - Measure water vapor temperature and density

Vortex motion

Ar plasma

Alignment of ice grains

- Similar size and shape grains tend to levitate on same horizontal plane (by force balance)
- Since ice grains elongated:
 - q/2 on one end, q/2 on the other end
- Vertical alignment preferred to minimize electric potential energy