Dust as In-Situ Probes for Plasma Magnetic Field Interactions in a Dusty Plasma

Michael Dropmann^{1,2}, Rene Laufer¹, Georg Herdrich^{2,1}, Lorin S. Matthews¹, Truell W. Hyde¹

 Center for Astrophysics, Space Physics and Engineering Research Baylor University, Texas
Institut für Raumfahrtsysteme (Institute of Space Systems) Universität Stuttgart, Germany

I CLANK

Motivation

- Lunar Swirls
 - Albedo patterns on the lunar surface.
 - No correlation to surface features.
 - Correlation to strong crustal magnetic fields.
 - Origin? Interaction of dust, plasma and magnetic fields?
- Magnetic Field Plasma Interaction
 - Fusion, Space Propulsion, Magnetospheres, etc.
- Development of a method to map electric forces in a plasma.

Experimental Setup

- Experiments in GEC RF reference cell.
- Investigation of plasma magnetic field interaction close to a non-conductive surface.
- Magnet platform (different magnet configurations possible) placed on lower electrode.

Parameter	Value
Pressure	5.3 Pa (40 mTorr)
Power	IIW
Bulk plasma density	$2 \cdot 10^{15} \text{ m}^{-3}$
Bulk electron temperature	5 eV
Magnetic flux density	< 0.3 T
Dust particles	12 micron MF

Experimental Setup

- Single neodymium dipole magnets of 6.35mm diameter in horizontal and vertical orientation.
- 3D-printed holders (ABS) for swirl magnetic field geometry with multiple neodymium dipole magnets with 1.6mm diameter.

Analysis Method

- By tracking dust particles in the laser fan with a high speed camera 2D-maps of dust accelerations can be generated.
- Moving the laser plane and taking data from two perspectives allowing creation of a 3D data set of the forces onto the dust particles.

Horizontal Accelerations (Single Dipole)

Vertical Accelerations (Single Dipole)

Small Scale Models of Lunar Swirls

- Based on Lunar Prospector data the magnetic fields at Airy and Reiner-Gamma formation have been described by multiple dipole sources [Hemingway and Garrick-Bethell, JGR, 2012].
- Small scale versions (1:3,000,000 and 1:2,000,000) of these models have been built using dipole magnets and a 3D printer.

Reiner-Gamma Formation Horizontal Dust Acceleration

Reiner-Gamma Formation Horizontal Dust Acceleration

Analogy to Dust Transport on the Moon

- Experiment:
 - Force and dust patterns resemble Lunar swirl.
 - Dust transported into regions of bright albedo.
- In lunar environment:
 - Dust charged positively by photemission, transport in opposite direction. <u>Contradicts dust transport</u> <u>theory of bright dust.</u>
 - Dark dust might be transported or immature surface uncovered.

Conclusions

- A method has been described to use dust particles as probes to measure electric forces in a magnetically perturbed plasma.
- Models of Lunar magnetic anomalies have been built and tested with the method.
- 3D force maps have been generated and dust deposition pattern observed, resembling Lunar swirls.

Thank you for your attention!

Airy formation results

Experiment Parameters

Parameter	Value
Bulk plasma density	$2 \cdot 10^{15} \text{ m}^{-3}$
Bulk electron temperature	5 eV
Pressure	5.3 Pa (40 mTorr)
Electron mean free path	7.3 mm
lon mean free path	0.5 mm
Magnetic Flux Density	< 0.3 T
Electron Larmor radius	0.018 – 4.4 mm
Ion Larmor radius	6 – 1500 mm
lon speed in sheath	4000 m/s

Vertical Acceleration Profiles

- The sheath profiles are significantly altered by the magnetic field.
- With magnetic field the Debye length in the sheath seems to be significantly reduced and the maximum deceleration depends strongly on radial position.

Levitating Particle Ring

Horizontal Magnet I

Horizontal Magnet II

