Direct fitness benefits of delayed dispersal in the cooperatively breeding red wolf (*Canis rufus*)

Amanda M. Sparkman, a Jennifer R. Adams, b Todd D. Steury, c Lisette P. Waits, d and Dennis L. Murray e

Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada, bDepartment of Fish and Wildlife Resources, University of Idaho, Moscow, ID 83844, USA, cSchool of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA, dDepartment of Fish and Wildlife Resources, University of Idaho, Moscow, ID 83844-1136, USA, and eDepartment of Biology, Trent University, Peterborough, ON K9J 7B8, Canada

The existence of cooperative breeding in diverse animal taxa has inspired much interest in what nonbreeding helpers gain from participation in rearing nondescendent young. A major theoretical explanation for this phenomenon has revolved around the notion of inclusive fitness, where delayed dispersers in a family-based group gain indirect fitness benefits by fostering the viability of close relatives. There is potential, however, for direct fitness benefits in delayed dispersal itself. We explored the relationship between delayed dispersal and lifetime fitness in a reintroduced population of the cooperatively breeding red wolf, *Canis rufus*, which exhibits delayed dispersal but few opportunities to breed in the natal pack. We present evidence that male wolves that delayed dispersal to later ages had lower mortality risk from natural and anthropogenic sources combined and increased probability of becoming reproductive in their lifetimes. Furthermore, delayed dispersal did not result in delayed age at first reproduction. For females, however, the relative costs and benefits of delaying dispersal to later ages were more complex. In general, we provide evidence that there are direct fitness benefits to delaying dispersal in red wolves even in the absence of reproductive opportunities in the natal pack. Thus, we lend support to the hypothesis that direct fitness benefits may in themselves be sufficient to facilitate the evolution of delayed dispersal requisite to cooperatively breeding social systems. **Key words:** age at first dispersal, age at first reproduction, canids, cooperative breeding, lifetime reproductive probability, lifetime reproductive success, survival. [Behav Ecol 22:199-205 (2011)]

The evolution of cooperative breeding within family groups has often been described as a consequence of kin selection, where any direct fitness cost of helping behavior by nonbreeders is compensated for by gains in indirect fitness, leading to a net increase in inclusive fitness (Hamilton 1963, 1964; Stacey and Koenig 1990). However, although indirect fitness benefits may be influential in some systems, their importance relative to the direct fitness benefits of helping may have been overestimated (Cockburn 1998; Clutton-Brock 2002). In some cases, helping behavior may be costly in terms of energy expenditure and/or delayed reproduction due to delayed dispersal (Heinsohn and Legge 1999). Nevertheless, helping behavior, and the strategy of delayed dispersal that it entails, may also be associated with direct fitness benefits such as reproductive opportunities in the natal territory, group foraging efficiency and/or defense, and reduced dispersal-related mortality risk (Koenig et al. 1992; Cockburn 1998; Ekman et al. 2004).

The presence of delayed dispersal in noncooperatively breeding groups supports the notion that such behavior may confer substantial benefits over and above those associated with indirect fitness, leading to the hypothesis that helping behavior itself may evolve only secondarily to delayed dispersal (Brown 1987; Ligon and Stacey 1991). According to this scenario, selection for delayed dispersal as a stepping-stone to a cooperative breeding strategy will be at least partially related to direct effects on lifetime fitness. Studies focusing on early-life costs versus benefits of dispersal have shown that optimal dispersal strategy can vary widely across species, social and mating systems, and ecological contexts (reviewed in Solomon and French 1997; Clobert et al. 2001; Koenig and Dickinson 2004). In light of the diversity in potential early-life effects of dispersal, detailed assessment of its effects in relation to fitness-related traits spanning entire life spans are needed across a range of organisms with varying life-history characteristics.

Pioneering studies in group-living birds have shown direct lifetime fitness benefits of both delayed dispersal (Ekman et al. 1999) and delayed breeding (Hawn et al. 2007). Other studies in diverse avian species have demonstrated survival and reproductive benefits of remaining within the natal group (Stacey and Koenig 1990; Koenig and Dickinson 2004). Among mammals, cooperative breeding has been reported primarily within mongoose, rodent, primate, and canid species (Solomon and French 1997), and detailed long-term studies in meerkats (*Suricata suricatta*) and dwarf mongoose (*Helogale parvula*) have demonstrated both survival and intragroup reproductive benefits of delaying dispersal for subordinates (e.g., Creel and Waser 1994; Waser et al. 1994; Clutton-Brock et al. 2001; Griffin et al. 2003). Nevertheless, little is yet known regarding the direct lifetime fitness implications of delayed dispersal in other cooperatively breeding mammals, particularly among species where breeding opportunities in or around the natal home range are rare, making the benefits of delay less clear.

We tested for direct costs and benefits of delayed dispersal in a population of the red wolf, *Canis rufus* that was derived from a captive breeding program and reintroduced into the Alligator River National Wildlife Refuge in North Carolina...
(McCarley and Carley 1979; USFWS 1984). In this population, red wolves generally live in family groups composed of a socially and genetically monogamous breeding pair; nonbreeding offspring with delayed dispersal, and pups (Sparkman A, unpublished data). Most pups disperse from their natal pack to breed, making age at first dispersal (AFD) the major decision, rather than dispersal versus philopatry per se. Delayed dispersal, therefore, is more likely a function of the benefits of extended tenure on the natal territory, group living, and/or dispersal risk rather than breeding opportunities in the natal group.

Helping behavior is found throughout the Canis genus (Moehlman 1986; Mech et al. 1999; Packard 2003) and is widespread among other canids, such as the African wild dog (Lycaon pictus) and dhole (Cuon alpinus) (reviewed in Moehlman and Hofer 1997). Although behavioral studies have yet to document actual helping behavior other than den attendance in red wolves (Phillips et al. 2003), there is evidence of such behavior in that pups with helpers show increased body size and higher early-life survival at low population density (Sparkman et al. 2010). However, at high population density, pups with helpers show reduced body size and no difference in survival, indicating that in some circumstances, helpers may prioritize their own energetic needs. Thus, as in other cooperatively breeding species (e.g., Malcolm and Marten 1982; Harrington et al. 1983; Clutton-Brock et al. 2000; Gusset and MacDonald 2009), helping behavior in red wolves appears to be facultative. Furthermore, whereas the presence of helpers is positively correlated to lifetime reproductive success (LRS) of female pups, it is negatively correlated to LRS of male pups (Sparkman et al. 2010). Combined, these ambiguous effects of helpers suggest that the evolution of delayed dispersal in wolves may be largely driven by direct rather than indirect fitness benefits.

For our population of red wolves, we predicted a net positive effect of delayed dispersal on direct fitness in spite of limited reproductive opportunities in the natal group, thereby partially accounting for the evolutionary stability of a facultative cooperative breeding system. To test this prediction, we used 16 years of data on radio-collared wolves to ask whether delayed dispersal is associated with 1) decreased early-life mortality risk from natural and anthropogenic sources, 2) increased lifetime probability of reproduction, and/or 3) delayed age at first reproduction. We also assess 4) whether there appears to be a cost to LRS of delaying dispersal for those who become reproductive. Moreover, as sex differences in the ramifications of dispersal strategy are present in some species (e.g., Wasel et al. 1994; Ekman et al. 1999; Griffin et al. 2003), we give particular attention to similarities and differences between the sexes in our study system.

MATERIALS AND METHODS

Study system

We studied a population of red wolves successfully reintroduced into the Alligator River National Wildlife Refuge in North Carolina in 1987 after their extinction from their native distribution throughout the southeastern United States (McCarley and Carley 1979; USFWS 1984). Between 1987 and 2007, free-ranging wolves were captured primarily via foothold traps, equipped with very high frequency radio-collars and subsequently monitored intensively to gather detailed information on mortality, dispersal, and reproduction (Phillips et al. 2003). Our analyses focus on wild-born individuals born between 1990 and 2006, which follows the period of initial establishment of the population. This analysis is restricted to animals deemed to be 100% red wolves (see Adams et al. 2007) as dispersal and reproductive behavior of wolf–coyote hybrids can be confounded by genetic status (Sparkman AM, Adams J, Steury TD, Waits L, Murray DL, manuscript in preparation).

Statistical analyses

AFD was defined as the age at which an individual permanently left his or her natal pack and either joined another pack or became a “floater” outside any established home range. Because animals were monitored for survival and movements twice weekly, dispersal age and timing was known with notable precision (±14 days). We treated dispersal events as a categorical variable with 5 levels: 0 (6–12 months), 1 (13–24 months), and 2” (25” months). This classification scheme was chosen to reveal costs versus benefits of dispersal on a yearly basis, which is an appropriate unit given that both males and females are annual breeders potentially capable of becoming sexually mature within their first year (Rabon 2009).

Dispersal status was known for 126 individuals, of which 80 dispersed prior to reproduction. The remainder either did not disperse or become reproductive during their lifetimes (n = 39) or became reproductive in their natal pack (n = 7). Of those that dispersed, 35% dispersed at 0 years, 45% at 1 year, and 20% at 2 years, and 41% became reproductive. A logistic analysis with AFD as the response variable and sex as the dependent variable showed no difference in AFD between sexes (n = 80, χ² = 1.38, P = 0.501).

Because the reintroduced population showed marked growth during the study period and individuals faced potential density-dependent effects, we included natal (year of birth) population density as a covariate in all analyses. Analyses were conducted using SAS 9.2 (SAS Institute, Cary, NC).

Survival

To test for a role of AFD on early-life survival, we constructed logistic mixed models using Proc Glimmix with survival to age 2 (yes or no) as the response variable, AFD and sex as main effects, natal population density as a covariate, all 2-way interactions, and litter as a random effect. We compared the probability of survival from 1 to 2 years of age between 2 major groups: 1) those that dispersed at age 0 and 2) those that remained on the natal territory for age 0—that is, individuals that delayed dispersal to 1 or 2 years of age, died prior to dispersal, or became reproductive on the natal territory. The presence of older siblings that have delayed dispersal (i.e., helpers) has also been shown to affect pup survival to age 2 (Sparkman et al. 2010). As the majority of pups in our sample had helpers present in their natal pack (90/104), we were unable to formally test for an effect of helper presence/absence. However, as those without helpers showed trends in the same direction as those with helpers, and results from analyses conducted both with and without pups that did not have helpers had a similar outcome, we present results from the combined analysis here.

The reintroduced red wolf population has experienced high levels of anthropogenic mortality due to proximity to regions of human activity, such as roads, agricultural fields, and hunting areas. Because our final sample size for survival was too small to distinguish between natural, anthropogenic, and unknown causes of death (36 deaths, 68 survivors), we present results for animals dying of all fates combined. Thus, we assume that factors that make individuals more vulnerable to natural death similarly increase risk from anthropogenic factors. For censored individuals (lost due to radio-collar failure), we assume that death occurred at or around the time of censoring, as results with and without censored individuals were qualitatively similar. This assumption is further justified...
by the intensive monitoring of the recovering population, which ascertained that the vast majority of living wolves were located, and reproductive events recorded.

Lifetime probability of reproduction
Tissue samples were collected from each animal at time of capture and used to establish individual identity and parentage from 18 microsatellite loci via genetic exclusion and the program CERVUS 2.0 (Marshall et al. 1998; for detailed genetic methods, see Adams 2006). This information was used to determine whether individuals reproduced successfully in their lifetimes, that is, whether they could be identified as parents for one or more litters. To test for a role of AFD on lifetime probability of reproduction, we constructed logistic mixed models using Proc Glimmix with lifetime reproductive status (yes or no) as the response variable, AFD and sex as main effects, natal population density as a covariate, all 2-way interactions, and litter as a random effect. We compared the lifetime probability of becoming reproductive between the same 2 groups mentioned above: those that dispersed at age 0 and those remained in their natal packs during this time.

Age at first reproduction
Potential costs of dispersal at older ages on age at first reproduction of dispersers were assessed using analysis of covariance (ANCOVA) with age at first reproduction as the dependent variable, AFD (0, 1, or 2) and sex as main effects, and population density as a covariate, and all 2-way interactions. Age at first reproduction in years was treated as a continuous variable and ranged from 1 to 7 years for those for whom dispersal status was known. Because our sample was derived from 34 individuals from 24 litters, we could not introduce litter as a random effect into our model. However, our findings remained consistent even when considering only litters with a single individual represented, demonstrating that any lack of independence among litter mates does not substantially bias our results.

Lifetime reproductive success
We had a small sample of individuals for whom LRS was known (n = 12 males, 10 females). LRS was defined as the total number of pups produced in an individual’s lifetime (up to 13 years of age, with a mean life span of 3.33 ± 2.66 years) that survived from birth in the spring until the following fall and was estimated as the sum of yearly counts of pups captured in the den and/or observed in a pack during the following months. Only individuals that had helpers present in their natal pack were included in the analysis as the presence of helpers has been shown to influence LRS in red wolves (Sparkman et al. 2010), and our sample for packs without helpers was negligible. We constructed ANCOVA models with AFD (0, 1, or 2) as a main effect and natal population density as a covariate. We conducted these analyses by sex because we had information on LRS for only a single male dispersing at age 0. At least 3 individuals were available for each dispersal age in our sample of females. Litter was not included as a random effect as only 4/18 litters in our sample contained more than 1 individual, and stepwise exclusion of these litters did not alter our findings.

RESULTS
Survival
The final model for early-life survival contained AFD, population density, and litter as a random effect (Table 1). There was a significant effect of AFD on survival to age 2, with wolves dispersing at age 0 having a lower probability of survival (Figure 1A). Though there was no significant interaction be-

Table 1	Mixed model analysis of survival to age 2 and lifetime probability of reproduction in red wolves with litter included as a random effect (n = 104, 34 litters)			
Survival to age 2	AFD	1.69	7.08	0.010
Population density	1.69	5.63	0.020	
Lifetime probability of reproduction	AFD	1.67	1.20	0.277
Sex	1.67	1.52	0.223	
AFD × sex	1.67	3.93	0.052	
Population density	1.67	8.71	0.004	

| df, degrees of freedom. |
|-----------------|-----------------|-----------------|
| Survival to age 2 | AFD | 1.69 | 7.08 | 0.010 |
| Population density | 1.69 | 5.63 | 0.020 |
| Lifetime probability of reproduction | AFD | 1.67 | 1.20 | 0.277 |
| Sex | 1.67 | 1.52 | 0.223 |
| AFD × sex | 1.67 | 3.93 | 0.052 |
| Population density | 1.67 | 8.71 | 0.004 |

between AFD and sex, this relationship appeared to be primarily driven by males as analyses conducted by sex show a significant difference between males (P = 0.0108) but not females (P = 0.624) that dispersed at age 0 versus those that delayed dispersal. There was also a significant effect of natal population density, with both sexes being less likely to survive to age 2 at higher density.

Lifetime probability of reproduction
The final model for lifetime probability of reproduction contained AFD, sex, sex × AFD, population density, and litter as a random effect (Table 1). There was a borderline significant interaction between AFD and sex, and comparison of least square means reveals that males dispersing at age 0 were less likely to become reproductive than those that were delayed (P = 0.0416) (Figure 1B). No difference was evident between

![Figure 1](https://via.placeholder.com/150)

Figure 1
Proportion of wolves surviving to age 2 (A) and proportion attaining reproduction in their lifetimes (B) in relation to dispersal age for red wolves (n = 104).
dispersal groups for females. There was also a significant effect of natal population density, with both sexes being less likely to become reproductive at higher density.

Age at first reproduction
The final model for age at first reproduction contained AFD and sex, and sex × AFD as main effects (Table 2). Population density and its interaction with sex were nonsignificant \((P > 0.1) \) and were therefore dropped from the model. There was a significant relationship between AFD and age at first reproduction, however, a marginally significant interaction between sex and AFD suggests that this relationship is driven predominately by females (Figure 2). Comparisons of least square means revealed that females delaying dispersal to 2+ years had later ages at first reproduction \((0 \text{ vs. } 2+: P = 0.0843; 1 \text{ vs. } 2+: P = 0.0006) \). However, there was no significant difference in age at first reproduction between individuals dispersing at age 0 or 1 \((P = 0.417) \). Finally, females had marginally significantly later age at first reproduction than males, as previously reported in a larger sample (Sparkman et al. 2010).

Lifetime reproductive success
Females dispersing at age 1 had marginally significantly greater LRS than females dispersing at either age 0 or 2+ \((P = 0.0839) \), though our analysis for this sex is limited to showing a lack of difference between dispersers at 1 and 2+ years.

DISCUSSION
Direct fitness benefits of delaying dispersal in group-living species are a function of both survival and reproductive costs and benefits. Survival to reproductive age is a critical component of lifetime fitness, and dispersal has been shown to be a high risk endeavor in diverse taxa, perhaps due to dangers associated with independently traveling long distances in unfamiliar territory (e.g., Peterson et al. 1984; Fuller 1989; Harrison 1992; Ridley et al. 2008; Devillard and Bray 2009). In species that territory (e.g., Peterson et al. 1984; Fuller 1989; Harrison 1992; H. parvula) where early dispersers had lower survivorship than those that remained in their natal pack during this time (Figure 1A). Given that less than 5% of wolves reproduce prior to age 2, it is not surprising, therefore, that early dispersers also showed decreased lifetime probability of reproduction (Figure 1B). Approximately half of wolves surviving to age 2 become reproductive, but this percentage was consistent for both early and late dispersers (see Figure 1). The relationship between lifetime probability of reproduction and AFD, therefore, appears to be primarily driven by survival to reproductive age. This evidence for a survival cost to early dispersal in male red wolves is consistent with studies in coyotes \(C. latrans \) and dwarf mongoose \(H. parvula \) where early dispersers had lower survivorship (Harrison 1992; Waser et al. 1994).

Although increased mortality and decreased probability of reproduction in early dispersers represents a clear fitness cost,
there is also a possibility that this cost could trade off with a fitness benefit, such as earlier age at first reproduction. However, the marginally significant sex × AFD interaction indicated that delaying AFD did not result in delayed reproduction in males as it did in females (Figure 2), suggesting that the major decision for males may be whether to “float” or remain in the natal pack prior to reproduction rather than to negotiate a trade-off between survival and timing of reproduction per se. This is consistent with findings in gray wolves (*C. lupus*), where individuals dispersing at older ages were more successful in pairing and denning subsequent to dispersal than those dispersing as pups (Gese and Mech 1991). We were unable to assess LRS for age 0 dispersers, but we do provide evidence that LRS does not differ between for 1 and 2* year dispersers (Figure 3). Combined, these data on survival and reproduction suggest that for males, there are substantial benefits to delaying dispersal to at least 1 year of age and that delaying to 2* does not carry long-term costs for reproductive success relative to dispersing at age 1. Thus, there appear to be direct fitness benefits to delaying dispersal for males, over and above any indirect fitness benefits of helping rear younger siblings while remaining in the natal pack.

Evidence for a strong mortality cost for dispersal at age 0 in females was weak—though there was no significant interaction between sex and AFD, analyses conducted by sex suggest that the significant effect of AFD in the combined analysis was driven largely by males (Figure 1A). Thus, the lack of a significant 2-way interaction between sex and AFD may be a result of low power. Whether or not females dispersing at this age do experience a slight increase in mortality risk is a moot point from a fitness perspective, however, given that there was no difference in lifetime probability of reproduction for early versus late dispersing females (Figure 1B). The only sign of a cost to delayed dispersal was found in a delay in age at first reproduction for females delaying to 2* years of age (Figure 2). This delay could potentially result in a cost to LRS as individuals with earlier ages at first reproduction tend to have longer reproductive life spans and consequently higher LRS (Sparkman AM, Adams J, Steury TD, Waits L, Murray DL, manuscript in preparation). Interestingly, we found that LRS was highest for individuals dispersing at 1 year relative to those dispersing at 0 or 2* years (Figure 3). Although the small sample size requires that any conclusions from these findings must be made cautiously, it appears that at the very least there is no tangible cost to delaying dispersal to 1 year (and that there may be a benefit), but delaying longer than this may carry a cost via reduced reproductive life span due to delayed reproduction.

In light of these findings, it appears that the direct fitness costs and benefits of delaying dispersal are not as easily resolved for female red wolves as for males. Other work suggests that females, which are smaller in general, may suffer reductions in body mass to a greater extent than males when faced with competition for resources (Sparkman et al. 2010). Thus, it is possible that females are more plastic with regard to both dispersal age and reproductive success, making a consistent strategy more difficult to discern. Nevertheless, females can and do delay dispersal to later ages in equal proportion to males, suggesting that if direct benefits do not in fact suffice, indirect fitness benefits associated with cooperative breeding (if they exist) could play a more critical role for females than for males in the evolutionary maintenance of a delayed dispersal strategy.

One difficulty with observational studies of this kind is their limited ability to establish actual targets of selection from other correlated traits (Lande and Arnold 1985). Is it in fact dispersal strategy that results in the specific costs and benefits discussed here or is dispersal age merely incidental to other pivotal traits, such as body size, that may more directly affect survivorship and reproductive potential? The mechanisms underlying dispersal decisions are notoriously difficult to discern, even within a single species, though body size and/or social dominance have been implicated in some studies (e.g., Gese et al. 1996; Koopman et al. 2000; Ekman et al. 2002; Zedrosser et al. 2007). Some studies in canids have suggested that there is no clear association between pup body size and dispersal age (e.g., Gese and Mech 1991; Soulsbury et al. 2008). However, in red wolves, it appears that male pups that either disperse at age 0 or delay to 2+ years are larger than those dispersing at age 1 (Sparkman A., unpublished data). Thus, if larger body size is any indication, individuals dispersing at age 0 do not appear to be in poorer condition than those remaining in their natal pack. This suggests that it may indeed be age-specific vulnerability to dispersal risks (due to lack of experience, e.g., in skills such as foraging and self defense), rather than increased vulnerability of dispersers in poor condition, that results in reduced survivorship for males dispersing at age 0. However, it is not yet clear whether potential targets of selection involve developmental or behavioral mechanisms rather than body size per se (reviewed in Bekoff 1977; Clobert et al. 2001). Whatever the case, there is some evidence that AFD is a heritable trait in red wolves (Sparkman AM, Adams J, Steury TD, Waits L, Murray DL, manuscript in preparation), and the positive association we report between delayed dispersal and fitness-related traits suggests that it may be under either direct or indirect selection.

In addition to evidence for an effect of AFD on survival and reproduction, we also found evidence for an effect of population density. Both survival and lifetime probability of reproduction decreased with increasing density in both sexes (Table 1). In other studies on this population, we report negative effects of density on reproductive life span, lifetime number of reproductive events, and overall LRS (Sparkman et al. 2010), as well as a negative relationship between density and body mass (Sparkman AM, Adams J, Steury TD, Waits L, Murray DL, manuscript in preparation). However, we have found no effect of density on either age at first reproduction (Sparkman et al. 2010) or AFD (Sparkman AM, Adams J, Steury TD, Waits L, Murray DL, manuscript in preparation). Thus, it would appear that though the high population density which the reintroduced red wolf population has currently reached can negatively impact survival, it does not have a strong effect on dispersal timing. This is interesting, given that in some species, propensity to stay or leave the natal group is strongly affected by population density, which can have important ramifications for resource and/or home range availability (reviewed in Lambin et al. 2001). This is most dramatically demonstrated in the Ethiopian wolf (*C. simensis*), where habitat saturation is thought to lead to lifetime natal philopatry in the majority of males (Sillero-Zubiri et al. 1996). The mechanisms underlying the relationship between density, survival, dispersal, and important ecological factors such as resource availability should be explored in more detail in future studies in the red wolf, to further understand how the effects of density on survival and AFD can be uncoupled.

An important caveat to bear in mind when interpreting our results is that, due to small sample sizes, it was necessary to group individuals with all causes of death—natural, anthropogenic, and unknown—for our analyses. As this study concerns a reintroduced population residing in an area with high levels of anthropogenic activity, resulting in deaths due to vehicle collision and illegal hunting, it is possible that the survival advantages of delaying dispersal are accentuated to a greater degree by anthropogenic sources of mortality. Future work should investigate the dynamics of cause-specific mortality in this
population and determine whether anthropogenic risk is ad-
itive or compensatory to natural risk (Murray et al., 2010). It is
also important to bear in mind that our analysis is based on
the single remaining extant population of the red wolf, and
we are unable to evaluate the extent to which our findings our
generalize to other populations of the same species in dif-
fering ecological contexts. However, we hope that future stud-
ies in wild populations of the closely related Eastern wolf (C.
lycaon) and other large-bodied canids, such as the gray wolf
and the coyote, will explore similar questions. An interspecific
comparative context will be particularly of interest because
red wolves are intermediate in dispersal strategy to the coyote
and the gray wolf, with delayed dispersal in 65% of pups. In
the coyote (C. latrans), many individuals disperse within their
first year, though delayed dispersal and helping behavior, up
to but seldom exceeding the second year, can also occur (Har-
rison 1992; Hatier 1995). In contrast, in the gray wolf (C.
lupus), helping behavior is common, and some individuals
may delay dispersal from 2 or 3 to as many as 5 years and
exhibit overlap among multiple generations of offspring
(Mech and Boitani 2003). Thus, one would predict the fitness
benefits of delayed dispersal to be strong in gray wolves, as
they appear to be in red wolves, but weaker in coyotes, where
family bonds are of shorter duration.

It remains to be determined whether helping behavior itself,
above and beyond delayed dispersal, is simply a facilitative
result of sociality in canids, where cohesive behaviors such as
group foraging and defense are naturally extended to younger
siblings, or whether it evolves as a result of net benefits to
inclusive fitness. Nevertheless, in this reintroduced population
of red wolves, we provide evidence for direct fitness benefits of
delayed dispersal, especially among males, suggesting that the
evolution of delayed dispersal may itself be sufficient cause for
the formation of family groups conducive to a cooperative
breeding strategy, even in the absence of reproductive
opportunities within the natal group.

FUNDING

The fieldwork was funded by the USFWS, and grants to D.L.M.
from the Canada Research Chairs program and the Natural
Sciences and Engineering Research Council (Canada)
supported data analysis and writeup.

The Red Wolf Recovery Program is conducted by the USFWS, and we
are grateful to Service personnel for their diligent efforts in the field
and access to the data. The findings and conclusions in this article are
those of the authors and do not necessarily represent the views of the
USFWS.

REFERENCES

(IA): University of Idaho.

individuals in the red wolf (Canis rufus) experimental population
area using a spatially targeted sampling strategy and faecal DNA

Bekoff M. 1977. Mammalian dispersal and the ontogeny of individual

Oxford: Oxford University Press.

Clutton-Brock T. 2002. Breeding together: kin selection and mutual-

Clutton-Brock TH, Brotherton PNM, O’Riain MJ, Griffin AS, Gaynor D,
contributions to babysitting in a cooperative mongoose, Suricata

Clutton-Brock TH, Russell AF, Sharpe LL, Brotherton PNM, McBrath GM,
White S, Cameron EZ. 2001. Effects of helpers on juvenile development

Cockburn A. 1998. Evolution of helping behavior in cooperatively

Cree SR, Waser PM. 1994. Inclusive fitness and reproductive strategies

Devillard S, Bray Y. 2009. Assessing the effect on survival of natal
dispersal using multistate capture-recapture models. Ecology. 90:
2902–2912.

Ekman J, Bylin A, Tegelstrom H. 1999. Increased lifetime reproductive
success for Siberian jay (Perisoreus infaustus) males with delayed

Ekman J, Eggers S, Griesser M. 2002. Fighting to stay: the role of
sibling rivalry for delayed dispersal. Anim Behav. 64:453–459.

dispersal. In: Koenig W, Dickinson J, editors. Ecology and evolu-
tion of cooperative breeding birds. Cambridge (UK): Cambridge
University Press.

Fuller RK. 1989. Population dynamics of wolves in North-Central Min-
nesota. Wildl Monogr. 105:5–41.

Gese EM, Mech LD. 1991. Dispersal of wolves (Canis lupus) in

Gese EM, Ruff RL, Crabtree RL. 1996. Social and nutritional factors
influencing the dispersal of resident coyotes. Anim Behav. 52:
1029–1043.

Griffin AS, Pemberton JM, Brotherton PNM, McIlrath G, Gaynor D,
breeding success in the cooperative meerkat (Suricata suricatta).

breeding African wild dogs. Anim Behav. 79:425–428.

Hamilton WD. 1963. The evolution of altruistic behavior. Am
Nat. 97:554–566.

Hamilton WD. 1964. The genetic evolution of social behaviour. II.
J Theor Biol. 7:17–52.

survival: their relationship under varying ecological conditions.

Harrison DJ. 1992. Dispersal characteristics of juvenile coyotes in

Hatier KG. 1995. Effects of helping behaviors on coyote packs in
State University.

Hawn AT, Radford AN, du Plessis Morné A. 2007. Delayed breeding
affects lifetime reproductive success differently in male and female

53–57.

The evolution of delayed dispersal in cooperative breeders. Q Rev
Biol. 67:111–150.

Kooyman ME, Cypher BL, Scrivner JH. 2000. Dispersal patterns of San

Lambin X, Aars J, Pietrney SB. 2001. Dispersal, intraspecific competi-
tion, kin competition and kin facilitation: a review of the empirical
evidence. In: Clobert J, Danchin E, Dhondt AA, Nichols JD, editors.

Langlois N, Arnold SJ. 1983. The measurement of selection on corre-

Ligon JD, Stacey PB. 1991. The origin and maintenance of helping

Malcolm JR, Marten K. 1982. Natural selection and the communal
rearing of pups in African wild dogs (Lycaon pictus). Behav Ecol

Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical con-
fidence for likelihood-based paternity inference in natural popula-

McCarley H, Carley CJ. 1979. Recent changes in distribution and
status of wild red wolves (Canis rufus). In: Endangered Species Re-

