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Abstract

Often resource selection functions (RSFs) are developed by comparing resource attributes of used sites to unused or available ones. We
present alternative approaches to the analysis of resource selection based on the utilization distribution (UD). Our objectives are to describe the
rationale for estimation of RSFs based on UDs, offer advice about computing UDs and RSFs, and illustrate their use in resource selection
studies. We discuss the 3 main factors that should be considered when using kernel UD-based estimates of space use: selection of bandwidth
values, sample size versus precision of estimates, and UD shape and complexity. We present 3 case studies that demonstrate use of UDs in
resource selection modeling. The first example demonstrates the general case of RSF estimation that uses multiple regression adjusted for
spatial autocorrelation to relate UD estimates (i.e., the probability density function) to resource attributes. A second example, involving Poisson
regression with an offset term, is presented as an alternative for modeling the relative frequency, or probability of use, within defined habitat
units. This procedure uses the relative frequency of locations within a habitat unit as a surrogate of the UD and requires relatively fewer user-
defined options in the modeling of resource selection. Last, we illustrate how the UD can also be used to enhance univariate resource selection
analyses, such as compositional analysis, in cases where animals use their range nonrandomly. The UD helps overcome several common
shortcomings of some other analytical techniques by treating the animal as the primary sampling unit, summarizing use in a continuous and
probabilistic manner, and relying on the pattern of animal space use rather than using individual sampling points. However, several drawbacks
are apparent when using the UD in resource selection analyses. Choice of UD estimator is important and sensitive to sample size and user-
defined options, such as bandwidth and software selection. Extensions to these procedures could consider behavioral-based approaches and

alternative techniques to estimate the UD directly. (JOURNAL OF WILDLIFE MANAGEMENT 70(2):384-395; 2006)
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Radio-tracking of study animals using either Global Positioning
System (GPS) or Very High Frequency (VHF) technology can
provide accurate and cost-effective information on animal
locations and movements (Millspaugh and Marzluff 2001).
Resource selection studies often use radio-tracking data and
Geographical Information System (GIS) technology to provide
information on the types of resources or habitats selected by study
animals (Manly et al. 2002). Such studies allow managers to
identify geographic ranges, conserve important resources, under-
stand the consequences of management actions (McDonald and
McDonald 2002), and map the potential distribution of animals
based on model predictions (Fielding and Bell 1997).
Technological advancements are allowing wildlife researchers to
map resources and animal use at larger scales with increasingly finer
resolutions. When GPS collars are used, animal movements may be
monitored continuously. With GIS, multiple aspects of an area’s
land cover composition, spatial arrangement, and habitat quality
can be mapped with high accuracy over large areas (e.g., Knick et al.
1997). To take advantage of such high-resolution data sets,
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analytical tools have been developed that enable investigators to
relate continuous measures of resource use by animals to multiple
resources in a spatially explicit manner (e.g., Marzluff et al. 2004).

Despite recent advancements in resource selection analyses
(Cooper and Millspaugh 1999, 2001, Manly et al. 2002), many
analytical procedures treat the response variable as a dichotomous
variable. One common procedure classifies sites as either used or
unused based on observed locations and then compares used to
unused resources with logistic regression on predictor variables.
Another common procedure involves comparison of a sample of
used units to a sample of available units (Manly et al. 2002,
Buskirk and Millspaugh 2006). However, these procedures do not
account for variability in the intensity of use among habitat units
where locations were recorded.

Alternatively, resource use could be quantified along a
continuum, by measuring the amount of use throughout an
animal’s range. Ecologists have summarized that continuum of use
by estimating UDs (Fig. 1; Van Winkle 1975). Utilization
distributions estimate the intensity or probability of use by an
animal throughout its home range (Van Winkle 1975, Kernohan
et al. 2001). Using the UD in resource selection analyses offers an
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Figure 1. An example of a fixed-kernel utilization distribution with least-squares cross-validation smoothing (right) for elk locations (left) in Custer State Park,

South Dakota (reprinted from Millspaugh et al. 2000).

alternative metric that summarizes resource use as a continuous
and probabilistic process. Traditional resource selection analyses
depend on correct classification of habitat at exact locations, which
may be problematic when telemetry error exists (Withey et al.
2001). A UD approach avoids this problem because use at an
estimated location is a smoothed function of all telemetry
locations, which avoids the need to place locations in specific
habitat patches. In addition, estimating and analyzing separate
UDs for each study animal correctly treats the animal as the
primary sampling unit (Aebischer et al. 1993, Otis and White
1999, Erickson et al. 2001). Despite these potential advantages,
several important issues must be considered, such as selection of
bandwidth values that determine the level of smoothing
(Kernohan et al. 2001), sample size versus precision of estimates,
and UD shape.

In this article, we summarize the analysis of resource selection
with UDs using 3 examples. We begin by providing an overview
of UD estimation techniques and factors affecting their perform-
ance. We also briefly discuss recent statistical developments in
kernel estimation that may improve UD estimation. In the first
example, we demonstrate methods that express the correlation
between UDs and sets of spatially defined resources (Marzluff et
al. 2004). The second example demonstrates a procedure that uses
a generalized linear model (e.g., Poisson or negative binomial
regression) with an offset term to model the relative frequency, or
probability of use, within habitat units. Both procedures estimate
coefficients of resource selection functions (RSFs) that quantify
the probability of resource use as a function of predictor variables
measured on habitat units. Last, we extend compositional analysis
(Aebsicher et al. 1993) by incorporating the UD in cases where
space use within the home range is nonrandom. Our objectives are
1) to describe the rationale for estimation of RSFs based on UDs,
2) to offer advice about computing UDs and RSFs, and 3) to

illustrate their use in resource selection studies.

Utilization Distribution Estimation

Estimation of a 3-dimensional UD surface or probability density
function (Silverman 1986) facilitates 3 related goals. First, it
allows for traditional home-range calculation by estimating the
area corresponding to any desired probability of use (e.g., 95%
home-range area by UD volume; Worton 1989). Second, the
overall joint probability of use or overlap by 2 or more animals can
be estimated (Seidel 1992, Millspaugh et al. 2000, 20044,5).
Third, the UD can be used to estimate the probability of use

within any specific area and to measure the intensity of use at
specific coordinates (Marzluff et al. 2001, 2004). Thus, managers
can conserve important resources and understand the consequen-
ces of management actions (Manly et al. 2002, McDonald and
McDonald 2002). This article focuses on the last goal—analyzing
resource selection as a function of predictor variables measured on
habitat units.

Several methods for estimating home-range size have been
developed over the past few decades. However, few techniques,
other than kernel methods (Silverman 1986, Worton 1987, 1989),
directly estimate a probability function corresponding to the UD.
Previous probabilistic methods (reviewed by White and Garrot
1990) are inferior to kernel approaches in most contexts
(Kernohan et al. 2001). For example, kernel methods make no
assumption about UD shape and offer flexibility in estimating
distributions. Moreover, extensions to the kernel method,
particularly bandwidth selection, are under continued develop-
ment by statistical researchers. However, we emphasize that no
method is uniformly superior (Kenward et al. 2001, Kernohan et
al. 2001, Getz and Wilmers 2004). In a single study addressing
multiple goals, a different method may be most appropriate for
each goal. For purposes of this article, we are most interested in
accurately quantifying the UD within the home-range boundary
for purposes of predicting the relative probability of occurrence
through RSF estimation. We are assuming a typical VHF
telemetry study with telemetry observations collected on a
systematic schedule throughout the season of interest (Garton et
al. 2001). Sample size recommendations are given assuming
independence among observations (Garton et al. 2001). We focus
on 3 issues relating to kernel UD-based estimates of space use:
selection of bandwidth values, sample size versus precision of
estimates, and UD shape and complexity.

Bandwidth Options

The bandwidth, or smoothing parameter, controls the neighbor-
hood size within which observed locations contribute to the
density estimate at a point (Silverman 1986). The most
fundamental smoothing option is whether the bandwidth is held
constant across the area for which density estimates are calculated
(fixed kernel) or whether it is allowed to vary across this area such
that the degree of smoothing varies with the density of nearby
locations (variable or adaptive kernel). Allowing the bandwidth to
vary so that smoothing is greater in the tails of the distribution,
where uncertainty is higher, is intuitively appealing (Silverman
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1986:100) because greater smoothing inherently considers un-
certainty in the UD estimate. However, in UD simulations
(Seaman et al. 1999), the simple form of adaptive kernel
commonly used in home-range analyses (Silverman et al.
1986:101, Seaman and Powell 1996) had higher bias than a
fixed-kernel approach based on the relative mean square error.
Even with distributions containing sharp boundaries, this form of
adaptive kernel was slightly worse than the fixed kernel (Getz and
Wilmers 2004). Therefore, a fixed-kernel approach may be
preferable to this form of an adaptive kernel (Kernohan et al.
2001) when estimating home range extent.

For both fixed-kernel and adaptive-kernel approaches, an
automatic bandwidth selection method is desired. For the adaptive
kernel, an automatic method can choose the pilot bandwidth that
is locally adapted. Ecological studies have focused on 2 automatic
bandwidth-selection methods, the reference or normal method
(REF) and least squares cross-validation (LSCV). A third class of
methods includes plug-in (PI) and solve-the-equation methods
(STE; Wand and Jones 1995). Kernohan et al. (2001:144-145)
reviewed general properties of these 3 classes of methods in the
context of home-range estimation. The REF method is optimal if
the true distribution is bivariate normal but often performs poorly
for mixtures of bivariate normals (Seaman et al. 1999, Gitzen and
Millspaugh 2003). The LSCV approach outperforms REF and is
used commonly in home-range studies. However, it suffers from
high sampling variability and a tendency to select overly small
bandwidth values when there is fine-scale clustering in the data
(Silverman 1986), even with large data sets (Amstrup et al. 2004).
The PI/STE approaches are recommended as the best general-
selection methods by some experts (Wand and Jones 1995) and
have been applied in recent UD studies (Roloff et al. 2001,
Amstrup et al. 2004). However, potential weaknesses of PI and
STE approaches should be examined in the context of UD studies.
These approaches tend to have a positive bias and may over-
smooth real peaks in the underlying density (Loader 1999:191-
192), which might result in a loss of resolution in the UD
estimate. Thus, if an animal is selecting resources on a fine scale,
over-smoothing the peaks might remove the chance of detecting
important resource-selection patterns.

Based on simulations of bivariate, normal-mixture distributions,
none of these bandwidth methods is uniformly best for estimating
the UD with the fixed-kernel method. Variation in comparative
bandwidth performance was high under most simulation con-
ditions (Gitzen et al. 2006). High sampling variability “reflects
the difficulty of bandwidth selection and the problem of resolving
uncertainty in the data” (Loader 1999:192). Such uncertainty is
inherent when estimating complex distributions from often-small
sample sizes and probably will remain significant despite
continued refinement of bandwidth methods. That is, despite
refined smoothing options, UD methods will likely not be able to
overcome problems of few telemetry locations. For UD estima-
tion, little attention has been paid to handling this bandwidth-
selection uncertainty. In detailed study of a single distribution,
bandwidth uncertainty can be accounted for by examining how the
estimated distribution varies as the bandwidth changes (Silverman
1986, Marron and Chung 2001). Space-use studies, in contrast,

seek to draw population-level ecological inference based on

numerous UD-based estimates (e.g., of home-range size). There-
fore, detailed examination of single distributions versus bandwidth
variation is of minor interest.

Sample Size and Precision

There is no general variance expression for kernel estimators, so
sample-size guidelines must be developed from simulations or
detailed case studies of real data. For fixed-kernel estimation with
LSCV, Seaman et al. (1999) recommended a minimum sample size
of 30-50 locations when estimating home-range size at outer
contours (e.g., area encompassing 95% of the volume in the UD).
For any bandwidth method, performance will improve as sample
size increases, up to some threshold (e.g., 90 or 100 locations for
LSCV) where little improvement in an individual animal’s seasonal
UD is observed with more locations (Seaman et al. 1999). This
does not negate the need to consider carefully the bandwidth
selection method in relation to what UD property is estimated. For
example, with bivariate, normal-mixture distributions, at a sample
size of 150, REF usually had higher absolute error in 95% home-
range estimates than LSCV did with a sample size of 50 (Gitzen
and Millspaugh 2003). However, in overall distribution overlap
between estimated and true distributions, REF with » = 150
generally was slightly better than LSCV with n = 50.

In the most recent applications of the UD, density estimates are
calculated at grid points spaced across the study area, and then, density
estimates are used as the dependent variable for examining resource
selection (e.g., Case I below; Marzluff et al. 2004). The effects of
sample size and bandwidth on the precision of these estimates need
further consideration. For example, the tendency of LSCV to choose
avery low bandwidth for some data sets could result in relatively high-
use points being classified as very low-use areas. Examination of the
relative precision of point-specific density estimates has been
addressed briefly in the statistical literature. This examination has
focused on how much sample size must be increased with increasing
dimensions in multivariate kernel analysis to maintain a specific
relative precision in density estimates at the center of the distribution

(Silverman 1986:93-94, Scott 1992:198-199).

UD Shape and Complexity

Kernel UD estimators implemented to date essentially assume that
the underlying distribution lacks sharp boundaries between used
and unused areas. Getz and Wilmers (2004) illustrate several
distributions with sharp boundaries and discontinuities. For
example, they generated “donut” distributions with a hole of
unused area in the center of the region, or patterns with a sharp
circular boundary around the outside of the home range, and
relatively high space use at the inner and outer boundaries. Such
distributions are realistic when roads, park boundaries, or natural
features, such as lakes, create sharp boundaries between used and
unused areas. Predictably, typical kernel methods handle such
boundaries poorly even with high sample sizes (Getz and Wilmers
2004). With the use of a symmetric kernel (e.g., normal kernel), a
peak in use just inside the boundary will result in high estimates of
space used in unavailable areas outside of the boundary. Kernel
methods clearly should be modified in the case of such sharp
boundaries. In the univariate context, various solutions to this
problem have been developed (e.g., Wand and Jones 1995:46—49,
Cowling and Hall 1996) that deal well with boundary effects (Hall

386

The Journal of Wildlife Management ¢ 70(2)



and Tao 2002:544). Miiller and Stadmiiller (1999) developed a
multivariate boundary kernel approach that has not been
implemented in available software. Local-likelihood density
estimators (Hjort and Jones 1996, Loader 1999) offer an
alternative to kernel approaches that may be particularly useful
when such irregularities are present.

Study Designs for Resource Selection and the
Utilization Distribution

Three different sample designs for resource selection studies were
identified by Thomas and Taylor (1990), and a fourth was added
by Erickson et al. (2001), providing a unified approach for
considering analysis options. These study designs differ in the way
use and availability data are summarized. In sample design I,
individual animals are not uniquely identified, and resource
availability is defined at the population level. Typically, design I
involves recording the number of observations within specific
resource types. For example, Erickson et al. (1998) estimated
moose (Alces alces) winter habitat selection from aerial surveys
within Innoko National Wildlife Refuge in Alaska. In such cases,
the researcher assumes detection probabilities do not differ among
habitat types. In study design II, locations are recorded for each of
n unique individuals, and resource availability is defined at the
population level. Often there is a goal of collecting 3050 locations
per season per animal. An example of sample design II involved
female black bear (Ursus americanus) habitat selection determined
from locations of radiocollared bears within a defined study area
(Clark et al. 1993). Design III defines resource availability
separately for each animal, and locations are recorded for each
individual. Nielsen et al. (2002) provided an example of design 111
in an examination of habitat selection by grizzly bears (Ursus arctos)
within individual home ranges. In designs I-III, available resources
are assumed to remain unchanged during the study period. For
design IV, the set of available resources is sometimes assumed to be
unique for each point of use. Examples include sea ice selection by
polar bears (Ursus maritimus, Arthur et al. 1996) and elk (Cervus
elaphus) bed site selection (Cooper and Millspaugh 1999).

The UD is most appropriate under designs II and III, when
locations from unique individuals are collected and there is
interest in documenting resource selection within a defined study
area or individual home ranges. Design I is inappropriate because
we need telemetry observations from unique individuals. Also,
design IV considers use for each point of use, whereas UD
approaches are based on the combination of all points for an
individual. Utilization distribution methods for resource-selection
studies involving data obtained under designs II and III should
treat the animal as the primary sampling unit (Otis and White
1999), and thus a UD-based RSF should be estimated for each
study animal. Most studies will be undertaken to obtain inference
to the sampled population rather than an individual animal. A
method for estimating a population-level model with data from #
study animals is to fit the same model to each of the 7 individuals
and then estimate population-level model coefficients using

~ 1 -
B,«:;;Bg,

where f; is the estimate of coefficient ¢ for individual ;. The
variance of the estimated population-level model coefficients can
then be estimated using

(2)

which includes both intra-animal and inter-animal variation
(Marzluff et al. 2004, Sawyer et al. 2004). Standard or bootstrap
test statistics or confidence intervals could be used to assess the
statistical significance of the population-level model coefficients.
Equations (1) and (2) equally weight each study animal but can be
adjusted to incorporate sampling weights. When inference is
intended for an individual animal, or locations are pooled across
animals (design I), then, spatial autocorrelation in the locations
needs to be addressed (e.g., Marzluff et al. 2004) because standard
errors will usually be biased low (Neter et al. 1996). Spatial
autocorrelation arises because the kernel analysis used to construct
the UD induces a correlation between the deviations in neighbor-
ing pixels. However, if the animal is treated as the experimental
unit and Egs. (1) and (2) are used to estimate a population-level
model, spatial autocorrelation in the individual locations can be
ignored (Aebischer et al. 1993, Erickson et al. 2001) because
individual model coefficients are unbiased even when autocorre-
lation is present (Liang and Zeger 1986, McCullagh and Nelder
1989, Neter et al. 1996). Random-effects models could also be
used to estimate both population-level parameters and parameters
for individual animals, but these models tend to be complex and
can suffer from convergence problems. In such cases, Markov chain
Monte Carlo (MCMC; Link et al. 2002) or Bayesian (D. Thomas,
University of Alaska, Fairbanks, personal communication) proce-
dures might prove useful.

Using the UD to Estimate an RSF

Utilization distributions can be related to resources in different
ways (e.g., Marzluff et al. 2004, Neatherlin and Marzluff 2004). If
there is only interest in relating a single, categorical variable to an
animal’s UD, a conceptually simple approach is to calculate a
Relative Concentration of Use for each resource value (Neatherlin
and Marzluff 2004). The Relative Concentration of Use is the
ratio of the estimated probability of use of all patches of a
particular resource to the occurrence of the resource type within
the area of interest (e.g., the animal’s home range). Concentration
of use is analogous to other selection coefficients that relate a
measure of resource use to a measure of resource occurrence
(Manly et al. 2002). Concentration of use improves on traditional
selection coefficients because it integrates relative selectivity
throughout the area of interest, uses the animal instead of the
relocation point as the primary sampling unit (Otis and White
1999), and measures use as a continuous random variable. In case
III below, we extend this concept and illustrate how the UD can
be used to enhance compositional analysis in cases in which
animals use their range nonrandomly.

Individual animal density estimates from the UD (designs II or
III) can be regressed on continuous or categorical resources,
resulting in a Resource Selection “Probability” Function as
defined by Manly et al. (2002) or a “Resource Utilization
Function” (RUF; Marzluff et al. 2004). The phrase “Resource
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Figure 2. Calculation of a resource utilization function for a single Steller’s jay. First, the jay’s location estimates (upper left) are converted into a 3-dimensional
utilization distribution (UD; upper right) using a fixed-kernel home-range estimator. The height of the UD indicates the relative probability of use within the home
range. Greater heights indicate areas of greater use as inferred from regions of concentrated location estimates. Second, resource attributes are derived from
resource maps within the area covered by the UD. For example, Marzluff et al. (2004) calculated a continuous resource measure (contrast-weighted edge density;
lower right; highest at interfaces between late-seral forest and clearcuts or urban areas) and a categorical resource measure (vegetative land cover; lower left) at
each grid cell center within the area of the UD. The height of the UD (relative use X 100) is then related to these local (e.g., vegetation cover; lower left) and
landscape (e.g., contrast-weighted edge density; lower right) attributes on a cell-by-cell basis with multiple regression techniques that adjust the assumed error

term for spatial autocorrelation (reprinted from Marzluff et al. 2004).

Selection Function” is also used with the implicit assumption that
a probability density function is being estimated (i.e., in this case,
a map providing the probability of occurrence throughout the
region of interest). The estimated regression coefficients indicate
how resources relate to variation in the underlying probability
density function and their magnitude indicates the change in
probability for a unit change in the quantity of the resource if the
quantities of all the other resources are held fixed.

Case I: Relating UD to Resources—Using Multiple
Regression Adjusted for Spatial Autocorrelation

Forest fragmentation is hypothesized to increase the risk of nest
predation on several bird species (Marzluff and Restani 1999).
However, mechanisms increasing risk are poorly understood (Andrén
1992). We suspected that nest predators may be more abundant and
more likely to concentrate their foraging activities in patchy or edgy

environments created by forest loss. We tested this idea by relating
use by the Steller’s Jay (Cyanocitta steller:) to continuous and
categorical measures of land cover composition and arrangement
(Marzluff et al. 2004). Here, we summarize analytical methods and
findings to illustrate how UDs can be related to resources.

The Marzluff et al. (2004) approach consists of 4 basic steps (Fig.
2): 1) estimate the UD using nonparametric procedures, such as
fixed kernel techniques (Seaman and Powell 1996, Kernohan et al.
2001); 2) measure the height of the UD (i.e., probability density
estimate) at each habitat unit (e.g., pixel in the GIS) throughout the
entire UD surface (i.e., home range); 3) determine the resources at
the same pixels; and 4) use multiple regression to relate UD height to
the predictor variables. In addition to these steps, Marzluff et al.
(2004) accounted for spatial autocorrelation using the Matern
correlation function (Handcock and Stein 1993).
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Figure 3. Ordination of resource selection tendencies by 25 individual Steller’s
jays on Washington’s Olympic Peninsula. Factor 1 from the principal
components analysis accounted for 33.6% of the explained variation and
was correlated most closely with the use of high-contrast edge (r=-0.83) and
use with respect to patch shape (r= 0.78). Factor 2 accounted for 29.8% of
the explained variation and was most closely associated with the use of mature
forests (r = 0.77) and clear cuts (r = 0.77). The significance of resource
utilization coefficients in individual jay RUFs is indicated by symbol type. O =
Significant use of patches, ® = Significant use of edges, ® = Significant use of
patches and edges, A = No significant use of patches or edges (reprinted from
Marzluff et al. 2004).

For the 25 jays used in this example, the average RUF for the

population was:

f(x) = 1.3 4 0.9(no. patches)
+ 0.005(m of high-contrast edge)
— 0.0002(juxtaposition of land cover) (3)
+ 0.014(patch-shape index)
— 0.4(mature forest) — 0.29(clear cut).

The average variance of the resource utilization coefficients was
estimated by

Var( B = Z se? (4)
where the inter-bird variation was not incorporated. Equation (4)
represents the average uncertainty in coefficients, based on
regression of the height of the UD on the number of units in
the home ranges, given the 25 jays and the specific user-defined
options selected for UD estimation. Individual jays varied
considerably in their use of specific resources. Most jays (20/25)
significantly concentrated their activities in regions of their home

ranges that either had abundant high-contrast edges (10 jays),
many patches (14 jays), or both edges and patches (4 jays; Fig. 3).

To rank resource use by the study population, Marzluft et al.
(2004) compared standardized RUF coefficients (Zar 1996). For
example the number of patches was the most important predictor
of a jay's location; jays tended to use patchy areas more than
uniform ones (Table 1). The variation around standardized [3] is
considerable, which results from the inclusion of inter-bird
variation (Eq. 2), thereby allowing inference from the sample of
jays to the population, assuming that the 25 birds were selected
randomly or in some representative fashion. Marzluff et al. (2004)
used the more conservative approach of including all sources of
variance (Eq. 2) rather than basing the estimation of sampling
variance only on inter-bird variation (Eq. 4) because, in their
example, inter-bird variation was an order of magnitude larger
than the variance associated with estimating the resource
utilization coefficients of individual jays. The large inter-bird
variation in resource use emphasizes the individuality in resource

use exhibited by the study population.

Case IlI: Estimating an RSF Using Poisson Regression
with an Offset Term
As an alternative to case I, the analysis of case II defines habitat
units as circular or rectangular areas centered on points across the
study area or home range of each animal and can be applied to
location data obtained under sample designs I-III. Given a large
number of unbiased locations for each animal (Withey et al. 2001,
Frair et al. 2004), the relative frequency of locations within a
habitat unit provides a surrogate UD as the relative frequency of
animal locations occurring in each sampled habitat unit. Using
GIS, one can identify a large number of possible habitat units
within a study area, selected by random or systematic sampling
procedures. The habitat units should include an area small enough
to detect changes in animal concentrations but large enough to
ensure multiple locations will occur in some units. If possible,
habitat units of different sizes should be investigated to help
determine the effects on estimated coefficients. Selection of
habitat unit size is analogous to the amount of smoothing
introduced by selection of different bandwidths in estimation of a
UD by kernel methods.

Given this approach, and considering that counts of animal
locations are often modeled using Poisson distributions, Poisson

Table 1. Estimates of standardized parameter coefficients (B) for 25 Steller’s jays nesting on the Olympic Peninsula of Washington State. P values test the null
hypothesis that the average B = O, given n = 25 jays. Relative importance of resources is indicated by the magnitude of B. Consistency in selection at the
population level is indicated by the significance of B and the number of jays whose use was either positively or negatively associated with each attribute (from

Marzluff et al. 2004).

No. of jays with use
significantly associated
with attribute

Resource attribute Mean standardized g 95% Confidence interval P(p=0) 4F =
No. of patches +0.112 —0.57-0.28 0.19 142 9
Contrast-weighted edge +0.062 —0.13-0.26 0.50 102 9
Mature forest —0.05 —0.18-0.08 0.45 12 8
Clear cut —0.04 —0.17-0.09 0.51 6 9
Interspersion-juxtaposition —0.01°8 —0.14-0.16 0.87 11 82
Patch-shape index +0.012 -0.11-0.14 0.84 9? 12

& Use in direction predicted if jays select for edgy, fragmented areas within their home range.
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regression with an offset term can be used to model the relative
frequency, or probability of use, within a habitat unit. However,
other generalized linear models, such as negative binomial
regression, may also be appropriate. The approach presented here
extends the Heisey (1985) method by modeling the probability of
use based on continuous and categorical resource attributes and
does not require partitioning of resources into “used” or
“available” classes.

If locations are pooled across animals (e.g., design I) or
inferences are made regarding an individual’s selection pattern,
dependencies in relocations and over-dispersion should be
investigated. If a population-level model is estimated under
sample designs II or III using Eqs. (1) and (2), small-to-moderate
over-dispersion (McCullagh and Nelder 1989) and spatial
autocorrelation in the Poisson model is irrelevant because
estimates of model coefficients are still unbiased (Liang and
Zeger 1986, McCullagh and Nelder 1989), although the
estimators may not be very efficient.

The Poisson model for the expected relative frequency of
locations in habitat unit ¢ is

In[E(r;)] = In(total) + By + Byx1 + ... + B,xp, (5)

which is equivalent to

In[E(r;/total)] = In[E(Relative Frequency;)]
:B0+le1+"' +Bpxp> (6)

where r; 1s the number of recorded locations for the animal within
habitat unit z, #ofal/ is the total number of locations for the marked
animal across all habitat units, and the predictor variables are
denoted by x1, ..., x,. The offset term In(#oal) in Eqgs. (5) and (6)
is a quantitative variable whose regression coefficient is set to 1.0.
Because the offset in this model is the same for all sampled habitat
units within the study area or home range for a particular animal,
it is absorbed into the estimate of B, and ensures the response
variable being modeled is the relative frequency or probability of
use, instead of the counts of use. For most habitat units,
predictions of relative frequency or probability of use based on
this model should be very small. As is common in statistical
modeling, there is a danger of making predictions beyond the
region of observations used to fit the model (Neter et al. 1996). A
large prediction based on the case II model, particularly >1, likely
indicates the model is not appropriate for the particular levels of
predictor variables.

Individual models can be evaluated and adjusted for over-
dispersion by fitting the full model (i.e., all variables considered)
and estimating the amount of over-dispersion (McCullagh and

Nelder 1989). Use of the negative binomial distribution in place of
the Poisson in the above context would also allow for over-
dispersion. However, for small-to-modest amounts of over-
dispersion, the differences in parameter estimates between Poisson
and negative binomial models can be neglected (McCullagh and
Nelder 1989).

The Poisson regression approach outlined above differs from
case I in 3 ways. First, it uses empirical data as the response
variable when estimating the RSF, avoiding difficulties with
differences in user-defined and software options in kernel
estimation. However, this procedure requires the habitat unit
area be specified, with user-defined options similar to the grid-cell
size in the RUF analysis and the bandwidth (the neighborhood
size) in kernel estimation. Second, it allows for nonconstant error
variance, which can occur when modeling count data. Third, use
of the offset term in the Poisson model should restrict predictions
of probability of use to the [0, 1] interval for sampled habitat units
in the analysis and ensures predictions are nonnegative for all
other habitat units. This simple approach to modeling relative
frequency of use is a surrogate for estimating and modeling a UD
surface. However, more investigation is needed before it is known
how a certain density of recorded locations is necessary before
reliable, precise estimates of probability of use can be obtained.

To facilitate a direct comparison between methods of cases I and
II, we used the same data from the 25 jays. Habitat units for this
analysis were defined as 200-m-radius buffers centered on each
grid cell within the home ranges, which corresponds to the grain
at which researchers thought jays responded to habitat changes
(Marzluff et al. 2004). Using a random starting point, a systematic
sample of 2,000 habitat units was drawn from each home range,
with the exception of 1 jay with a smaller home range. A
systematic sample of 1,500 habitat units was taken from jay 5343.
The population-level model was estimated as

E(Relative Frequency) =

— 2.7040 4 0.1081(no. patches)
— 0.0005(m of high-contrast edge)
exp | + 0.0005(juxtaposition of land cover)
+ 0.0105(patch-shape index)
—0.1239(mature forest) — 0.8315(clear cut)

®)

Standard errors and 95% confidence intervals based on 7 =25 jays
for the population-level model are presented in Table 2. None of
the parameters for the habitat variables were found to be
statistically significant for this model, as also noted by Marzluff

Table 2. Estimates of parameter coefficients (B) for 25 Steller’s jays nesting on the Olympic Peninsula of Washington State, based on the Poisson-regression
model of the utilization distribution (UD) surface (case ). The 95% confidence intervals for the average jay were calculated using the standard error of the sample

of n = 25 coefficients.

Resource attribute Mean B SE (p) 95% Confidence interval
No. of patches 0.1081 0.0596 —0.015-0.231
Contrast-weighted edge —0.0005 0.0061 —0.013-0.012
Mature forest —0.1239 0.1029 —0.336-0.088
Clear cut —0.8315 0.8020 —2.487-0.824
Interspersion—juxtaposition 0.0005 0.0018 —0.003-0.004
Patch-shape index 0.0105 0.3116 —0.633-0.654
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et al. (2004). Thus, high individual variation in resource use by
jays was confirmed.

Regardless of the need for further evaluation of the individual
models, the results from this analysis are similar to the population-
level results from the analysis presented as case I. Clear-cut and
mature forest areas had negative relationships with the expected
probability of use for the average jay, whereas locations with a
high number of patches and a large patch-shape index experienced
more use. However, all the estimated coefficients had 95%
confidence intervals encompassing zero (Table 2), because of high
individuality in resource use by jays, indicating the need for a
larger sample size or further variable selection, or perhaps,
individual variation should be the focus rather than population-
level inferences. Understanding individual variation in resource
use is important for managers and researchers and can be
understood by relating individual jay resource coefficients to other

aspects of their home ranges as done by Marzluff et al. (2004).

Case llI: Using the UD to Extend Compositional Analysis
Aebischer et al. (1993) were the first to propose use of
compositional analysis, a multivariate analysis of variance, for
studies of wildlife habitat selection. The technique is based on
procedures outlined by Aitchison (1986) and is appropriate for
designs II and III. Habitat use is defined by the proportion of each
habitat type throughout an individual animal’s use area (e.g., total
home range, core area). Availability is similarly defined as the
proportional occurrence of habitat types, but at a larger scale (e.g.,
study area; Johnson 1980).

A refined measure of use might be considered when the
investigator wants to compare animal use within the home-range
boundary to what is available in the study area. In the Aebsicher et
al. (1993) approach, once the outer boundary is delineated, either
habitat use is assumed to be proportional to the raw proportion of
the home-range polygon comprised of that patch, or nonrandom
use within that boundary is simply ignored. Yet, nonrandom use
should be our baseline expectation; there is little reason to assume
that use will be completely random once the home-range
boundary is established. The UD offers an ideal technique to
overcome this issue because it allows us to incorporate more
information about use within the home-range boundary. By
incorporating the UD, we can directly estimate the amount each
habitat is used. Each habitat can then be weighted by its estimated
amount of use, so that both the proportion of that habitat within
the home range and the amount of use of that habitat are
integrated. This should provide a more accurate measure of
selection because the UD allows us to quantify the dispropor-
tionate use of some habitats. We call our modification that
incorporates the UD, the “weighted compositional analysis,” and
the traditional Aebsicher et al. (1993) approach, the “unweighted
compositional analysis.” In our example, we first examine whether
data show the expected pattern of nonrandom distribution within
the home-range boundary. If this expected result is obtained,
weighted compositional analysis is expected to give better insight
into selection.

Our example used radiotelemetry data from 14 cow elk equipped
with VHF transmitters in Custer, South Dakota, USA. For this
example, all individuals had >50 locations during the spring
season. First, we used Monte Carlo simulations to evaluate

whether radiotelemetry locations from these 14 elk showed
deviations from complete spatial randomness (CSR; Diggle
1983). Under the assumption of CSR, intensity of use would be
constant throughout each animal’s home range, and locations
would not be clustered in portions of the range. We calculated the
empirical distribution function (EDF) of “origin-to-point nearest
neighbor distances” (“point-to-nearest-event distances,” F-hat;
Diggle 1983, Kaluzny et al. 1997) for the observed locations and
for points generated from completely random distributions. This
metric estimates the proportion of points on a specified grid
within distance 4 of the nearest point in the set of 7 locations
(Kaluzny et al. 1997). We calculated F-hat for the observed
locations. To examine whether the observed EDF was consistent
with CSR, we generated 200 sets of random (randomly distributed
x and y coordinates) locations within the 100% minimum convex
polygon and calculated F-hat for each random set at the same set
of distances used to calculate F-hat for the observed locations. We
used the S+ Spatial Stats module (Kaluzny et al. 1997) in S-PLUS
2000 (MathSoft, Inc., Cambridge, Massachusetts) to evaluate the
CSR assumption for each of 14 elk location sets.

Our results, summarized in Fig. 4, demonstrate that nearly all
individuals exhibited some degree of spatial nonrandomness in
space use within their home range. Based on these results, we
concluded that use within the home range is not random, and
thus, a weighted measure of resource use may give more accurate
estimates of resource selection. We note that it is possible for
randomness to be rejected, but for the unweighted analysis to give
accurate results under some conditions if use of a habitat varies
widely among patches of that habitat. For example, highly
clumped location patterns could indicate high use of one patch of
a habitat, low use of another patch of that habitat, and overall
similarity of use versus availability of that habitat. However, in
such a situation, a weighted and unweighted analysis should
produce identical results.

Next, we developed UDs for each individual elk using fixed
kernel techniques and PI smoothing. We used a normal kernel for
all density estimates (Silverman 1986). To remain consistent with
other resource selection studies and to reduce potential bias from
the tails of the UD, we included only 95% of the UD (by volume).
We overlaid the UD grid on the habitat patch GIS map using
ArcView 3.2 (Environmental Systems Research Institute, Red-
lands, California) and summed the raw UD values by patch type.
For each habitat type, we divided the summed UD value by the
total UD value of all patches (i.e., 0.95) to obtain a UD-weighted
estimate of use for each habitat type for each individual animal.

We compared the results of compositional analysis using the
unweighted approach (Aebischer et al. 1993) and our weighted
UD method. We used 7 habitat types based on habitat structural
stage; these included early successional (ponderosa pine <20.3 cm
diameter, breast height [dbh]), low canopy-closure forest (ponder-
osa pine stands >20.3 cm dbh and <40% canopy closure), mid
canopy-closure forest (ponderosa pine stands >20.3 cm dbh and
41-70% canopy closure), high canopy-closure forest (ponderosa
pine stands >20.3 cm dbh and 71-100% canopy closure), fire-
killed forest, meadows, and other (habitats that occurred in low
proportion). We subtracted differences in the log-transformed
availability data from the log-transformed use data for each animal
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and then tested for overall selection using Wilks’ lambda statistic.
When use differed from availability, we calculated the mean and
standard deviation for the log-ratio differences, which were used
to rank each habitat type. We used #-tests to assess difference
between ranks and to determine where selection differed by
habitat pairs (Aebsicher et al. 1993, Erickson et al. 2001).

When comparing the unweighted and weighted UD methods,
we observed changes in overall habitat rankings and differences in
significant habitat pair comparisons, despite relatively little change
in use patterns (Fig. 5). Although the highest-ranked habitat (mid
canopy-closure forests) and the lowest-ranked habitat (early
successional) remained the same, important ranking differences
were noted among other habitat types for the 2 analysis
techniques. For example, the meadow habitat type was the
second-most selected habitat when incorporating the UD,
whereas the unweighted UD method ranked it below low, mid,
and high canopy-closure habitat types.

The weighted compositional analysis approach retains the ease of
interpretation of traditional compositional analysis but incorporates
additional information on use as estimated by the UD. The
additional biological insight obtained by using the UD, compared
with unweighted compositional analysis, will be greatest when use
within the home-range boundary is highly nonrandom. Our
simplistic example demonstrates that nonrandomness in space use
within the home range can affect conclusions of resource selection
studies when not considered, even in cases where clustering is
modest (Fig. 5). In our example, elk apparently used the meadow
habitat to a greater degree than was represented by computing the
proportion of that habitat within the home-range boundary. Thus,
those areas where intensive use is likely to occur might be
underrepresented in the traditional analysis, particularly if certain
resource types do not occur in great proportion within the home-
range boundary. This finding has important management impli-

cations because important resources occurring in limited amounts
might be ranked low in the unweighted model. Conversely, it is
likely that underused habitats could be weighted more heavily in
cases where that resource is prevalent, yet used little. Both of these
problems can be addressed by incorporating the UD to quantify use.

Discussion

The main advantage of using the UD (or a surrogate) in resource
selection analyses is the ability to consider resource use in a
probabilistic manner throughout an animal’s range and incorpo-
rate a continuous measure of use. Whereas most resource selection
techniques have relied on a fixed definition of use of a point or
unit during the study period (e.g., presence of an animal during an
aerial survey), UD procedures account for differential use
intensities throughout an animal’s range. Therefore, emphasis
shifts away from overall indices of use toward better under-
standing of the underlying pattern of space use during the study
period. We believe this emphasis is appropriate given that animal
use within the home range should be viewed in a probabilistic
sense. With the recognition that all areas within the home range
have some probability of use, the focus on RSF estimation
addresses how resources change the probability density function.
For some study designs (e.g., design III) the estimated spatial
extent of what is used helps define the spatial bounds of what is
available (i.e., home range). We view this situation favorably
because under this scenario the comparison of use and availability
is a continuous process (i.e., comparing intensity of use across the
region considered available) versus a dichotomous one (i.e., used
vs. available). Furthermore, by summarizing animal movements in
a continuous and probabilistic framework, it becomes possible to
quantify the degree of nonrandomness in resource use for analyses
such as compositional analysis, and individual differences in
resource use are highlighted and amenable to future analysis.
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Figure 5. Box plots of differences in the log ratio based on the (A) unweighted
and (B) weighted utilization distribution from the compositional analysis of 14
elk for 7 habitat types. Habitats appear in order of ranking on the x axis (i.e., the
mid canopy-closure forest received the highest rank using both approaches).
Habitats sharing underscore were not significantly different based on t-tests
(P < 0.05). Mid CC = mid canopy-closure forest; MR = meadow; High CC =
high canopy-closure forest; FK = fire-killed forest; Early = early successional.

Both cases I and II require selection of the covariates, including
interactions and polynomial terms, to be included in the basic
models fitted to the individual animals. This important step has
been ignored in this article for the sake of brevity. Estimates of
variation in estimates or coefficients of RSFs are relatively
empirical in case II, but they are, as usual, conditional on the
model used (e.g., Poisson regression) and covariates fitted. It is
relatively more difficult to quantify variation of estimates and
coefficients in case I because of bandwidth selection and other
user-options in UD estimation. In earlier modeling of resource
selection (e.g., Manly et al. 2002), the analyses and models
depended on a fixed definition of “use” as measured by the study

protocol during the study period. Units were either “used” or “not
used.” Use of the UD in estimation of an RSF allows the pattern
of space use to be more appropriately modeled, but we grant that
inferences continue to be limited to probability of use during the
study period as measured by the study protocol.

Under sample designs I-1II, a more traditional RSF estimation
procedure has been to fit the coefficients of an exponential RSF
using logistic regression (Manly et al. 2002) for a fixed definition
of use of a point or unit during the study period. This procedure is
an efficient method of RSF estimation because of its simplicity in
comparing used locations to points or habitats considered available
and the wide availability of standard logistic-regression software.
Logistic regression in use-availability studies requires low
probabilities of use for most habitat units and correct model
specifications, otherwise assumptions are not guaranteed (Manly
et al. 2002, Keating and Cherry 2004, Nielson et al. 2004).
Generally, most resource selection studies involve relatively rare
species or events (e.g., spotted owls, brown bear den sites), and
when dealing with GIS data, there can be an extremely large
number of possible habitat units within a study area, and thus, the
probability of use for any one unit should be small. For any
situation, the logistic-regression approach to use-availability data
can be relied on to correctly rank the habitat units in order of
importance (Keating and Cherry 2004).

Before application of UD methods, it is also necessary to
consider the assumptions. First, given that the UD surface is
estimated from sample points, we assume the UD accurately
estimates the probability of use even in areas where the animal was
not located. Increasing the number of observations will usually
help UD estimation (Seaman et al. 1999), thus, integrating GPS
data with UD procedures might be appropriate. Second, we
assume that enough sample points have been obtained to estimate
the UD. Sample size is a critical issue in kernel-based UD
estimation (Seaman et al. 1999, Kernohan et al. 2001), and often,
greater than 30-50 independent locations are required per animal
to obtain an adequate surface and size fit. Thus, we recommend
that studies with fewer than 30 locations during the period of
interest per individual not use UD approaches. The UD method
requires enough locations that the smoothed surface is adequate,
whereas the more-empirical Poisson modeling requires that a
substantial number of sample units contain one or more locations.
The specific form of the kernel and bandwidth selection options is
important, and consequently, computer software to estimate the
UD should be considered. A careful review of the literature is
necessary to ensure user-defined options are appropriately selected
so that UD estimation is robust. Last, we acknowledge that
problems with defining availability are still present, although less
obvious, which ultimately influences management recommenda-
tions resulting from resource selection analyses. For example, if
UD density values are related to resource attributes at grid points
in some area (Marzluff et al. 2004), all grid points within that area
(e.g., 95% home range) are treated as “available.” In a sense, the
approach examines the intensity of use of available resources.

Management Implications

The choice of analysis in resource selection studies depends on
study objectives, a given species’ ecology and habitat, the available
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data, and assumptions of both the data and analysis. We provide
an alternative framework for data analysis that should be
considered 1) when locations from unique individuals are
collected, and there is interest in documenting resource selection
within a defined study area or individual home ranges (study
designs II and III); 2) when differential use patterns exist within
an animal’s home range resulting in nonrandom use; 3) when
there is interest in assessing the variability of individual animal
resource selection patterns while allowing for population-level
inferences; 4) when behavior-specific resource selection is
important; 5) when resource data can be readily mapped and
joined with animal UDs; and 6) when designation of “used and
available resources” is problematic. Advantages over other
procedures are likely greatest when designation of “used and
available points” is problematic, placement of animal locations in
specific habitats is difficult (e.g., telemetry error), and nonrandom
use patterns within the home range exist. Thus, UD-based
approaches help overcome some problems with several commonly
used procedures. In addition to properly treating the animal as the
sampling unit (Otis and White 1999), UD procedures rely on the
pattern of animal space-use rather than using individual sampling
points. By considering resource use in a probabilistic manner, RSF
estimation identifies how resources directly change the probability
density function. Despite issues with UD estimation, these
benefits outweigh the potential drawbacks in many circumstances.
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