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Abstract. Many analytical techniques that assess resource selection focus on individual 
relocation points as the sample unit and classify resources as either used or available. 

Commonly, the relative use of each resource is quantified as the number of observations 
in each resource class or the proportional occurrence of a resource within a home range. 
We believe that a more accurate estimate can be summarized by a utilization distribution 
(UD). We present an analytical approach that explicitly incorporates a probabilistic measure 
of use, as defined by the UD. We used animal relocation points and fixed-kernel techniques 
to determine a UD within a home range. We related this probabilistic measure of use to 

categorical and continuous resource variables using multiple regression. Regression errors 
accounted for spatial autocorrelation so that the significance of regression coefficients could 
be appraised for each animal and averaged across animals. This allowed us to quantify the 
individualistic nature of resource selection and test for consistency in use of resources by 
a population. Sample sizes in population assessments correctly reflected the individual 
animal as the experimental unit. We used this technique in a geographic information system 
setting to examine the importance of local-scale (forest cover) and landscape-scale (degree 
of fragmentation, proximity to edges and human use areas) attributes to breeding season 
habitat selection by 25 radio-tagged Steller's Jays (Cyanocitta stelleri) in western Wash- 

ington State, USA. Individual jays varied significantly in habitat use, but most (20) con- 
centrated their use in areas with many vegetation patches or in areas with extensive edge 
between forest and nonforested land cover. This confirmed our prediction that jays prefer 
fragmented habitat and forest edges and helped to explain why jays are most abundant in 
fragmented landscapes. However, we refined our understanding of why they used such 
habitats by demonstrating that landscape attributes affected use of local habitat features: 
high-contrast edges were used most if they were associated with small human settlements 
and campgrounds. Use of patchy and edgy areas within home ranges may be reinforced by 
natural selection because jays that inhabited areas with complex-shaped patches and con- 
centrated their activity in such areas were most likely to fledge young. Concentration of 
use along forest-human land use interfaces may explain the greater risk of nest predation 
to other birds in such settings. 

Key words: Cyanocitta stelleri; edge effect; fragmentation; habitat selection; habitat use; kernel; 
nest predation; resource selection; resource utilization function; spatial autocorrelation; Steller's Jay; 
utilization distribution. 

INTRODUCTION 

Many analytical techniques are available to quantify 
resource selection by animals (Erickson et al. 2001, 
Manly et al. 2002). Commonly, resource attributes 
where animals are observed are compared to attributes 
at sites that are considered available (Thomas and Tay- 
lor 1990). A comparison of use vs. availability may 
take several forms, including simple univariate com- 
parisons of categorical resources (Neu et al. 1974) to 
sophisticated multivariate techniques such as discrete- 
choice modeling (Cooper and Millspaugh 1999, 2001) 

Manuscript received 18 February 2003; revised 20 August 
2003; accepted 8 September 2003. Corresponding Editor: G. M. 
Henebry. 

4 E-mail: corvid@u.washington.edu 

and logistic regression (Manly et al. 2002) that incor- 

porate continuous and categorical resource variables. 
Each technique has advantages and disadvantages 
(Alldredge and Ratti 1986, 1992, Aebischer et al. 1993, 
Leban et al. 2001), so choosing among them ultimately 
depends on objectives of the research, the types of data 
available, and assumptions of the data and analytical 
procedures (Alldredge and Ratti 1986, 1992). 

Problematic assumptions inherent in these proce- 
dures include inappropriate level of sampling and in- 

adequate sample size, the unit-sum constraint (i.e., use 
of all levels of a categorical variable sums to 1), and 

arbitrary definition of habitat availability (Aebischer et 
al. 1993). Compositional analysis and logistic regres- 
sion avoid the unit-sum constraint and allow specific 
consideration of differential habitat use by individuals 
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FIG. 1. Calculation of a resource utilization function for a single Steller's Jay. First, the jay's location estimates (upper 
left) are converted into a three-dimensional utilization distribution (UD; upper right) using a fixed-kernel home range estimator. 
The height of the UD indicates the relative probability of use within the home range. Greater heights indicate areas of greater 
use, as inferred from regions of concentrated location estimates. Second, resource attributes are derived from resource maps 
within the area covered by the UD. For example, we calculated a continuous resource measure (contrast-weighted edge 
density; lower right; highest at interfaces between late-seral forest and clearcuts or urban areas) and a categorical resource 
measure (vegetative land cover; lower left) at each grid cell center within the area of the UD. The height of the UD (relative 
use x 100) is then related to these local (e.g., vegetation cover; lower left) and landscape (e.g., contrast-weighted edge 
density; lower right) attributes on a cell-by-cell basis with multiple regression techniques that adjust the assumed error term 
for spatial autocorrelation. 

(Aebischer et al. 1993, Erickson et al. 2001). Discrete 
choice helps to refine the scale at which availability is 
defined (Cooper and Millspaugh 1999, 2001). Mahal- 
anobis distance techniques map resource use of pop- 
ulations without considering resource availability 
(Clark et al. 1993). Despite such advancements, even 
these analytical procedures are limited by the inability 
to account for resource use of variable intensity within 
an area of interest (e.g., an animal's range; Marzluff et 
al. 2001). 

The vast majority of resource selection techniques 
quantify use by relying on the individual observations 
as experimental units (Thomas and Taylor 1990, Manly 
et al. 2002). However, individual locations are not in- 
dependent (Otis and White 1999). If P values are of 
interest (Johnson 1999, Burnham and Anderson 2002), 
the use of individual locations as experimental units 

constitutes pseudoreplication (Hurlbert 1984) and ar- 

tificially inflates the statistical power of the analytical 
technique. Instead of focusing on individual locations, 
use may be better described by an animal's spatial and 

temporal use of space, and a familiar quantification of 
this is the home range (Aebischer et al. 1993). Within 
the home range, however, use is rarely uniform. Rather, 
some areas are commonly used and others rarely used 

(e.g., Marzluff et al. 1997). In contrast to assuming that 
use is uniform within the home range boundary (Ae- 
bischer et al. 1993), differential use could be quantified 
using the utilization distribution (UD; van Winkle 
1975, Kernohan et al. 2001). 

The utilization distribution (see Fig. 1) is a proba- 
bility density function (Silverman 1986) that quantifies 
an individual's or group's relative use of space (Ker- 
nohan et al. 2001). It depicts the probability of an an- 

0 
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imal occurring at each location within its home range 
as a function of relocation points (White and Garrott 
1990:146). Although, the UD has been used to define 
areas of frequent or "core" use (Samuel et al. 1985), 
to incorporate geographically referenced time budgets 
into home range calculations (Samuel and Garton 
1987), and to assess animal interactions (Seidel 1992, 
Millspaugh et al. 2000), it has not been used to relate 
relative space use to resource attributes. 

In this paper, we describe a procedure that relates 
UDs to resources in a spatially explicit way. We assume 
that space use relates to resource use and that the UD 
quantifies this relationship by providing a continuous 
and probabilistic measure of use throughout the area 
of interest. Advantages of using the UD for this end 
include: (1) increasing the sensitivity of resource se- 
lection studies by quantifying use within a home range 
with a probabilistic and continuous metric; (2) reducing 
the impact of location error because a continuous plane, 
rather than single points, are used to estimate resource 
use; (3) eliminating concerns about independence of 
points (Swihart and Slade 1997) because a systematic 
sampling strategy with short time intervals and auto- 
correlated data may provide more accurate UD esti- 
mates; (4) correctly treating the animal (or group of 
animals) as the experimental unit rather than the point 
estimate; and (5) considering the entire distribution of 
animal movements instead of focusing solely on in- 
dividual sampling points. 

We develop Resource Utilization Functions (RUFs) 
to express the correlation between the UD and sets of 
spatially defined resources. This extends the Resource 
Selection Functions of Manly et al. (2002) to the case 
in which use is continuous rather than discrete (i.e., 
used or not used). The coefficients of the RUF indicate 
the degree to which an animal, a social unit, or pop- 
ulation utilizes resources within some pre-defined area 
(e.g., a home range). Our objectives are to: (1) develop 
the theoretical underpinning of RUFs, (2) provide di- 
rection for calculating RUFs, and (3) illustrate the use 
of RUFs to understand how land cover and landscape 
pattern, especially fragmentation and edges, affect 
Steller's Jay (Cyanocitta stelleri [J. F Gmelin 1788]) 
ranging behavior and reproduction. 

THEORY OF RESOURCE UTILIZATION FUNCTIONS 

Utilization distributions 

Resource utilization functions rely on the continu- 
ous, probabilistic measure of animal space use provided 
by a utilization distribution. Height of a UD [fu(x, y) 
at location (x, y)] represents the amount of use at that 
location relative to other locations in the plane (Sil- 
verman 1986); see Fig. 1. Utilization distributions can 
be estimated from point processes, e.g., as observed 
locations of animals, using probability density func- 
tions such as kernel techniques (Worton 1989, Ker- 
nohan et al. 2001). Kernel density estimation tech- 

niques have been applied in the statistical literature for 

many years (Silverman 1986, Scott 1992, Kernohan et 
al. 2001) and recently have been evaluated as esti- 
mators of space use by animals (Seaman and Powell 
1996, Hansteen et al. 1997, Ostro et al. 1999, Seaman 
et al. 1999). Accurate kernel estimation assumes that 

sampling is sufficient to quantify relative differences 
in use (Garton et al. 2001). Simulation evaluations 
demonstrate that kernel-based estimators better repre- 
sent differential space use than other UD techniques 
with adequate sample sizes (>30-50 point estimates) 
and perform well under complex spatial point patterns 
(Seaman et al. 1999). Consequently, kernel-based es- 
timators have become the standard for non-mechanistic 
models of animal movements (Worton 1989, Kernohan 
et al. 2001). 

Relating UDs to resources 

Utilization distributions can be related to resources 

using multiple regression. We are simply interested in 

accounting for variation in the height of the UD (the 
dependent variable) attributable to variation in some 
set of measured resources (the independent variables). 
Issues relevant to any regression application must be 
addressed. It is important to first determine if a linear 
or non-linear model is appropriate because some ani- 
mals may use moderate levels of a resource more than 
either minimum or maximum values (Marzluff 1986). 
Ordinary regression assumptions must be met (e.g., 
homoscedasticity and normality of the independent 
variable, lack of outliers, and sufficient sample size) 
or when they are not met alternative procedures or 
transformations should be used and potential biases 

appraised (Draper and Smith 1981). In addition to these 
usual considerations, regressing resources on animal 
use in a spatially-explicit setting requires us to consider 
the appropriate resolution for measuring animal use and 
resources and necessitates investigations of spatial au- 
tocorrelation. 

Considering appropriate resolution, theoretically 
amounts to defining the scale (specifically, the extent 
and grain; Wiens 1989) at which the study organism 
responds to resources of interest. In practice this is done 

by deciding the outer boundary of the UD (extent), the 
bandwidth or "smoothing factor" used by kernel tech- 

niques to estimate the UD (grain of resource use), the 
resolution or cell size at which resources are mapped 
(grain of resource), and, in some cases, the extent over 
which landscape features are integrated. 

The spatial extent of resources for the animal or pop- 
ulation under study defines resource "availability." 
This might be defined objectively as the total extent of 

space used by an animal (e.g., the 100% kernel bound- 

ary), or subjectively defined as a high-use "core area," 
or a large study area (i.e., a pooled population distri- 
bution). We prefer an objective definition because this 

begins to standardize the determination of space use. 

Subjective definitions of space use are inconsistent and 
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arbitrary; they have plagued studies of resource selec- 
tion for decades (Kernohan et al. 2001, Marzluff et al. 
2001). We suggest that the 100% fixed-kernel home 
range boundary be used to define the extent of space 
use for several reasons. First, with adequate sample 
sizes (>30-50 location estimates), fixed kernels per- 
form well at the outer boundary (Seaman et al. 1999). 
Second, kernels attach some uncertainty around each 
location coordinate; therefore, additional area just be- 
yond each point is included. This is realistic because 
there is generally uncertainty about relocation coor- 
dinates (e.g., mapping error, telemetry error; Withey et 
al. 2001). Third, and perhaps most importantly, a 100% 
fixed kernel estimates a 100% probability function for 
that animal, i.e., there was a 100% chance of finding 
the animal in this area based on the sampling strategy 
used. For this reason, it is critical that the sampling 
strategy accurately reveals use patterns of the animal 
(Garton et al. 2001); an incomplete or biased sampling 
scheme will produce an incomplete or biased kernel 
estimate of the UD, even if the 100% boundary is used. 

The grain at which organisms perceive resources is 
difficult to know, but is certainly related to their sen- 
sory and locomotory abilities (Vos et al. 2001). Where 
insights into perception are possible, the kernel band- 
width, which controls the degree of UD smoothing, and 
resource resolution, which is often dictated by mapping 
resolution, can be adjusted to match it. Note that UD 
and resource resolution are separate issues; each is cal- 
culated independently of the other prior to theirjoining. 
Although kernel approaches are cell-based, cell size 
has little influence on UD calculation; the smoothing 
parameter is far more important. Resource utilization 
by animals that perceive and react to small-scale var- 
iation should have small smoothing parameters so that 
UD surface estimates can closely match small changes 
in concentrations of observed animal locations. Re- 
source utilization by animals that are likely to perceive 
and react to resources over larger areas should have 
larger smoothing parameters that produce smoother UD 
estimates, indicative of a coarse-grained resource con- 
sumer. User selection of smoothing parameters (band- 
width values), although advantageous to reflect per- 
ception capability of a study organism, should not be 
done without good justification. Rather, objective se- 
lection methods are preferred because they minimize 
error in UD estimation (Worton 1989, Kernohan et al. 
2001), and standardize analyses. Although least 
squares cross-validation is commonly used to objec- 
tively define smoothing (Gitzen and Millspaugh 2003), 
other options including "plug-in" and "solve-the- 
equation" are promising for defining the UD of animals 
with fine- and coarse-grained movement patterns (Ker- 
nohan et al. 2001). 

Perception of resources by animals may also affect 
decisions about how finely to map resources. Although 
this is relevant, it would be prudent to map resources 
at a scale fine enough to capture important resource 

variation, even if one thinks this is not perceptible to 
the study organism. This is reasonable because fine- 
scale maps can be converted to coarse-scale ones, but 
not vice versa. Resolving resources at multiple scales 
could even be used to help determine the perceptive 
abilities of a study organism. The resolution at which 
animal use is most closely aligned with resource var- 
iation may signal the perceptual grain of the organism. 
In practice, the minimum resolution available is often 
set by technology rather than biology. Readily avail- 
able, remotely sensed resource maps usually have a 
resolution of only 20-50 m. 

Choice of resource resolution is especially important 
to estimation of RUFs because grid cells within the 
kernel home range eventually become the sampling 
units where the UD and the resource are measured. 
Therefore, the UD and the resources are eventually 
measured at the same resolution, usually that of the 
resource with the finest resolution. Resolving the UD 
more finely than the resources (the UD is continuous) 
is inconsequential because any finer scale variation in 
use will only be associated with the coarser (i.e., con- 
stant) value of the resource. 

Selection of resource variables involves more than 
consideration of resolution. Resource variables should 
not be linear combinations of one another (multicol- 
linear), but they also do not need to be completely 
independent. Multiple regression procedures will pro- 
duce best linear unbiased estimates of parameter co- 
efficients even when collinearity exists among inde- 

pendent variables (McCullagh and Nelder 1990, Neter 
et al. 1990). Biological reasoning should be used to 
determine the need to include correlated variables in 
the RUF Decisions about correlated variables will be 
common because spatially explicit landscape variables 
are often correlated, even if they measure relatively 
distinct landscape properties (e.g., area, shape, con- 

nectivity, or diversity). 
Spatial autocorrelation is a common property of eco- 

logical distributions (Schiegg 2003) that must be ad- 
dressed in the development of a RUF Ordinary Least 

Squares (OLS) regression is based on the assumption 
that deviations in the UD, given the resource attributes, 
are independent. However, the kernel analysis induces 
a correlation between the deviations in neighboring 
pixels that must be adjusted to obtain efficient estimates 
of the regression coefficients. Failure to adjust for spa- 
tial autocorrelation will invalidate the assumption of 

independence among observations required by statis- 
tical hypothesis testing and will inflate the probability 
of a Type I error (Legendre 1993, Legendre et al. 2002) 
because of underestimates of variance associated with 

parameter coefficients (Lennon 1999, 2000). 
Spatial autocorrelation can be addressed by fitting a 

regression model to the UD with spatial correlation as 
a function of the distance between the pixels. We sug- 
gest using a stationary model from the Matern class, 
i.e., the correlation is a function of the Euclidean dis- 
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tance between two locations (Handcock and Stein 
1993), with range determined by the bandwidth used 
in each individual animal's kernel density estimate (He- 
pinstall et al., in press). The two model parameters are 
(1) p, the range of spatial dependence, measured in 
meters; and (2) 0, the smoothness of the UD surface, 
measured in the number of derivatives of the UD sur- 
face. Operationally, this means that .the UD surfaces 
realized from this model will have continuous Fe - 1 
derivatives (almost certainly) where F is the integer 
ceiling function. For example, values of 0 > 1 mean 
that the UD is smooth enough to have one derivative 
existing. Larger values of 0 are associated with smooth- 
er UD estimates. Specifically, the re -1 derivatives 
of the surfaces satisfy a Lipschitz condition of any order 
less than Fr - e. That is, there exists C, 6 > 0 such 
that IfD(x, y) - fD(x', Y')I < C(x) (x', y)- (x ') for 
x, y, x', y' e R almost certainly, if I(x, y) - (x', y') I 
< 8 and a + 0 < rF. The range is determined by the 
rate of decrease of the correlation between estimates 
of the UD with distance. Thus the covariance function 
captures the key characteristic of the estimates in a 
relatively parsimonious manner. The Matern model in- 
creasingly is being used to model continuous spatial 
processes because of its flexibility of form and its abil- 
ity to capture a wide range of spatial dependencies. 
Because the model is an approximation to the complex 
correlation induced by the kernel analysis, we suggest 
using a maximum likelihood procedure to jointly es- 
timate the spatial variance of fD(x, y), the RUF coef- 
ficients, and the smoothness of the surfaces individu- 
ally for each animal. The range (of smoothness) should 
be set by the bandwidth used in each individual ani- 
mal's kernelling procedure. Although the spatial cor- 
relation model is only approximately correct, the es- 
timates of the regression coefficients based on it will 
be much closer to optimal than the OLS estimates, as 
the fitted correlation function will be closer to the true 
correlation than the uncorrelated values implicit in OLS 
(Hepinstall et al., in press). 

Resource utilization coefficients 

The coefficients in the RUF indicate the importance 
of each resource to variation in the UD. Their sign 
indicates whether use increases (+ sign) or decreases 
(- sign) with increase in the quantity of the resource. 
Their magnitude indicates the change in UD for a unit 
change in the quantity of the resource if the quantities 
of all the other resources are held fixed. Unstandardized 
regression coefficients are necessary if the RUF is to 
be used to predict expected use of resources (e.g., to 
map expected use throughout a species' range based 
on observed use within a sample of individual home 
ranges). However, use of standardized coefficients al- 
lows comparisons of the relative influence of resources 
on animal use, regardless of the measurement scale 
quantifying the resource (Zar 1986). Consider two re- 
sources that are equally correlated with use, but one 

has values of 1-4 and the other of 10 000-40 000. Their 
standardized coefficients will be equal despite the fact 
that their unstandardized coefficients differ by four or- 
ders of magnitude. The standardized partial regression 
coefficients for each resource variable Pj can be esti- 
mated as 

E1 * S-i 

SRUF 
(1) 

where ,* is the maximum likelihood estimate of J*, 
the partial regression coefficient from the multiple re- 

gression equation; Sxj is the standard deviation of the 
values of resource j; and SRUF is the estimate of the 
standard deviation of the UD values. 

The estimates of the standardized coefficients could 
also be used to rank the relative importance of each 
resource. The significance of the coefficients (j* or 

1j) can be determined as usual in regression because 

spatial correlation is assumed to be a function of the 
distance between pixels. This is a limited application 
of the technique, but it is analogous to typical studies 
that relate abundance of animals or locations of a col- 
lection of unmarked animals to resources (Thomas and 

Taylor [1990] I and II designs). 
If the study design allows UDs to be derived for 

many individual animals (the Type III design of Manly 
et al., and the preferred design; Otis and White 1999), 
then more analytical options exist. An average RUF, 

p*, could be developed for mapping the expected use 
of n animals by averaging the unstandardized pi* across 
the i = 1 .... ,n animals. If we assume that each animal 
is independent of other sampled animals, then the av- 

erage RUF can be estimated from the estimates of the 
individual animal coefficients by a simple average (so 
that each animal is weighted equally) and the estimate 
will have variance 

IVar( ) = 
I 

SE23. Var(i*) = 2 
i= 

* (2) 

This variance quantifies our uncertainty in knowing 
1j* for the animals that we have observed. It does not 
include inter-animal variation. 

The standardized coefficients can become indepen- 
dent variables in subsequent analyses (much as other 
selection coefficients can be used in secondary anal- 

yses; Aebischer et al. 1993). This allows us to test for 

population-wide consistency in selection and to rank 
the relative importance of each resource to the pop- 
ulation. Here, coefficients for each resource for each 
animal become the independent, replicated measures 
of resource use. The Ho that Pj = 0 can be tested at 
the oa probability level by determining whether the 1 
- o confidence interval includes 0. Sample size is 
now the number of animals, not pixels or location 

estimates. Positive [j values that are significantly 
greater than 0 indicate use of a resource that is greater 
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than expected based on availability. Negative 3j val- 
ues that are significantly less than 0 indicate use of a 
resource less than expected based on availability. (j 
values can be compared to each other with standard 
t tests to determine whether some resources are used 
significantly more or less than other resources (Zar 
1996). When determining confidence intervals and 
conducting hypothesis tests, it is conservative (vari- 
ance is larger and confidence intervals wider) to viev 
the coefficients as a random sample from a larger pop- 
ulation of animals and include inter-animal variation 
in the calculation of variance. This can be done using 
standard sampling statistics, for example, 

Var(3j) = ( - j)2. (3) 
n-l 1i= 

Conservative estimation of variance captures all bio- 
logically relevant sources of variation in resource use 
by a population, but makes rejection of null hypotheses 
less likely. A less conservative, more precise estimate 
of sampling variation could be obtained by subtracting 
the variance due to estimating the individual coeffi- 
cients (Eq. 2) from the total variance (Eq. 3). 

The importance of each resource is also simply in- 
dicated by the proportion of animals whose use is sig- 
nificantly correlated with the resource. Inconsistent re- 
source use within the population may prompt investi- 
gations of the scale of resource selection or of factors 
that mediate use, such as properties of animals or land- 
scapes. 

APPLICATION TO STELLER'S JAY MANAGEMENT 

Questions about resource use in Steller's Jays 

Steller's Jays, common in western North America, 
are nest predators that search for and locate nests in- 
cidentally to foraging on insects, berries, and human 
handouts; see Plate 1). As such, their relative use of 
certain portions of a landscape indicates the risk of 
predation to open-nesting birds (Vigallon 2003), in- 
cluding the threatened Marbled Murrelet (Brachy- 
ramphus marmoratus [J. F Gmelin 1789]; Nelson and 
Hamer 1995, Luginbuhl et al. 2001, Raphael et al. 
2002). A new technique was needed to analyze resource 
use by jays because no existing technique removed our 
concerns about using individual location estimates to 
define resource use, or incorporated non-uniform use 
within the home range. Resource Utilization Functions 
remove these concerns and allow us to relate variation 
in use within the home range (a measure of nest pre- 
dation risk) to measures of landscape fragmentation 
and edge resulting from logging, human settlement, and 
recreation. 

Jay abundance is greatest in fragmented forest land- 
scapes (Marzluff et al. 2000, Luginbuhl et al. 2001; 
see Plate 1). Therefore, we hypothesized that jays pref- 
erentially use: (1) forest-clearcut edges, (2) forest areas 
fragmented by small human settlements and camp- 

grounds, and (3) landscapes characterized as complex, 
fragmented mixes of young and old forests. Here we 
test these hypotheses and demonstrate a typical re- 
source utilization analysis. We calculate RUFs for jays 
and investigate resource selection coefficients to: (1) 
produce general equations of resource use for predic- 
tion throughout the study area, (2) quantify differences 
in selection among groups of jays, and (3) determine 
how resource selection correlates with demography. 

Field data collection 

Study site.-We studied jays on the western side of 
the Olympic Peninsula, north and south of Forks, Wash- 

ington State (47?56' N, 124?23' W). The study area 
(details in Marzluff et al. 2000, Luginbuhl et al. 2001, 
Neatherlin 2002, Vigallon 2003) is characterized by 
steep topography and coniferous forest dominated by 
Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), 
western hemlock (Tsuga heterophylla (Raf.) Sarg.), sit- 
ka spruce (Picea sitchensis (Bong.) Carr.), and western 
redcedar (Thuja plicata Donn ex D. Don). Most land 
is reserved (Olympic National Park, Olympic National 
Forest) or managed for timber production (Washington 
State and private forest lands). Human settlement is 

light, but recreation is common (Neatherlin and Mar- 
zluff, in press). 

Radio-tracking Steller's Jays.-We monitored the 
locations of 47 breeding adult Steller's Jays (deter- 
mined by plumage and confirmed by behavior; Greene 
et al. 1998) during the nesting and chick-rearing season 

(April-September) from 1995 to 1998. Each individual 
was only monitored during one year and only one mem- 
ber of a breeding pair was observed each year. We fitted 

jays with 6-g, backpack-mounted (around the wings, 
Buehler et al. 1995) transmitters to facilitate our ob- 
servations. We homed in (Mech 1983) on jays 1-3 
times per week until we saw them or determined them 
to be within 200 m (based on lack of directionality in 
the radio signal). We recorded their locations on maps/ 
photos of the study site, using a global positioning 
system in remote areas. During each 1-2 h focal ob- 
servation period, we plotted the entire area used by a 
bird and then recorded 2-3 locations (extreme and mid 

points of area used) for subsequent definition of the 
home range. Known locations of birds at nests were 
not included. We occasionally recorded single locations 
of animals at their roosts. We purposely recorded few 
locations per day on each animal to maximize the num- 
ber of birds that we could track and spread locations 
on each bird over the range of times and conditions 
encountered during the breeding season (Otis and 
White 1999). 

We defined an animal as being "adequately sam- 

pled" if 30 locations were obtained; 25 jays were ad- 

equately sampled. Previous simulation studies indicate 
that, at minimum, 30-50 points drawn randomly from 
a variety of known distributions are sufficient for kernel 
methods to accurately define the home range (Seaman 
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TABLE 1. Definitions of (A) land cover attributes and (B) derived landscape pattern metrics that were related to utilization 
of home ranges by Steller's Jays. 

Term Definition 

A) Land cover 
Late-seral coniferous forest 

Mid-seral coniferous forest 

Early-seral coniferous forest 
Clearcut/meadow/hardwood 
Nonforested lands 
Water 

B) Pattern of land cover in landscape 
Number of land cover patches 

Contrast-weighted edge densityt 

Index of juxtaposition and 
interspersion 

Landscape mean patch shape 
index 

>70% crown closure of conifer with >10% crown closure in trees >21" dbh and 
<75% hardwood/shrub 

>70% crown closure of conifer with <10% crown closure in trees >21" dbh and 
<75% hardwood/shrub 

>10% and <70% crown closure of conifer and <75% hardwood/shrub 
<10% crown closure of conifer or >75% hardwood 
Urban areas, barren lands, agriculture, some very young regenerating lands 
Rivers, lakes, saltwater 

Measure of fragmentation equal to no. distinct land cover patches in landscape. 
Adjacent pixels of same land cover are joined to form a patch. In our case, no. 
patches equals patch density because total landscape area is held constant 
(12.6 ha). No. patches = 1, if all pixels are of same land cover, increasing to a 
maximum equal to total pixels in landscape. 

Measure of total edge (interface between patches of different land cover) in a 
landscape that equals the sum of all edge segments multiplied by a contrast 
weight divided by landscape area. This produces a quantity of edge (m/ha) 
within the landscape that we designed to be especially sensitive to mature 
forest - clearcut interfaces because these areas provide rich combinations of 
feeding opportunities for jays. 

Measure of intermixing of patch types that measures the probability of each 
patch being adjacent to all other patch types. Approaches 0 when some patch 
types are commonly found adjacent to each other, but other types are rarely 
found next to each other. Ranges to 100 when all patch types are equally 
adjacent to all other patch types. 

Measure of patch complexity that is the average of all patch shapes in the land- 
scape. Shape is calculated separately for all patches by dividing a patch's 
perimeter by the minimum perimeter possible for a square patch (maximally 
compact shape) of equal size. Equals 1 when patch is square or almost square, 
and increases without limit as shapes become more irregular. 

Notes: Landcover was determined by classification of satellite imagery (see Methods) and landscape metrics were determined 
using FRAGSTATS (McGarigal and Marks 1995). For our analysis, "landscape" is a circular area with a radius of 200 m 
(12.6 ha) because Steller's Jays appear responsive to edges of this width (Marzluff et al. 2000). See Table 4 for actual ranges 
of landscape metrics in this study. 

t Contrast weights: 1.0 for interface of late-seral forest with clearcut; 0.75 for interface of late-seral with nonforest or 
mid-seral with clearcut; 0.50 for interface of mid-seral with nonforest; 0.25 for interface of late-seral with early-seral, mid- 
seral with early-seral, early-seral with nonforest, or early-seral with clearcut; 0.10 for interface of late- with mid-seral or 
nonforest with clearcut; 0.0 otherwise. Edge density = 0 when no edge exists in the landscape, and increases without limit. 

et al. 1999). In our case, the increase in range size with 
sampling effort (i.e., incremental analysis) suggested 
that an average of >75% of the entire range was defined 
by 30 locations; 95% confidence intervals around these 
means include 100% definition of the area used. Our 
definition of adequate sampling is supported by the lack 
of a positive correlation between the number of location 
estimates and the size of the home range of adequately 
sampled animals (r = -0.14, n = 25, P = 0.50; cor- 
relation between sample size and size of the minimum 
convex polygon home range, which is known to be 
most sensitive to sample size, Kernohan et al. 2001). 

Determining fecundity.-We observed radio-tagged 
adult jays throughout the breeding season to determine 
their success at fledging nestlings. Nests were rarely 
found, but jays only fledged a single brood each year, 
and fledged young conspicuously followed parents, 
begged noisily, and were therefore easily detected and 
counted. We observed each jay for 2-3 hours for a 
minimum of 20 days during the breeding season 
(March-September). Nine of the jays that we followed 

were never seen in the company of fledglings; we 
termed them "unsuccessful." Sixteen jays successfully 
fledged young. The number of young fledged only var- 
ied from 1 to 5 per nest (2.88 ? 0.26 fledglings; mean 
+ 1 SE); these birds were classified as "successful." 

Defining a RUF for Steller's Jays 

Our approach consists of four basic steps (Fig. 1): 
(1) estimate the UD using fixed-kernel techniques (Sea- 
man and Powell 1996), (2) measure the density estimate 
(i.e., the height of the UD) at each grid cell within the 
UD, (3) determine the associated resources at the same 
cells, and (4) relate height of the UD to resource values 

cell-by-cell to obtain coefficients of relative use of re- 
sources. 

Estimating the UD.-We used fixed-kernel estima- 
tion with least squares cross-validation (Kernohan et 
al. 2001) in the ANIMAL MOVEMENTS extension of 
ArcView 3.1 (Hooge and Eichenlaub 1997) to estimate 
the UD. Least squares cross-validation is an iterative 

process that estimates the least biased smoothing factor 
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TABLE 2. Resource utilization functions (RUFs) for Steller's Jays during the breeding season in the forests of Washington 
State's Olympic Peninsula. Positive coefficients indicate that use increases with increasing values of the resource. 

Mean estimates of unstandardized 
RUF coefficients (1 SE)t 

Jay group n o 3no. pthes P3edge 

All jays 25 1.32 (0.1) 0.09 (0.01) 0.005 (0.001) 
Jays <1 km from human activity 10 1.74 (0.1) 0.11 (0.014) 0.03 (0.001) 
Jays >5 km from human activity 15 1.04 (0.1) 0.08 (0.014) 0.01 (0.001) 
Jays >5 km from human activity in fragmented landscape 9 1.1 (0.13) 0.09 (0.014) -0.009 (0.001) 
Jays >5 km from human activity in contiguous landscape 6 0.95 (0.20) 0.07 (0.02) -0.01 (0.002) 
No clearcuts in home range 5 2.38 (0.18) 0.02 (0.02) 0.04 (0.002) 
Clearcuts in home range 20 1.06 (0.09) 0.11 (0.01) -0.004 (0.008) 

Notes: The RUF at location x is modeled as: RUF(x) = C(x)3 + Z(x) where 3 is the vector of unstandardized RUF 
coefficients corresponding to C(x), the vector of resource utilization characteristics: (patch number, contrast-weighted edge 
density, juxtaposition and interspersion of patches, patch shape, mature forest, and clearcut; see Table 1 for definitions). The 
final term Z(x) measures the spatial variation in RUF induced by the kernelling. It is modeled as a mean-zero Gaussian 
random field with empirically estimated Matern correlation function. 

t Standard errors were calculated using Eq. 2, which quantifies the uncertainty in our estimation of resource use by each 
individual jay rather than uncertainty in how this sample of jays represents the larger population of jays on the Olympic 
Peninsula. 

(that with the lowest mean integrated square error; 
Worton 1989). We defined the spatial extent of space 
use as the 99% fixed-kernel home range boundary. This 
reduced subjectivity (as previously discussed) to the 
maximum extent possible using program Animal 
Movement (100% boundaries are not calculated), and 
limited our inference about resource use to the area 
inhabited by the animal, based on relocation points. 
This certainly contains areas used most by jays, but 
radio-tracking effort determines how much of the true 
home range is likely to be estimated by kernel tech- 
niques (our largest samples suggest that our efforts 
captured >75% of total space use). Because we defined 
the spatial extent of our analysis as the home range, 
we investigated resource use relative to resource oc- 
currence within the home range. We could have in- 
cluded areas beyond the home range (where use would 
be -0) if we were interested in larger scale assessments 
of resource use. 

Measuring the density estimate.-We estimated re- 
source use at each grid cell throughout the home range 
by measuring the average height of the kernel density 
estimate over each cell. We developed an ArcView 3.1 
extension for this purpose (FOCAL PATCH; available 
online).5 

Measuring resources.-We used 1988 and 1990 
Landsat thematic mapper satellite images of the Olym- 
pic Peninsula to classify land cover throughout the 
landscape including our study areas. Our base vege- 
tation map was obtained from the Washington Depart- 
ment of Natural Resources. Land cover was originally 
classified from 1988 and 1990 Landsat thematic map- 
per satellite images to six forest cover types at 25-m 
resolution (Green et al. 1993). This database was up- 
dated twice to reflect timber harvest through 1991 and 

5 URL: (http://gis.washington.edu/phurvitz/av_devel/ 
focalpatch/) 

1993 (estimated accuracy of harvest mapping was 90- 

98%). The harvest change detection used a comparison 
of satellite imagery to detect areas that were converted 
from forested cover to the clearcut class (Collins 1993). 
Recent (1993 to present) harvest immediately around 
each study stand was delineated during fieldwork and 
was used to update the base map for analyses imme- 

diately adjacent to the stand. The six types of land cover 
that were delineated are defined in Table 1. 

We used this land cover classification to measure 
five resource attributes at each 25 x 25 m cell within 

jay home ranges: (1) the land cover type, (2) contrast- 

weighted edge density, (3) interspersion-juxtaposi- 
tion index, (4) number of patches, and (5) mean shape 
index (see Table 1 for definitions; see McGarigal and 
Marks [1995] for calculation formulas). To determine 
the last four attributes, we used an analysis window 
with radius 200 m centered on each cell. We retained 
the minimum grain available to characterize resource 

variability (25 m) and used 200 m as the landscape 
extent because nest predation rates are highest within 
200 m of edges in our study area (Marzluff et al. 2000, 
Raphael et al. 2002), suggesting that predators like 

jays respond to landscape attributes at this scale. 
We measured land cover and landscape pattern at 

each grid cell using FOCAL PATCH. FOCAL PATCH 
interfaces with PATCH ANALYST (Rempel et al. 

1999) to calculate landscape metrics for a circular area 
with user-defined radius centered on each grid cell. 

Any mapped resource can be associated with a cell 
with this "moving window" approach. The final result 
of running FOCAL PATCH is the production of a table 
with a row for each cell in the analysis area (home 
range, in our case) and columns corresponding to cell 
location, resource use, and the measured resource at- 
tributes (e.g., land cover type and landscape metrics) 
for the specified circular area. This can be exported 
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TABLE 2. Extended. 

Mean estimates of unstandardized 
RUF coefficients (1 SE)t 

Pjuxtaposition Ppatch shape mature forest Pclear 

-0.0002 (0.0003) 0.14 (0.05) -0.14 (0.01) -0.29 (0.03) 
-0.005 (0.0003) -0.50 (0.07) 0.01 (0.05) -0.56 (0.07) 

0.001 (0.0005) 0.56 (0.08) -0.29 (0.04) -0.10 (0.04) 
0.002 (0.0005) 0.50 (0.09) -0.53 (0.05) -0.15 (0.05) 

-0.001 (4E-7) 0.64 (0.14) 0.07 (0.06) -0.03 (0.07) 
-0.008 (3E-7) -0.93 (0.09) 0.30 (0.1) 0 (0) 
-0.001 (1E-7) 0.40 (0.06) -0.24 (0.03) -0.27 (0.03) 

from ArcView to additional statistical analysis soft- 
ware packages. 

Relating UD measurements to resource measure- 
ments.-We used multiple linear regression tech- 
niques to relate resource attributes (i.e., the indepen- 
dent resource variables) to the continuous measure of 
use (i.e., height of the UD estimate). We regressed 
resource values at each cell within an animal's home 
range to the corresponding value of the UD at that 
cell. We regressed six resource variables simulta- 
neously on use to account for the four landscape pat- 
tern metrics and important land cover variation (two 
dummy variables that distinguished mature forest { % 
mid-/late-seral forest cover} from clearcut land {% 
clearcut land cover}, and settled land {% barren/ur- 
ban/early-seral forest cover}) described in Table 1. 
This produced n = 25 unstandardized j*'s (one per 
jay). We derived the population-level RUF by assum- 
ing that each jay's use of land was independent (jays 
were scattered over a 26000 km2 study area), aver- 
aging P* and computing variance with Eq. 2. 

Because adjacent grid cells taken from the kernel 
analysis induced spatial autocorrelation into our data, 
we developed a maximum likelihood estimator of re- 
gression coefficients that assumed spatially dependent 
errors. Formally, the model is 

fUD(, y) = V(x, y)T + Z(x, y) x, y e R (4) 

where V(x) is the vector of resource attributes at the 
location (x, y) within the region R of positive density 
for the bird, and 3 values are the corresponding RUF 
coefficients. The spatially varying term Z(x, y), x, y E 
R is a random field over R that approximates the cor- 
relation among values offuD(x, y) at different location 
within the range induced by the kernelling. We modeled 
Z(x, y) as a mean-zero Gaussian process with the fol- 
lowing correlation function: 

Cor[Z(x, y), Z(x', y')] 

= Kp,[V(x- x')2 + (y - y')2] (5) 

where 

K,o (d) = 
20 F() (6) 

where F is the gamma function and B0 is the modified 

Bessel function of the third kind and order 0 discussed 

by Abramowitz and Stegun (1970). We provide access 
to the R statistical and graphing environment and a 
RUF analysis package that applies this Matern corre- 
lation function (Handcock and Stein 1993) to the data 
table from FOCAL PATCH.6 

USE OF LOCAL- AND LANDSCAPE-SCALE 

RESOURCES BY JAYS 

Describing resource use with RUFs 

We present a variety of RUFs for Steller's Jays in 
Table 2. The RUF for all 25 jays indicates highest use 
of areas within their home range that have high den- 
sities of land cover patches, high densities of contrast 

edge, low juxtaposition of land covers, complex-shaped 
landcover patches, and an abundance of young forest/ 
barren/agricultural/settled land cover relative to mature 
forests or clearcuts. This equation describes the average 
resource utilization using only the variance associated 
with estimating the individual resource utilization co- 
efficients; we did not account for inter-bird variation. 
This is a valid representation of our certainty in esti- 

mating the average coefficients, given our sample of 
25 jays, which is useful for projecting resource use by 
these jays over a larger region. However, individual 

jays varied considerably in their use of specific re- 
sources. Most jays (20/25) significantly concentrated 
their activities in regions of their home range that either 
had abundant high-contrast edges (10 jays), many 
patches (14 jays), or both edges and patches (4 jays; 
Fig. 2, Table 3). 

Some variation in use of patch or edgy areas of the 
home range was correlated with other properties of the 

landscape. Concentrated use of areas with many patch- 
es was stronger if clearcuts were present in the home 

range (1patch =0.11) than if they were absent (atch = 

0.02). Jays with clearcuts concentrated their use in 

patchy areas, but not in the highest contrast edges (there 
were many high-contrast interfaces between clearcuts 
and forest). Jays without clearcuts made extensive use 
of mature forest and concentrated their use in high- 
contrast edge areas because in their home ranges such 

6 URL: (http://csde.washington.edu/-handcock/ruf) 
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FIG. 2. The influence of human activity on use of edges and patches by Steller's Jays. Jays tended to use either patchy 
or edgy areas in their home ranges rather than areas with both or neither attributes. Jays (n = 10, solid circles <1 km of a 
human activity center (campground, small town, or picnic area on the Olympic Peninsula) used high-contrast edges (interfaces 
between anthropogenic or clear-cut areas and mature forests) more than did jays (n = 15, open circles) >5 km from human 
activity (high-contrast edges for those jays were interfaces between clear-cuts and mature forests). 

areas were limited and represented interfaces between 
forests and settled areas or campgrounds (probably of- 
fering supplemental food). Likewise, proximity to 
small human settlements and campgrounds appears to 
affect use of edges (Fig. 2). High-contrast edges were 
used more if they were near settlements or camp- 
grounds (often the edge was the forest-human area 

interface; P3 ge =0.31 + 0.20, mean + 1 SE) than far 
from such activity (where high-contrast edges are only 
forest-clearcut interfaces; P3g = -0.01 + 0.06; F,24 
= 5.4, P = 0.03). We did not include proximity to 
human settlement and recreation as a variable in the 
calculation of a RUF because it is a property of an 

entire home range; it does not vary among grid cells 
within a home range. Variation in other aspects of the 
home range, which was substantial (Table 4), did not 

strongly correlate with resource use. Only one corre- 
lation out of 58 was significant (correlation between 

3ear and the proportion of range covered with clearcuts, 
r = -0.41, P = 0.05), indicating that home range size 

and the amount of most land cover types and config- 
urations (edges, patch number, degree of land cover 

interspersion) characterizing each home range did not 

strongly influence resource use within the home range. 
Documenting factors that are associated with vari- 

ation in the RUF coefficients may improve the repre- 

TABLE 3. Estimates of standardized RUF coefficients (p) for 25 Steller's Jays nesting on the Olympic Peninsula. 

No. jays with use 
significantly associated 

with attribute 
Mean 95% confidence 

Resource attribute standardized [ interval P ( = 0)t + 

Number of patches +0.ll -0.57-0.28 0.19 14t 9 
Contrast-weighted edge +0.06t -0.13-0.26 0.50 10t 9 
Mature forest -0.05 -0.18-0.08 0.45 12 8 
Clearcut -0.04 -0.17-0.09 0.51 6 9 
Interspersion-juxtaposition -0.01 -0.14-0.16 0.87 11 8t 
Patch shape index +0.01 -0.11-0.14 0.84 9t 12 

Notes: Relative importance of resources is indicated by the magnitude of [3. Consistency in selection at the population 
level is indicated by significance of [3 and the number of jays whose use was either positively or negatively associated with 
each attribute. 

t P values test the null hypothesis that the average 3 is zero, given n = 25 jays. 
t Use is in the direction predicted if jays select for high-edge, fragmented areas within their home range. 
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TABLE 4. Size, composition, and landscape patterns within Steller's Jay home ranges. 

Attribute Minimum Maximum Mean 1 SE 

Range size (ha) 5.0 429.0 80.0 16.0 
Barren/urban land cover (%) 0 17.5 2.7 0.87 
Mid-/late-seral forest cover (%) 11 88.4 55.8 4.8 
Early-seral forest cover (%) 0 43.7 10.0 2.9 
Clearcut land cover (%) 0 84.0 27.3 5.2 
Number of landcover patches 3 69 19.4 3.5 
Total contrast-weighted edge density (m/ha) 24.7 71.9 43.3 2.4 
Index of juxtaposition and interspersion (%) 50.7 97.7 77.3 2.3 
Landscape mean patch shape index 1.3 1.8 1.6 0.02 

Notes: All statistics are based on a sample of 25 jays living on Washington's Olympic 
Peninsula. Range size was determined using the 99% contour of the fixed kernel estimator. 

sentation of how a population uses resources and may 
increase successful projection of this use. Consider, for 
example, our findings that resource use varies with the 
occurrence of clearcuts and with proximity to human 
activity. We used this information to provide a series 
of predictive, landscape-sensitive, "conditional" RUFs 
(Table 2). Characterization and eventual projection of 
use for our population of jays (because we already 
determined resource use to be individualistic) would 
thus be a multi-step process in which the landscape 
conditions of an area were first determined, and then 
the correct model of use for that landscape was applied. 

Ranking use of specific resources 

The relative use of each resource by the study pop- 
ulation of jays is indicated by the average absolute 
value of the standardized 3.. In our example, the num- 
ber of patches was the most important correlate of a 
jay's location; jays tended to use patchy areas more 
than uniform ones (ppatch is positive; Table 3). Other 
resource attributes were not as strongly related to use 
(all P's > 0.40); however, they varied in their relative 
ability to account for a jay's use within its home range 
(contrast edge was of secondary importance and use of 
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FIG. 3. Use of land covers (mean + 1 SE) found within 
Steller's Jay home ranges. Means are calculated by summing 
the heights of the UD at each grid cell comprising a specific 
land cover within a jay's range. 

clearcuts was of least importance; Table 3). Note that 
the variation around the standardized [j is considerably 
greater than the variation that we calculated for the 
unstandardized P* (Table 2). This is because we in- 
cluded inter-bird variation (Eq. 3), thereby allowing 
inference from our sample of jays to all jays in the 

population. We used the more conservative approach 
of including all sources of variance rather than basing 
our estimation of sampling variance only on inter-bird 
variation (Eq. 3 - Eq. 2) because, in our example, inter- 
bird variation was an order of magnitude larger than 
the variance associated with estimating the resource 
utilization coefficients of individual jays. 

Analysis of RUF coefficients for forest land cover 
indicated that mature (combination of late- and mid- 
seral forest) and clear-cut forests were used less than 

young-seral forests, barren areas, agriculture, and set- 
tled areas, but this varied considerably among individ- 
uals (vegetation dummy variables indicate the use of 
mature and clear-cut land cover relative to young-seral 
forests, natural clearings, and anthropogenic areas). An 
alternative way to visualize this is to calculate the av- 

erage height of the UD (actual use) for each type of 
land cover for each jay (Fig. 3). In this example, we 

only included jays that had a given land cover type 
available in the home range (e.g., only 10 jays had 
small settlements and campgrounds in their range). As 

hypothesized, jays with access to small settlements and 

campgrounds used them more frequently than any other 
land cover types, but overall differences in use among 
cover types were not significant (ANOVA of use by 
cover type F487 = 0.74, P = 0.54). Use of settled lands 
and campgrounds was marginally greater than use of 
clearcuts (LSD mean difference = -8.29, P = 0.10), 
presumably because of anthropogenic foods available 
in settlements and camps (Neatherlin and Marzluff, in 

press). 
It might also be desirable to quantify all of the jays' 

responses to each land cover type. Those individuals 
that do not have a specific type available in their home 

range have 3 = 0 for that cover type (e.g., 15 jays did 
not have anthropogenic land in their range). In our 

study, such an analysis suggests that no land cover was 

significantly correlated with use of the home range 
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FIG. 4. Ordination of resource selection tendencies by 25 individual Steller's Jays on Washington's Olympic Peninsula. 
Factor 1 from the principal components analysis accounted for 33.6% of the explained variation and was correlated most 
closely with the use of high-contrast edge (r = -0.83) and use with respect to patch shape (r = 0.78). Factor 2 accounted 
for 29.8% of the explained variation and was most closely associated with the use of mature forests (r = 0.77) and clearcuts 
(r = 0.77). The significance of resource utilization coefficients in individual jay RUFs is indicated by symbol type: open 
circles, significant use of patches; solid circles, significant use of edges; solid squares, significant use of patches and edges; 
solid triangles, no significant use of patches or edges. 

(F4,19 = 0.47, P = 0.76). This was probably because 
placement of the home range, a form of resource se- 
lection itself, in some cases obviated the need to be 
selective within in the range, but in other cases ex- 
aggerated it. 

Testing for preferential use of edges and fragmented 
regions in the home range 

Our primary hypothesis about resource use by jays 
was that use would be greatest along edges and in ftag- 
mented portions of the home range. We quantified frag- 
mentation with four distinct metrics (Table 1), but only 
contrast-weighted edge density and number of land 
cover patches were associated with use as we had pre- 
dicted (Table 3). As we have already discussed, use 
was not consistent among jays in this population be- 
cause, depending on proximity to human activity and 
occurrence of clearcuts in the home range, jays tended 
to use areas of abundant edge or abundant patches, but 
not areas with both aspects of fragmentation (Fig. 2). 
Factor analysis provided an alternative way to visualize 
individuality in resource use by jays and highlighted 
how significant, but distinct, resource use by individ- 
uals can lead to inconsistent resource use by a popu- 
lation (Fig. 4). We used the standardized resource se- 
lection coefficients as dependent variables in a prin- 
cipal component analysis. Two factors explained 63.5% 
of the variation in resource use among jays. These fac- 
tors segregated jays into those associating significantly 

with high-contrast edges and those associating signif- 
icantly with areas rich in patches. Jays associating with 
both fragmentation dimensions were intermediate in 
the plot, whereas the few jays not associating with 

edges or patches tended to be most closely associated 
with mature forests or clearcuts. 

We support the research hypothesis that Steller's Jays 
use fragmented landscapes more than contiguous land- 

scapes because only five of 25 individuals did not sig- 
nificantly concentrate their use in portions of their 
home range with abundant edge or abundant patches 
(Table 3, Fig. 2). However, in-depth exploration of re- 
source utilization coefficients provided a richer view 
of this relationship by highlighting individually distinct 

responses to fragmentation metrics and reasons for this 

individuality. 

Relating use to demography 

Relative use of particular resources may explain var- 
iation in breeding success of jays. We tested this using 
logistic regression to relate RUF coefficients, and other 
attributes of the home range, to success or failure of 

jays at fledging young. Natural selection may reinforce 
the use of patchy landscapes by jays because fledging 
success tended to increase with the abundance and use 
of complex-shaped patches and the abundance of mid- 
seral forests (P[success] = -9.5 + 6.2 {landscape 
patch shape index} + 4.3 {RUF coefficient for use of 

Use of mature 
forest 

or clearcuts 

CM 

0 
co 

LL 

Use of regions 
with many 
patches 

I 1 
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PLATE 1. (Left) Drawing of an Olympian Peninsula Steller's Jay holding a songbird's egg. These jays have blue-black 
crests on their mostly black heads. Their wings, body feathers, and tail are vibrant blue with black barring. They average 
32 cm in length and 110 g in mass. (Right) Fragmentation of coniferous forests on Washington's Olympic Peninsula, resulting 
from timber harvest, provides stark edges between mature forests and regenerating clearcuts and an abundance of isolated 
forest patches. Steller's Jays use areas within their home ranges with abundant edges and forest patches more than contiguous, 
less fragmented forest areas. Drawing credit: Stacey M. Vigallon. Photo credit: John M. Marzluff. 

complex-shaped patches + 0.08 {average use of mid- 
seral forest}; x2 = 6.96, P = 0.07). 

DISCUSSION 

Ecological insights 
We developed a RUF for Steller's Jays to investigate 

how this species responded to land cover amount, type, 
and pattern (see Plate 1). It is important to understand 
this response because jays prey on the nest contents of 
a federally threatened species, the Marbled Murrelet, 
and human activity (timber harvest, settlement, rec- 
reation) affects the amounts, types, and patterns of land 
cover used by nesting murrelets in our study area (Nel- 
son and Hamer 1995, Raphael et al. 2002). Our ap- 
proach allowed us to demonstrate greater use of patchy 
and edgy forests by most jays, and concentrated use of 
edge habitat by jays that lived in landscapes including 
small human settlements and campgrounds. This pat- 
tern of resource use probably explains why predation 
on artificial murrelet nests is edge dependent only in 
settled and recreational areas (Raphael et al. 2002) and 
why fragmentation often leads to heightened nest pre- 
dation in agricultural and urban landscapes (Marzluff 
and Restani 1999). We gained some insight into why 
jays appear to favor areas with abundant and complex- 
shaped patches; those that do had an increased likeli- 
hood of fledging young in one year. We may gain a 
better understanding of how natural selection affects 
resource use in the future, as survival and lifetime re- 
production of jays exhibiting various sorts of resource 
use become known. The ability to document resource 

use, understand why an observed pattern of use oc- 
curred, and finally project the implications of resource 
use to other species (such as the birds whose nests jays 
prey on) is an inherent strength of our RUF approach. 

Because of its reliance on the UD, the RUF that we 
estimated predicts the probability of use based on any 
combination of resources that can be mapped. Unlike 
other techniques, the response variable is a continuous 
and probabilistic measure of space use. Resources can 
be discrete (e.g., cover types) or continuous (e.g., dis- 
tance to water) and measured at the local (e.g., ele- 
vation) or landscape (e.g., edge density) scale. Many 
recent advancements in resource selection are either 
univariate (compositional analysis; Aebischer et al. 
1993) or consider relocation points as simply used or 
available (logistic regression; Manly et al. 2002). The 
ability of the RUF to use all of the information that a 
researcher gathers on resources and their relative use 
by animals, its ease of application in a GIS environ- 
ment, its ability to overcome some assumptions (e.g., 
independence of animal locations), and its reliance on 
standard statistical procedures (i.e., calculation of 
probability density functions, multiple regression with 
error adjustments for spatial autocorrelation) make it 
an intuitive, flexible, and powerful advancement. 

Assumptions and limitations 

Our approach has two primary assumptions. First, 
we assume that the UD can be accurately approximated 
from a sample of observations. The fixed-kernel tech- 
nique that we used to estimate UDs is robust to rela- 
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tively small samples (>30; Seaman et al. 1999) and 
non-uniform distributions (Seaman et al. 1999). How- 
ever, much remains to be investigated about how well 
all UDs actually represent animal space use and wheth- 
er general space use is a good surrogate of resource 
use. Researchers should locate their animals so that 
observations accurately reflect use during the period of 
interest (e.g., different times of the day; Garton et al. 
2001). The kernel function should be parameterized so 
that use of areas known to be unavailable (e.g., water 
for terrestrial animals) is not included. This requires 
special attention to sample size (Seaman et al. 1999) 
and the choice of bandwidth (smoothing parameter; 
Worton 1995, Kernohan et al. 2001). The choice of 
bandwidth is often seen as the most important aspect 
of kernel density estimation and should be selected 
carefully using objective criteria (Seaman et al. 1999, 
Kernohan et al. 2001, Gitzen and Millspaugh 2003). 
New methods of bandwidth selection (Kernohan et al. 
2001) should be investigated as to their robustness to 
depiction of fine- and coarse-grained animal move- 
ments. 

Second, inferences about resource use are dependent 
on the estimated spatial extent of the area used by 
animals, just as they are in all current techniques. This 
problem is unlikely to be solved until we understand 
more about why animals use resources. However, we 
can begin to understand the spatial extent of the used 
area by investigating resource use at multiple scales 
(Johnson 1980, Marzluff et al. 1997). For example, 
RUFs could be calculated by relating UDs to resources 
beyond the home range, within the home range, and 
within a core area of the home range where resource 
occurrence differs. Then, standardized RUF coeffi- 
cients could be directly compared across scales to de- 
termine how relative use varies. We can also begin to 
understand how animals perceive resources at any giv- 
en scale by quantifying resources within various dis- 
tances of points in the area of interest. We did this at 
two distances (the immediate point and within 200 m 
of the point) and discovered that Steller's Jays respond- 
ed more to the configuration of cover types (200-m 
scale) than to the actual cover type (Table 3). 

Analysis of resource use at the individual animal 
level, rather than at the location level, is appropriate 
(Aebischer et al. 1993, Otis and White 1999) and bi- 
ologically relevant. It is biologically relevant because 
it forces the researcher to investigate individual vari- 
ability in resource use. Individuality is often extreme 
(Marzluff et al. 1997; our jay example). Recognition 
and quantification of individual resource use suggests 
a host of interesting investigations with practical sig- 
nificance. For example, we discovered that proximity 
to human activity and presence of clearcuts affected 
the use of edges and patches by jays (Fig. 2, Table 2). 
This can aid in projecting jay use in areas that we did 
not study, because we can tailor our predictive equa- 
tions of use to local and landscape conditions. Taken 

to an extreme, we could map jay use on a cell-by-cell 
basis by first determining the proximity of the cell to 
human activity and the presence of clearcuts within 
200 m. Then, using the RUF appropriate to those con- 
ditions, we could calculate expected use (Table 2). Such 
a context-specific application of animal-resource re- 

lationships has the potential to significantly improve 
our ability to predict animal occurrence and response 
to resource manipulation. Using current techniques, we 

rarely accurately predict animal occurrence in one area 

using relationships derived from a different area (Knick 
and Rotenberry 1998), perhaps because we do not focus 

enough on variation in resource use and its explanation. 
Focusing on individual variation in resource use also 

provides an intuitive way to relate resource use to de- 

mography. RUF coefficients can be related to survi- 

vorship, reproduction, or dispersal just like other in- 
dividual attributes (e.g., sex, condition, age). This 
could have important applied, as well as theoretical, 
implications. In particular, we could rate resources by 
the relative contributions that their RUF coefficients 
make to demography. Those resources selected by es- 

pecially fit individuals could then be favored in land 

management actions designed to increase population 
size. 

Alternative procedures and future improvements 

We anticipate analytical and biological advance- 
ments in our technique. Analyses will advance with 
continued research on point processes so that resource 
use can be directly related to resource properties in a 

spatially explicit manner without the need to first derive 
a UD. For example, better estimates of RUF coeffi- 
cients may be obtained using Poisson processes with 

nonparametric intensity functions and alternatives with 
second-order dependence. These methods estimate the 
UD directly and automatically adjust for the correlation 
without the need for an ancillary spatial correlation 
model. 

Other alternatives for analysis currently exist. Using 
standard regression approaches, Akaike's Information 
Criteria (AIC) could be used to test specific a priori 
models about resource selection (Burnham and An- 
derson 2002). The approach recommended by Burnham 
and Anderson (1998) would (1) allow investigation of 

specific hypotheses, (2) facilitate parsimonious model 
selection, (3) help rank and compare candidate models, 
and (4) help avoid spurious correlations found in "data 

dredging" procedures. Also, model averaging tech- 

niques could be used with Akaike weights. In this case, 
inference would be based on the complete set of a priori 
models. This approach may help to reduce bias and 

improve precision in resource use (regression) coeffi- 
cients (Burnham and Anderson 2002). Even if tradi- 
tional "data dredging" techniques are used, model- 

averaging procedures may provide better inference than 

reporting one best model (Burnham and Anderson 

2002). 
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Biological advancements may occur with behavior- 
ally specific analyses of resource use (Cooper and 
Millspaugh 2001, Marzluff et al. 2001). This could be 
done by gathering a sufficient sample of locations 
where specific behaviors occurred and creating behav- 
iourally specific utilization distributions (Marzluff et 
al. 2001). This quantification of use for a specific be- 
havior could then be related to resources using the RUF 
technique. In this way, we would become increasingly 
knowledgeable as to why animals use the landscape in 
non-uniform ways. We studied foraging jays; >90% of 
our jay locations were made as jays searched for and 
procured food. Therefore, our RUF analysis relates jays 
to food resources. Alternatively, one could have used 
only roost locations or nesting locations, for example, 
to construct RUFs for other important behaviors. 

The choice of what analytical technique to use ul- 
timately depends on characteristics of the data, study 
objectives, and assumptions of the data and analytical 
techniques (Alldredge and Ratti 1986, 1992, Leban et 
al. 2001). Each analytical procedure has several im- 
portant assumptions and researchers should carefully 
consider which assumptions are most violated in their 
study (e.g., "can I adequately document resource avail- 
ability?"). Important assumptions to consider include 
experimental unit designation (Aebischer et al. 1993), 
definitions of resource availability (Cooper and Mills- 
paugh 1999), and use of points to quantify resource 
use (Aebischer et al. 1993). Toward this end, we sug- 
gest that researchers use expert systems (Starfield and 
Bleloch 1986) to help determine which analytical tech- 
niques to use. Expert systems are decision support tools 
that use a knowledge base consisting of pertinent ques- 
tions, alternative solutions, and rules based on existing 
information. Use of expert systems would allow an 
objective way of determining what procedures to use 
based on study objectives, biology of the species, ad- 
vantages and disadvantages of particular techniques, 
and sampling limitations. For example, an expert sys- 
tem could assist a researcher in selecting an appropriate 
bandwidth depending upon attributes such as the de- 
gree of clustering observed in points and the number 
of relocations. It is our contention that the animal 
should be the experimental unit, that quantifying re- 
source availability is problematic, and that a continuous 
measure of space use through an animal's range most 
adequately describes resource use. Our approach sat- 
isfies these needs without assuming that points directly 
represent use, or that comparisons of used and unused 
points (which could have been used at another time) 
are needed to quantify resource selection. For these 
reasons, we believe that the RUF will be a useful tech- 
nique for others studying resource selection. 
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