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PFAFFIAN AND DECOMPOSABLE NUMERICAL
RANGE OF A COMPLEX SKEW SYMMETRIC
MATRIX

WAI-SHUN CHEUNG AND TIN-YAU TAM

ABSTRACT. In the literature it is known that the decomposable
numerical range W/*(A) of A € C,,x, is not necessarily convex.
But it is not known whether W/*(A) is star-shaped. We construct
a symmetric unitary matrix A € C,,«, such that the decompos-
able numerical range W} (A) is not star-shaped and hence not sim-
ply connected. We then consider a real analog Rj (A) and show
that Ry (A) is star-shaped if A € C,,,, is skew symmetric. Such

star-shapedness result is also true for the Pfaffian numerical range
Pl (A).

1. INTRODUCTION

Let C,,«, be the set of n x n complex matrices. Given A € C,,«,,
the classical numerical range of A is the compact set

W(A) :={2"Az : 2 € C", 2"z = 1},

which is the image of the (compact) unit sphere S*~! C C" under the
nonlinear map = — z*Ax. Toeplitz-Hausdorff theorem asserts that
W (A) is a convex set. For a simple proof see [13]. When n =2, W(A)
is an elliptical disk (possibly degenerated) [7], known as the elliptical
range theorem.

Among many generalizations of the numerical range W (A), one is
given in the context of multilinear algebra. Given 1 < k < n, the kth
decomposable numerical range of A [J, 10] is defined to be the following
set

(1.1) WA = {det((U* AU)[K|E]) : U € U(n)},

where U(n) is the unitary group in C,.,, and Blk|k| denotes the k x k
principal submatrix of B € C,,, lying in the first k£ rows and the first
k columns. Evidently W{*(A) = W(A) and W (A) = {det A}. We
remark that in the formulation (I.1) the unitary group U(n) can be
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replaced by the special unitary group SU(n) and the set remains the
same:

(1.2) W (A) = {det((U*AU)[K|K]) : U € SU(n)},

The kth decomposable numerical range can be written in the context
of the kth exterior space AKC™ [10]. Let 2" := x; A --+ A 2 and
y" := y1/\- - - Ay be two decomposable vectors in A¥C". The (standard)
inner product in C" induces an inner product on A*C":

(@, y") = det((=:,y;)).
The kth compound Cy(A) of A is the operator on AFC™ such that
Cr(A)zy A~ N = Az A -+ - A Az,
It is known that [10]
(1.3) WM(A) = {(Cr(A)x",2") : 1, ..., 2, € C" are orthonormal }.

Clearly W['(A) is always convex if k = 1 or k = n. When k = 1, it
is simply the classical case W(A). When k = n, W}(A) = {det A}.
It is also known that W/  (A) is also convex [J]. It is due to the
fact that when k& = n — 1, all vectors in the exterior space A" 'C"
are decomposable so that W/ | (A) = W(C,-1(A)). Hence W/, (A) is
convex. Indeed every element of AFC" is decomposable if and only if
k=1ork=n—1][9 Lemma 3]. However for 1 < k <n — 1, W/ (A)
is not convex [J, [14] in general. See the following example and more
discussion will be given in the next section.

Example 1.1. Consider the complex unitary symmetric matrix
A = diag (i,i,1,...,1) € Cpun,

where n > 4. Let 1 < k <n — 1. It is known that £1 € W/*(A) but
0 & W[ (A) [9,[14]. So it is not convex.

In the above example the matrix A € C,,«,, is very nice: symmetric
and unitary, but convexity still does not hold (of course the symmetric
property is not invariant under unitarily similarity). In the literature
it is not known whether W}*(A) is star-shaped for general A € C, «,.
Indeed we will show that the above example is star-shaped in the next
section. However this is not the case for general A € C,,,,. We will
construct a symmetric and unitary A € C,,«,, such that W/*(A) is not
star-shaped (thus it is not simply connected). So the star-shapedness
result does not hold for W/*(A), unlike the C-numerical range W (A)
of A € C,x,, [0] and other related generalizations [17, 3, [4].
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The real analog of the numerical range has also been studied [1], that
is, if the domain S"! is replaced by Si ! := S" N R™

R(A) = {2"Az : 2 ¢ R", 2"x =1} C W(A).

Since 7Bz = 0 for x € R™ and skew symmetric B € C,., (ie.,
BT = —B), we have

vl Ar = xT(A i AT)x + xT(A _QAT)x = xT(A +2AT)x.
Thus
R(4) = R
but in general
wia) 2w,

It is known that if A € C,,x,, with n > 3, then [I,12] R(A) = W(#)
and hence is convex, and R(A) is an ellipse (possibly degenerate) when
n=2.

Given A € C,xp, as R(A) is the real analog of W(A), we now in-
troduce a real analog of W/'(A). For 1 < k < n, define the compact
set,

(1.4) Ry(A) = {det((OTAO)[K|k]) : O € SO(n)}
= {det((OTAO)[k|K]) : O € O(n)}
= {det(XTAX): X € R, with o.n. columns }
c Wi(4),

where O(n) is the orthogonal group and SO(n) is the special orthogonal
group. Alike the groups U(n) and SU(n) giving the same W/'(A), O(n)
and SO(n) yield the same Ry (A).

Similar to the complex case, one has R{'(A) = R(A) and R)(A) =

{det A}. Moreover

R 1(A) = R(Cha(A))
and hence is convex if n > 3. However, unlike R(A), Ry (A) #
RQ(#) for k > 2 and general A € C,,,,.

Since Ry (A) is a subset of W' (A), it is natural to ask if convexity
may hold for R} (A) even though W/'(A) is not necessarily convex (see
Example[l.1)), hoping that the “problematic points” in W} (A) would go
away. However Example 1.1/ gives a negative answer. We will construct
an example R} (A) which is not star-shaped. Indeed it is the very same
non-star-shaped example for W/*(A).
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In this paper we also prove that if A € C,,.,, is skew symmetric, i.e.,
A = —AT then Rp(A) is star-shaped with respect to the origin. The
proof involves a notion called Pfaffian decomposable numerical range.
We will first give a brief review on Pfaffian of a skew symmetric ma-
trix and then introduce the Pfaffian decomposable numerical range in
Section 3. Then in Section 4 we obtain the star-shapedness results.
Some convexity results are obtained in Section 5. Finally in Section
6 we make a remark on the decomposable numerical range under con-
gruence.

2. W/ (A) 1S NOT STAR-SHAPED

The main result of this section is to construct a matrix A € C,,«,,
such that the decomposable W/'(A) and its real analog R} (A) are not
star-shaped for some 1 < £k <n — 1. We first give a full description of
Example 1.1/ which turns out to be star-shaped with respect to 7.

Example 2.1. Let 1 < k < n — 1. Consider the complex unitary
symmetric matrix

A = diag (i,i,1,...,1) € Cpxn,
where n > 4. To completely describe the set W[*(A), write

—im /4
A= eﬁ (diag (=1, —1,1,...,1) +I,).
Now
e—ilmr/4

If 1 < k <n—1, the eigenvalues of the following k x k submatrix of
U*rdiag (—1,-1,1,...,1)U
(Urdiag (—1,—1,1,...,1)U)[k|k]
has eigenvalues 1,..., 1, «, § where «, [ range over [—1, 1] according to
the interlacing inequalities for submatrix of a Hermitian matrix. We
remark that the result for the real case OT AO (O € O(n)) is also valid.
Thus
Ry (A)
= Wi(4)
e*ikﬂ'/ﬁl o
= {W(l +4)" Ha+i)(B+10) o, B € [-1,1]}

6—i7r/2

= { 5 (a8 =1+i(a+0)): a8 €[-1,1]}.
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So

—im/2

2

e

Rp(A) = Wi (A) = S,

where
S = {Oéﬁ— 1—|—Z<C¥—|—ﬁ> : aaﬁ € [_171]}
Now consider the map 7 : R? — R?
(o, B) — (af — 1,0 + 3).
If o+ 3 = ¢, where ¢ € [—2,2], then

af =alc—a)=—(a— 5)2 + (g)2
S0 c
mxed—1=Gr-1

and is attainable at « = 3 = g;

min af — 1=

c—2 fo<e<?2
a+pB=c

—c—2 if —2<¢c<0

and is attainable at

1 if0<e<?2
Qorc—ao=
-1 it —2<¢e<0.

Thus S is the region bounded by the parabola z = (4)* — 1 and the

lineszx=y—2and z = —y — 2.

Hence if 1 < k < n — 1, then Ry (A) = W/'(A) is the region R in C
bounded by the parabola 2 = —2y + 1 and the lines y = = + 1 and
y = —x + 1 (see the figure below) so that it is star-shaped with star

center 1.

Plot of the region R
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We make an interesting observation: the shape of Ry (A) = W/'(A) is
independent of the choice of k, where 1 < k <n — 1.

Based on Example 2.1, we are going to construct a non-star-shaped
example for R (A) and W[ (A).
Example 2.2. Let A = diag(1,1,1,1,1,1,4,4,4,7). We claim that
W¢(A) is not star-shaped. Write
—im/4
e

V2

A=

(diag (1,...,1,—=1,—1,—1,—1) +il,).

Now

det((U*AU)[k|k])
o—ikm/4
= g detl(Urdiag (1., 1, =1, =1, =1 =O)U) [k[}] + L]
If 4 <k < n—1, the eigenvalues of the k£ x k submatrix
(Urdiag (1,...,1,—1,—1,—1,—-1)U)[k|k]

of U*diag (1,...,1,—1,—1, -1, —1)U has eigenvalues 1,...,1,a,3,7,§
where a, 3,7, 0 range over [—1, 1] according to the interlacing inequal-
ities for submatrix of a Hermitian matrix. Thus

67ikﬂ'/4

W) = {5+ 2 a+ DB+ +1)(E+4)
a,fB,7v,0 € [—-1,1]}
which clearly does not contain the origin. Let B := A[8]8]. Notice that
R=W{(B) C W{(A)
where R is the region given in Example [2.1. On the other hand
—R =3*W}(B) Cc W (A).

So (—R)U R C W{(A) but W{(A) does not contain the origin. So
W§(A) is not star-shaped.

Remark 2.3. Notice that R (A) = W{(A) so that R{(A) is not star-
shaped as well.

3. PFAFFIAN NUMERICAL RANGE OF A SKEW SYMMETRIC MATRIX

Let A = (a;j) € Cy,x2, be a skew symmetric matrix. The Pfaffian
of A is defined as

1
Pf(A) = Sl

Z sgn(o) H Ao (2i—1),0(2i)
1

UESQn =
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where S5, is the symmetric group of degree 2n and sgn(o) is the sig-
nature of 0. For example

0 a b ¢

0 a —a 0 d e
Pf {—a O]ZG’ Pf b o—d 0 f =af — be + dc.

—c —e —f 0

It is known that [6] for A, B € Cs,x2, where A is skew symmetric, then

(1) PE(A)? = det(A),

(2) Pf(BABT) = (det B)Pf(A),

(3) Pf(MNA) = A"Pf(A),

(4) PE(AT) = (~1)"PE(A).
The Pfaffian of a skew-symmetric matrix A € C(ap41)x(2n+1) is defined
to be zero, as the determinant of A is zero. The Pfaffian is an invariant
polynomial of a skew-symmetric matrix under a special orthogonal ba-
sis change. It is important in the theory of characteristic classes. See
[8, 18] for some applications of Pfaffian.

The Pfaffian of a skew symmetric B € Cyiyor can be computed

recursively as

2k

(3-1) Pf(B) = Z(—l)ibqu(Bu);

=2

where By; € Car_2)x(2k—2) denotes the submatrix of B obtained by
removing the first and the ith rows and the first and the ¢th columns.
The Pfaffian of the 0 x 0 matrix is equal to one by convention.

Let A € C,x, be skew symmetric. Then each element of {OTAO :
O € SO, } is skew symmetric. For an even integer 2k < n, we introduce

(3.2) Py (A) := {Pf(OT AO[2k|2k]) : O € SO,.}

and call Py, (A) the 2k-Pfaffian numerical range of A.
Recall R), (A) = {det((OT AO)[2k|2k]) : O € SO(n)}. Since det B =
Pf (B)? for skew symmetric B € Capxan,

Ry (A) ={2*: 2z € P)(A)}.
We simply write
(3.3) Ry (A) = [Py (A)P?
in which the square is defined element-wise, i.e.,

C?:={*:2z€0}cC
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for any subset C' € C. It turns out in the next section that Py (A) is
star-shaped with respect to the origin. Consequently, R%, (A) is also
star-shaped.

Remark 3.1. If we replace SO(n) by O(n), then everything in (3.2)
remains the same unless 2k = n. One would have {£Pf(A)} instead
of the singleton set {Pf(A)} because of the formula Pf(OAOT) =
(det O)Pf(A). Nevertheless, the 2k = n case is trivial.

4. STAR-SHAPEDNESS AND SKEW SYMMETRIC MATRICES

We first establish a star-shapedness result for the Pfaffian numerical
range Py (A), where 2 < 2k <n and A € C,,, is skew symmetric.

Theorem 4.1. Let A € C,,, be a complex skew symmetric matrix.
(1) If n is even, then P"(A) = {PfA}.
(2) If 2k < n, then Py (A) is star-shaped with respect to the origin.
Proof. (1) When 2k = n,
Pf(OT AO) = (det O)Pf(A) = Pf(A)

if O € SO(n). Thus P (A) = {Pf(A)}.
(2) Now assume that 2k < n. Notice that

P (A) = {Pf(XTAX) : X € R, o, with orthonormal columns }.

Suppose a € Py (A). We are going to show that the line segment
[0,a] C Py.(A). We will construct an ellipse Ey C Py (A) containing
a and centered at the origin, and a line segment [y, —y] C Py (A).
Moreover we will show that Ey continuously deforms into [y, —v] within
Pj(A). Thus [0,a] € Py.(A).

Let X =[xy 29| € Ryxor where x1,..., 29, € R™ are orthonor-
mal such that o = Pf(XTAX). Notice that XTAX = (2] Az;) €
C(2k—2)x (2k—2) s0 that

a = Pf(XTAX) = Pf(x] Ax;).

Since 2k < n, let z9,11 € R™ be a unit vector orthogonal to xy, ..., xo.
Let
x1(0) = (cosO)xy + (Sin 0)xopi1
and
Xg :=[21(0) 29+ - zog].
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Clearly Xy = X. By the recursive formula (3.1)

£(0) = PI(X;AX,)
2k
= Z(—w([(cose)xl + (sin 0) o i1]" Az ) PE([XF AXp1)
= (cos&)Z(—l)i(a:'{Axi)Pf([XTAX]M)
2k
+(sin 0) Z(—w(xgkﬂ,qxi)m ([XTAX]y,)

= (cosf)a+ (sinh)B € Py.(A),
where a = Pf(Xg AXj) and 8 := Pf (X[, AX;/5) € C. The locus
Ey:={£(0) : 0 € [0,27]} C Py(A)

is an ellipse (possibly degenerate) contained in Py (A). The origin
is enclosed by the ellipse. If the ellipse degenerates, then the result
follows.

We claim that

0 € Py, (A),

i.e., thereis Y € R, o with orthonormal columns such that Pf (YT AY) =
0. We are going to establish the claim.

Case 1: 2k <n—1. Let y; € R™ be any unit vector. Since 2k < n—1,
if we write Ay; = u + 1w where u,v € R", there are orthonormal
vectors g, - -+ , Yo € R™ orthogonal to y;,u,v. Hence there is Y :=
(Y1 -+ yar] € Rpxor with orthonormal columns such that the first row
and the first column of Y7 AY are zero vectors.

Case 2: 2k+1 = n. Notice that the skew symmetric A € C,,»,, has a
zero eigenvalue. So there is a nonzero vector y € C" such that Ay = 0.

Write
y = &yr + S0,

where y1, yo € R™ are orthonormal. Extend ¥, y» to an orthonormal set

{y1,...,, 92} in R". Since Ay = 0, Ay, and Ay, are linearly dependent
and hence det(Y7TAY) = 0, where Y := [y; -+ yor] € R,xor. Thus
Pf(YTAY) = 0.

The claim is now proved, i.e., there is Y € R, o with orthonormal
columns such that Pf (YZAY) = 0. Let Y = [y, - - - yox] and let yor 1 €
R™ be a unit vector orthogonal to yy, ..., ysx. Set

y1(0) := (cos0)y; + (sin 0)yor11



10 W.S. CHEUNG AND T.Y. TAM

and
Yo := [y1(6) yo - - - yau)-
Similar to the previous computation, we have
1(0) = P (Yy  AYy) = (sinf)y € Py, (A),
where v 1= Pf(YﬂT/QAYﬁ/g). The locus
Ey:={n(0):0€[0,2n]} C Py (A)
is a line segment [—v,7] containing the origin. Since the orthogonal
group is path connected, there is a continuous path Z(t) € R, o (t €
[0,1]) with orthonormal columns, such that Z(0) = X and Z(1) =Y.
Consider the continuous function
p(t,0): = PE((Z()R())"AZ(t)R(9))
= PE(R(O)TZ()TAZ(t)R(0)).
Notice that Fy = {(0,0) : 0 € [0,27]} and E; = {¢(1,6) : 6 € [0, 27]}.
So for each point £ € [0, o] there is some ¢ € [0, 1] such that
Ee E :={p(t,0):0ec(0,2r]} C Py (A).

Hence the star-shapedness result is established.
O

Now we use Theorem 4.1/ to establish the star-shapedness of the
decomposable numerical range R%, (A).

Theorem 4.2. Let A € C,,,, be a complex skew symmetric matrix.
Then R} (A) is star-shaped with respect to the origin for all 1 < k < n.
More precisely,
(1) RO(A) = {det A}.
(2) RY1(A) ={0}, when 1 <2k +1<n.
(3) R%,.(A) is star-shaped with respect to the origin, where 1 <
2k < n.

Proof. (1) Obvious.
(2) Notice that the compound matrix Coyi1(A) is skew symmetric
since

Cori1(A)T = Cop 1 (A7) = Cop 1 (= A) = —=Coppa (A).

Thus (Copy1(A)z", 2") = 0 for all z* € A*TIC™ and the desired result
follows from (1.3).
(3) By (3.3)
Ry, (A) = (Py.(A))*.
Set C' := Py (A). We need to show that if x € C, then the line
segment [0, z%] joining 0 and x? is contained in C? = R}, (A). We may
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assume that r # 0. Notice that (eC)? = ¢?C? for any 0 € [0, 27],
i.e., rotating C' by the angle § would rotate C? by 2. Moreover the
property of star-shapedness with star center 0 remains invariant under
rotation. So we may assume that x > 0. By Theorem 4.1} [0,z] € C.
So [0,2%] € C? = R}, (A).

O

5. SoME CONVEXITY RESULTS

In this section we show that Py).(A) is convex if k = 1 or 2k + 1 = n,
where A € C,,x,, is skew symmetric (convexity of R, (A) is known for
2k +1 =n and general A € C,.«,,).

Theorem 5.1. Let A € C,,,, be a complex skew symmetric matrix.
Then
(a) Py'(A) is convex.
(b) If n =2k + 1, then Py (A) is convex.
(c) When n = 3, PJ(A) is an elliptical disk centered at the origin
and R)(A) is an elliptical disk (not necessarily centered at the
origin). In particular, if

0 =z y
A= |-z 0 =z|,
-y —z 0

then

P (A) = {(z,y,2) -w:w € Si}
where Sﬁg is the unit sphere in R? and s -t := s1t; + Saoty + Ss3t3
denotes the standard inner product of R?, and

¥ wy a2

R)(A)=R(A), A= |zy y* yz

vz yz 22

Proof. (a) Without loss of generality we may assume that 2 < n. It is
because that if n = 2, then Py'(A) = {Pf(A)} and R} (A) = {det A};
both are convex.

For all x € R", 27 Az = 0 since A is complex skew symmetric. For
11,79 € R, 2T Azy = —21 Az; so that

2T Az, 2T Az

(Cg(A)l’l A T2, X1 N xz) = det {xéﬂAxi xéﬂsz]

0 xt Az,
rh Ay 0

= (2T Azy)? € C.

= det[
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Write A = A; + 1Ay where Ay, Ay € R,,«, are real skew symmetric
matrices. Now

PMA) = {oTAxy: 2,20 € R" o0}
= {aTAjzy +iaT Ayzy - 21,29 € R" om0},
which can be identified with the subset
{(tr COTA,0,tr COT A,0) : O € SO(n)} C R?
where

0:1{0 -1

e oo

By a result of Tam [10], the set Py'(A) is a convex set containing the
origin.

(b) Suppose 2k + 1 =n. Let @ = Pf(XTAX) and 3 = Pf(YTAY)
where XY € R, o1 have orthonormal columns. We want to show that
the line segment [a, 4] is contained in Py (A). We may assume that
a # —( by Theorem 4.1. So we can assume that a # +4.

Write X = [z @), Y = [y1---yax]. Let U = span{zy,...,zo}
and V = span {yi, ...,y }. By the dimension theorem

dim(UNV) = dimU +dimV — dim(U + V)
> k2% —n=dk— (2k+1) =2k — 1.
Let wq,...,wo_1 € U NV be 2k — 1 orthonormal vectors. Extend
{wq, ..., wor_1} to two orthonormal sets

{wl,...,wgk_l,x}, {wl,...7UJ2k_1,y}

in R™ so that their spans are U and V', respectively. There are O,, O, €
SO(2k) such that

Wy = [wy ... we_1 ] = [11 T2... 2940,
and
W, = (w1 ... Wok—1 Y] = [th Y. .. ?J%]Oy-
Then by Pfaffian’s property (2)
Pf(WIAW,) = Pf((XO,)TA(XO,)
= Pf(OIXTAXO,)
= (det O,)Pf(XTAX) = a.
Similarly Pf (W} AW,) = §.

Since o # £+, x and y must be linearly independent. Let zq, 2o € R”
be orthonormal such that span{z;, 2o} = span{x,y}. Let

Wy = [wy -+ wog—1 (cos@)zy + (sinh)zy] € Ryvor, 6 € [0,27].
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The columns of W are orthonormal since x, y are orthogonal to wy, . .., war_1.
Using the idea of the proof of Theorem /4.1, the locus
L = {Pf(WJAW,):0 € 0,2n]}
= {(cos 0)(PEW AWy) + (sin 0)(PEW,] , AW, j0) : 0 € [0, 2]}
C PyA)
is an ellipse (possible degenerate) and contains o and [ and the ellipse

is centered at the origin. All the points enclosed by the ellipse are in
Py (A). In particular the line segment [, 3] C Py (A).

(c) Let
0 z vy
A=|—-2 0 =z
-y —z 0

Recall R)(A) = R(C5(A)) since all vectors in A’R? are decomposable.
By a result of [15, Lemma 6], P;'(A) is an elliptical disk centered at
the origin. To be precise, if u,v € R3 are orthogonal, then by direct
computation
z -y
v Au=det |vy vy vy
Uy Uz U3
Choose the unique w € S% so that [u, v, w] € SO(3). Then (z, —y,z)T =
au + fv + yw, where «, 3,7 € C. Then
v Au =~ = (2, —y,z) - w.
Since R} (A) = [Py (A)]?, direct computation leads to the desired result.
O

Remark 5.2. It would be interesting to know if P (A) and RS (A)
are convex or not for general k£ and for skew symmetric A € C,,,, (even
the case R (A) is unknown).

6. CONGRUENCE CASE

Given A € C,,«,, and 1 < k < n, if unitary similarity in the formula-
tion (L.1) of W/ (A) is replaced by unitary congruence, we have

WT(A) = {det(UTAU)[K|K]) : U € U(n)}.

It admits circular symmetry, i.c., if & € WI'(A), then ¢?a € W[ (A)
for all § € R. It is because

det((®VU)T A(®U))[k|k]) = €™ det(UT AU)[k|k]).
Similarly if B € C,,«,, is skew symmetric, then we define
PL(B) = {Pf(UTBU)[k|k]) : U € U(n)}.
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The two sets have the relation W (B) = (PL.(B))>.

Theorem 6.1. (a) Let A € Cpxn-

(i) If 1 < k < n, then W[(A) is a circular disk centered at
the origin.

(ii) If & = n, then W,T(A) is a circle centered at the origin with
radius det A.

(b) Let A € C,x», be skew symmetric.

(i) If 2 < 2k < n, then PL(A) is a circular disk centered at
the origin.

(ii) If 2k = n, then PT(A) is a circle centered at the origin
with radius Pf A.

Proof. (a) The case k = n is trivial. Suppose 1 < k < n. Clearly
WI(A) is compact. The function ¢ : U(n) — C defined by

p(U) = det((UTAU)[k|k])

is continuous and ¢(U(n)) = WI'(A). Moreover ¢(al) = a*¢(U) and
n does not divide k. By [2, Theorem 2], W/ (A) is a circular disk
centered at the origin.

(b) The case 2k = n is trivial. Similarly the function ¢ : U(n) — C
defined by

Y(U) == Pf((UT AU)[2K|2k])

is continuous and ¢ (U(n)) = PL(A). Moreover ¢)(alU) = af(U) and
n does not divide k. By [2, Theorem 2], P} (A) is a circular disk
centered at the origin. 0
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