PFAFFIAN AND DECOMPOSABLE NUMERICAL RANGE OF A COMPLEX SKEW SYMMETRIC MATRIX

WAI-SHUN CHEUNG AND TIN-YAU TAM

Abstract

In the literature it is known that the decomposable numerical range $W_{k}^{\wedge}(A)$ of $A \in \mathbb{C}_{n \times n}$ is not necessarily convex. But it is not known whether $W_{k}^{\wedge}(A)$ is star-shaped. We construct a symmetric unitary matrix $A \in \mathbb{C}_{n \times n}$ such that the decomposable numerical range $W_{k}^{\wedge}(A)$ is not star-shaped and hence not simply connected. We then consider a real analog $R_{k}^{\wedge}(A)$ and show that $R_{k}^{\wedge}(A)$ is star-shaped if $A \in \mathbb{C}_{n \times n}$ is skew symmetric. Such star-shapedness result is also true for the Pfaffian numerical range $P_{k}^{\wedge}(A)$.

1. Introduction

Let $\mathbb{C}_{n \times n}$ be the set of $n \times n$ complex matrices. Given $A \in \mathbb{C}_{n \times n}$, the classical numerical range of A is the compact set

$$
W(A):=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

which is the image of the (compact) unit sphere $\mathbb{S}^{n-1} \subset \mathbb{C}^{n}$ under the nonlinear map $x \mapsto x^{*} A x$. Toeplitz-Hausdorff theorem asserts that $W(A)$ is a convex set. For a simple proof see [13]. When $n=2, W(A)$ is an elliptical disk (possibly degenerated) [7], known as the elliptical range theorem.

Among many generalizations of the numerical range $W(A)$, one is given in the context of multilinear algebra. Given $1 \leq k \leq n$, the k th decomposable numerical range of A [9, 10] is defined to be the following set

$$
\begin{equation*}
W_{k}^{\wedge}(A)=\left\{\operatorname{det}\left(\left(U^{*} A U\right)[k \mid k]\right): U \in \mathrm{U}(n)\right\}, \tag{1.1}
\end{equation*}
$$

where $\mathrm{U}(n)$ is the unitary group in $\mathbb{C}_{n \times n}$ and $B[k \mid k]$ denotes the $k \times k$ principal submatrix of $B \in \mathbb{C}_{n \times n}$ lying in the first k rows and the first k columns. Evidently $W_{1}^{\wedge}(A)=W(A)$ and $W_{n}^{\wedge}(A)=\{\operatorname{det} A\}$. We remark that in the formulation (1.1) the unitary group $\mathrm{U}(n)$ can be

[^0]replaced by the special unitary $\operatorname{group} \mathrm{SU}(n)$ and the set remains the same:
\[

$$
\begin{equation*}
W_{k}^{\wedge}(A)=\left\{\operatorname{det}\left(\left(U^{*} A U\right)[k \mid k]\right): U \in \operatorname{SU}(n)\right\} \tag{1.2}
\end{equation*}
$$

\]

The k th decomposable numerical range can be written in the context of the k th exterior space $\wedge^{k} \mathbb{C}^{n}$ [10]. Let $x^{\wedge}:=x_{1} \wedge \cdots \wedge x_{k}$ and $y^{\wedge}:=y_{1} \wedge \cdots \wedge y_{k}$ be two decomposable vectors in $\wedge^{k} \mathbb{C}^{n}$. The (standard) inner product in \mathbb{C}^{n} induces an inner product on $\wedge^{k} \mathbb{C}^{n}$:

$$
\left(x^{\wedge}, y^{\wedge}\right)=\operatorname{det}\left(\left(x_{i}, y_{j}\right)\right) .
$$

The k th compound $C_{k}(A)$ of A is the operator on $\wedge^{k} \mathbb{C}^{n}$ such that

$$
C_{k}(A) x_{1} \wedge \cdots \wedge x_{k}=A x_{1} \wedge \cdots \wedge A x_{k} .
$$

It is known that [10]

$$
\begin{equation*}
W_{k}^{\wedge}(A)=\left\{\left(C_{k}(A) x^{\wedge}, x^{\wedge}\right): x_{1}, \ldots, x_{k} \in \mathbb{C}^{n} \text { are orthonormal }\right\} . \tag{1.3}
\end{equation*}
$$

Clearly $W_{k}^{\wedge}(A)$ is always convex if $k=1$ or $k=n$. When $k=1$, it is simply the classical case $W(A)$. When $k=n, W_{n}^{\wedge}(A)=\{\operatorname{det} A\}$. It is also known that $W_{n-1}^{\wedge}(A)$ is also convex [9]. It is due to the fact that when $k=n-1$, all vectors in the exterior space $\wedge^{n-1} \mathbb{C}^{n}$ are decomposable so that $W_{n-1}^{\wedge}(A)=W\left(C_{n-1}(A)\right)$. Hence $W_{n-1}^{\wedge}(A)$ is convex. Indeed every element of $\wedge^{k} \mathbb{C}^{n}$ is decomposable if and only if $k=1$ or $k=n-1$ [9, Lemma 3]. However for $1<k<n-1, W_{k}^{\wedge}(A)$ is not convex [9, 14] in general. See the following example and more discussion will be given in the next section.

Example 1.1. Consider the complex unitary symmetric matrix

$$
A=\operatorname{diag}(i, i, 1, \ldots, 1) \in \mathbb{C}_{n \times n},
$$

where $n \geq 4$. Let $1<k<n-1$. It is known that $\pm 1 \in W_{k}^{\wedge}(A)$ but $0 \notin W_{k}^{\wedge}(A)$ [9, 14]. So it is not convex.

In the above example the matrix $A \in \mathbb{C}_{n \times n}$ is very nice: symmetric and unitary, but convexity still does not hold (of course the symmetric property is not invariant under unitarily similarity). In the literature it is not known whether $W_{k}^{\wedge}(A)$ is star-shaped for general $A \in \mathbb{C}_{n \times n}$. Indeed we will show that the above example is star-shaped in the next section. However this is not the case for general $A \in \mathbb{C}_{n \times n}$. We will construct a symmetric and unitary $A \in \mathbb{C}_{n \times n}$ such that $W_{k}^{\wedge}(A)$ is not star-shaped (thus it is not simply connected). So the star-shapedness result does not hold for $W_{k}^{\wedge}(A)$, unlike the C-numerical range $W_{C}(A)$ of $A \in \mathbb{C}_{n \times n}$ [5] and other related generalizations [17, 3, 4].

The real analog of the numerical range has also been studied [1] , that is, if the domain \mathbb{S}^{n-1} is replaced by $\mathbb{S}_{\mathbb{R}}^{n-1}:=\mathbb{S}^{n-1} \cap \mathbb{R}^{n}$:

$$
R(A):=\left\{x^{T} A x: x \in \mathbb{R}^{n}, x^{T} x=1\right\} \subset W(A) .
$$

Since $x^{T} B x=0$ for $x \in \mathbb{R}^{n}$ and skew symmetric $B \in \mathbb{C}_{n \times n}$ (i.e., $B^{T}=-B$), we have

$$
x^{T} A x=x^{T}\left(\frac{A+A^{T}}{2}\right) x+x^{T}\left(\frac{A-A^{T}}{2}\right) x=x^{T}\left(\frac{A+A^{T}}{2}\right) x .
$$

Thus

$$
R(A)=R\left(\frac{A+A^{T}}{2}\right)
$$

but in general

$$
W(A) \neq W\left(\frac{A+A^{T}}{2}\right)
$$

It is known that if $A \in \mathbb{C}_{n \times n}$ with $n \geq 3$, then [1, 12] $R(A)=W\left(\frac{A+A^{T}}{2}\right)$ and hence is convex, and $R(A)$ is an ellipse (possibly degenerate) when $n=2$.

Given $A \in \mathbb{C}_{n \times n}$, as $R(A)$ is the real analog of $W(A)$, we now introduce a real analog of $W_{k}^{\wedge}(A)$. For $1 \leq k \leq n$, define the compact set,

$$
\begin{align*}
R_{k}^{\wedge}(A) & :=\left\{\operatorname{det}\left(\left(O^{T} A O\right)[k \mid k]\right): O \in \mathrm{SO}(n)\right\} \tag{1.4}\\
& =\left\{\operatorname{det}\left(\left(O^{T} A O\right)[k \mid k]\right): O \in \mathrm{O}(n)\right\} \\
& =\left\{\operatorname{det}\left(X^{T} A X\right): X \in \mathbb{R}_{n \times k} \text { with o.n. columns }\right\} \\
& \subset W_{k}^{\wedge}(A),
\end{align*}
$$

where $\mathrm{O}(n)$ is the orthogonal group and $\mathrm{SO}(n)$ is the special orthogonal group. Alike the groups $\mathrm{U}(n)$ and $\mathrm{SU}(n)$ giving the same $W_{k}^{\wedge}(A), \mathrm{O}(n)$ and $\mathrm{SO}(n)$ yield the same $R_{k}^{\wedge}(A)$.

Similar to the complex case, one has $R_{1}^{\wedge}(A)=R(A)$ and $R_{n}^{\wedge}(A)=$ $\{\operatorname{det} A\}$. Moreover

$$
R_{n-1}^{\wedge}(A)=R\left(C_{n-1}(A)\right)
$$

and hence is convex if $n \geq 3$. However, unlike $R(A), R_{k}^{\wedge}(A) \neq$ $R_{k}^{\wedge}\left(\frac{A+A^{T}}{2}\right)$ for $k \geq 2$ and general $A \in \mathbb{C}_{n \times n}$.

Since $R_{k}^{\wedge}(A)$ is a subset of $W_{k}^{\wedge}(A)$, it is natural to ask if convexity may hold for $R_{k}^{\wedge}(A)$ even though $W_{k}^{\wedge}(A)$ is not necessarily convex (see Example 1.1), hoping that the "problematic points" in $W_{k}^{\wedge}(A)$ would go away. However Example 1.1 gives a negative answer. We will construct an example $R_{k}^{\wedge}(A)$ which is not star-shaped. Indeed it is the very same non-star-shaped example for $W_{k}^{\wedge}(A)$.

In this paper we also prove that if $A \in \mathbb{C}_{n \times n}$ is skew symmetric, i.e., $A=-A^{T}$, then $R_{k}^{\wedge}(A)$ is star-shaped with respect to the origin. The proof involves a notion called Pfaffian decomposable numerical range. We will first give a brief review on Pfaffian of a skew symmetric matrix and then introduce the Pfaffian decomposable numerical range in Section 3. Then in Section 4 we obtain the star-shapedness results. Some convexity results are obtained in Section 5. Finally in Section 6 we make a remark on the decomposable numerical range under congruence.

2. $W_{k}^{\wedge}(A)$ IS NOT STAR-SHAPED

The main result of this section is to construct a matrix $A \in \mathbb{C}_{n \times n}$ such that the decomposable $W_{k}^{\wedge}(A)$ and its real analog $R_{k}^{\wedge}(A)$ are not star-shaped for some $1<k<n-1$. We first give a full description of Example 1.1 which turns out to be star-shaped with respect to i.

Example 2.1. Let $1<k<n-1$. Consider the complex unitary symmetric matrix

$$
A=\operatorname{diag}(i, i, 1, \ldots, 1) \in \mathbb{C}_{n \times n},
$$

where $n \geq 4$. To completely describe the set $W_{k}^{\wedge}(A)$, write

$$
A=\frac{e^{-i \pi / 4}}{\sqrt{2}}\left(\operatorname{diag}(-1,-1,1, \ldots, 1)+i I_{n}\right)
$$

Now
$\operatorname{det}\left(\left(U^{*} A U\right)[k \mid k]\right)=\frac{e^{-i k \pi / 4}}{2^{k / 2}} \operatorname{det}\left[\left(U^{*} \operatorname{diag}(-1,-1,1, \ldots, 1) U\right)[k \mid k]+i I_{k}\right]$.
If $1<k<n-1$, the eigenvalues of the following $k \times k$ submatrix of $U^{*} \operatorname{diag}(-1,-1,1, \ldots, 1) U$

$$
\left(U^{*} \operatorname{diag}(-1,-1,1, \ldots, 1) U\right)[k \mid k]
$$

has eigenvalues $1, \ldots, 1, \alpha, \beta$ where α, β range over $[-1,1]$ according to the interlacing inequalities for submatrix of a Hermitian matrix. We remark that the result for the real case $O^{T} A O(O \in \mathrm{O}(n))$ is also valid. Thus

$$
\begin{aligned}
& R_{k}^{\wedge}(A) \\
= & W_{k}^{\wedge}(A) \\
= & \left\{\frac{e^{-i k \pi / 4}}{2^{k / 2}}(1+i)^{k-2}(\alpha+i)(\beta+i): \alpha, \beta \in[-1,1]\right\} \\
= & \left\{\frac{e^{-i \pi / 2}}{2}(\alpha \beta-1+i(\alpha+\beta)): \alpha, \beta \in[-1,1]\right\} .
\end{aligned}
$$

So

$$
R_{k}^{\wedge}(A)=W_{k}^{\wedge}(A)=\frac{e^{-i \pi / 2}}{2} S
$$

where

$$
S:=\{\alpha \beta-1+i(\alpha+\beta): \alpha, \beta \in[-1,1]\} .
$$

Now consider the map $\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
(\alpha, \beta) \mapsto(\alpha \beta-1, \alpha+\beta) .
$$

If $\alpha+\beta=c$, where $c \in[-2,2]$, then

$$
\alpha \beta=\alpha(c-\alpha)=-\left(\alpha-\frac{c}{2}\right)^{2}+\left(\frac{c}{2}\right)^{2} .
$$

So

$$
\max _{\alpha+\beta=c} \alpha \beta-1=\left(\frac{c}{2}\right)^{2}-1,
$$

and is attainable at $\alpha=\beta=\frac{c}{2}$;

$$
\min _{\alpha+\beta=c} \alpha \beta-1= \begin{cases}c-2 & \text { if } 0 \leq c \leq 2 \\ -c-2 & \text { if }-2 \leq c<0\end{cases}
$$

and is attainable at

$$
\alpha \text { or } c-\alpha= \begin{cases}1 & \text { if } 0 \leq c \leq 2 \\ -1 & \text { if }-2 \leq c<0\end{cases}
$$

Thus S is the region bounded by the parabola $x=\left(\frac{y}{2}\right)^{2}-1$ and the lines $x=y-2$ and $x=-y-2$.

Hence if $1<k<n-1$, then $R_{k}^{\wedge}(A)=W_{k}^{\wedge}(A)$ is the region R in \mathbb{C} bounded by the parabola $x^{2}=-2 y+1$ and the lines $y=x+1$ and $y=-x+1$ (see the figure below) so that it is star-shaped with star center i.

We make an interesting observation: the shape of $R_{k}^{\wedge}(A)=W_{k}^{\wedge}(A)$ is independent of the choice of k, where $1<k<n-1$.

Based on Example 2.1, we are going to construct a non-star-shaped example for $R_{k}^{\wedge}(A)$ and $W_{k}^{\wedge}(A)$.
Example 2.2. Let $A=\operatorname{diag}(1,1,1,1,1,1, i, i, i, i)$. We claim that $W_{6}^{\wedge}(A)$ is not star-shaped. Write

$$
A=\frac{e^{-i \pi / 4}}{\sqrt{2}}\left(\operatorname{diag}(1, \ldots, 1,-1,-1,-1,-1)+i I_{n}\right)
$$

Now

$$
\begin{aligned}
& \operatorname{det}\left(\left(U^{*} A U\right)[k \mid k]\right) \\
= & \frac{e^{-i k \pi / 4}}{2^{k / 2}} \operatorname{det}\left[\left(U^{*} \operatorname{diag}(1, \ldots, 1,-1,-1,-1,-1) U\right)[k \mid k]+i I_{k}\right] .
\end{aligned}
$$

If $4 \leq k<n-1$, the eigenvalues of the $k \times k$ submatrix

$$
\left(U^{*} \operatorname{diag}(1, \ldots, 1,-1,-1,-1,-1) U\right)[k \mid k]
$$

of $U^{*} \operatorname{diag}(1, \ldots, 1,-1,-1,-1,-1) U$ has eigenvalues $1, \ldots, 1, \alpha, \beta, \gamma, \delta$ where $\alpha, \beta, \gamma, \delta$ range over $[-1,1]$ according to the interlacing inequalities for submatrix of a Hermitian matrix. Thus

$$
\begin{aligned}
W_{k}^{\wedge}(A)= & \left\{\frac{e^{-i k \pi / 4}}{2^{k / 2}}(1+i)^{k-2}(\alpha+i)(\beta+i)(\gamma+i)(\delta+i):\right. \\
& \alpha, \beta, \gamma, \delta \in[-1,1]\}
\end{aligned}
$$

which clearly does not contain the origin. Let $B:=A[8 \mid 8]$. Notice that

$$
R=W_{6}^{\wedge}(B) \subset W_{6}^{\wedge}(A)
$$

where R is the region given in Example 2.1. On the other hand

$$
-R=i^{2} W_{4}^{\wedge}(B) \subset W_{6}^{\wedge}(A)
$$

So $(-R) \cup R \subset W_{6}^{\wedge}(A)$ but $W_{6}^{\wedge}(A)$ does not contain the origin. So $W_{6}^{\wedge}(A)$ is not star-shaped.
Remark 2.3. Notice that $R_{6}^{\wedge}(A)=W_{6}^{\wedge}(A)$ so that $R_{6}^{\wedge}(A)$ is not starshaped as well.

3. Pfaffian numerical range of a skew symmetric matrix

Let $A=\left(a_{i j}\right) \in \mathbb{C}_{2 n \times 2 n}$ be a skew symmetric matrix. The Pfaffian of A is defined as

$$
\operatorname{Pf}(A)=\frac{1}{2^{n} n!} \sum_{\sigma \in S_{2 n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{\sigma(2 i-1), \sigma(2 i)},
$$

where $S_{2 n}$ is the symmetric group of degree $2 n$ and $\operatorname{sgn}(\sigma)$ is the signature of σ. For example

$$
\operatorname{Pf}\left[\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right]=a, \quad \operatorname{Pf}\left[\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right]=a f-b e+d c .
$$

It is known that [6] for $A, B \in \mathbb{C}_{2 n \times 2 n}$ where A is skew symmetric, then
(1) $\operatorname{Pf}(A)^{2}=\operatorname{det}(A)$,
(2) $\operatorname{Pf}\left(B A B^{T}\right)=(\operatorname{det} B) \operatorname{Pf}(A)$,
(3) $\operatorname{Pf}(\lambda A)=\lambda^{n} \operatorname{Pf}(A)$,
(4) $\operatorname{Pf}\left(A^{T}\right)=(-1)^{n} \operatorname{Pf}(A)$.

The Pfaffian of a skew-symmetric matrix $A \in \mathbb{C}_{(2 n+1) \times(2 n+1)}$ is defined to be zero, as the determinant of A is zero. The Pfaffian is an invariant polynomial of a skew-symmetric matrix under a special orthogonal basis change. It is important in the theory of characteristic classes. See [8, 18] for some applications of Pfaffian.

The Pfaffian of a skew symmetric $B \in \mathbb{C}_{2 k \times 2 k}$ can be computed recursively as

$$
\begin{equation*}
\operatorname{Pf}(B)=\sum_{i=2}^{2 k}(-1)^{i} b_{1 i} \operatorname{Pf}\left(B_{1 i}\right), \tag{3.1}
\end{equation*}
$$

where $B_{1 i} \in \mathbb{C}_{(2 k-2) \times(2 k-2)}$ denotes the submatrix of B obtained by removing the first and the i th rows and the first and the i th columns. The Pfaffian of the 0×0 matrix is equal to one by convention.

Let $A \in \mathbb{C}_{n \times n}$ be skew symmetric. Then each element of $\left\{O^{T} A O\right.$: $\left.O \in \mathrm{SO}_{n}\right\}$ is skew symmetric. For an even integer $2 k \leq n$, we introduce

$$
\begin{equation*}
P_{2 k}^{\wedge}(A):=\left\{\operatorname{Pf}\left(O^{T} A O[2 k \mid 2 k]\right): O \in \mathrm{SO}_{n}\right\} \tag{3.2}
\end{equation*}
$$

and call $P_{2 k}^{\wedge}(A)$ the $2 k$-Pfaffian numerical range of A.
Recall $R_{2 k}^{\wedge}(A)=\left\{\operatorname{det}\left(\left(O^{T} A O\right)[2 k \mid 2 k]\right): O \in \operatorname{SO}(n)\right\}$. Since $\operatorname{det} B=$ $\operatorname{Pf}(B)^{2}$ for skew symmetric $B \in \mathbb{C}_{2 n \times 2 n}$,

$$
R_{2 k}^{\wedge}(A)=\left\{z^{2}: z \in P_{2 k}^{\wedge}(A)\right\}
$$

We simply write

$$
\begin{equation*}
R_{2 k}^{\wedge}(A)=\left[P_{2 k}^{\wedge}(A)\right]^{2} \tag{3.3}
\end{equation*}
$$

in which the square is defined element-wise, i.e.,

$$
C^{2}:=\left\{z^{2}: z \in C\right\} \subset \mathbb{C}
$$

for any subset $C \in \mathbb{C}$. It turns out in the next section that $P_{2 k}^{\wedge}(A)$ is star-shaped with respect to the origin. Consequently, $R_{2 k}^{\wedge}(A)$ is also star-shaped.

Remark 3.1. If we replace $\mathrm{SO}(n)$ by $\mathrm{O}(n)$, then everything in (3.2) remains the same unless $2 k=n$. One would have $\{ \pm \operatorname{Pf}(A)\}$ instead of the singleton set $\{\operatorname{Pf}(A)\}$ because of the formula $\operatorname{Pf}\left(O A O^{T}\right)=$ ($\operatorname{det} O) \operatorname{Pf}(A)$. Nevertheless, the $2 k=n$ case is trivial.

4. Star-Shapedness and skew symmetric matrices

We first establish a star-shapedness result for the Pfaffian numerical range $P_{2 k}^{\wedge}(A)$, where $2 \leq 2 k \leq n$ and $A \in \mathbb{C}_{n \times n}$ is skew symmetric.

Theorem 4.1. Let $A \in \mathbb{C}_{n \times n}$ be a complex skew symmetric matrix.
(1) If n is even, then $P_{n}^{\wedge}(A)=\{\operatorname{Pf} A\}$.
(2) If $2 k<n$, then $P_{2 k}^{\wedge}(A)$ is star-shaped with respect to the origin.

Proof. (1) When $2 k=n$,

$$
\operatorname{Pf}\left(O^{T} A O\right)=(\operatorname{det} O) \operatorname{Pf}(A)=\operatorname{Pf}(A)
$$

if $O \in \mathrm{SO}(n)$. Thus $P_{n}^{\wedge}(A)=\{\operatorname{Pf}(A)\}$.
(2) Now assume that $2 k<n$. Notice that

$$
P_{2 k}^{\wedge}(A)=\left\{\operatorname{Pf}\left(X^{T} A X\right): X \in \mathbb{R}_{n \times 2 k} \text { with orthonormal columns }\right\} .
$$

Suppose $\alpha \in P_{2 k}^{\wedge}(A)$. We are going to show that the line segment $[0, \alpha] \subset P_{2 k}^{\wedge}(A)$. We will construct an ellipse $E_{0} \subset P_{2 k}^{\wedge}(A)$ containing α and centered at the origin, and a line segment $[\gamma,-\gamma] \subset P_{2 k}^{\wedge}(A)$. Moreover we will show that E_{0} continuously deforms into $[\gamma,-\gamma]$ within $P_{2 k}^{\wedge}(A)$. Thus $[0, \alpha] \in P_{2 k}^{\wedge}(A)$.

Let $X=\left[x_{1} \cdots x_{2 k}\right] \in \mathbb{R}_{n \times 2 k}$ where $x_{1}, \ldots, x_{2 k} \in \mathbb{R}^{n}$ are orthonormal such that $\alpha=\operatorname{Pf}\left(X^{T} A X\right)$. Notice that $X^{T} A X=\left(x_{i}^{T} A x_{j}\right) \in$ $\mathbb{C}_{(2 k-2) \times(2 k-2)}$ so that

$$
\alpha=\operatorname{Pf}\left(X^{T} A X\right)=\operatorname{Pf}\left(x_{i}^{T} A x_{j}\right)
$$

Since $2 k<n$, let $x_{2 k+1} \in \mathbb{R}^{n}$ be a unit vector orthogonal to $x_{1}, \ldots, x_{2 k}$. Let

$$
x_{1}(\theta):=(\cos \theta) x_{1}+(\sin \theta) x_{2 k+1}
$$

and

$$
X_{\theta}:=\left[x_{1}(\theta) x_{2} \cdots x_{2 k}\right] .
$$

Clearly $X_{0}=X$. By the recursive formula (3.1)

$$
\begin{aligned}
\xi(\theta): & =\operatorname{Pf}\left(X_{\theta}^{T} A X_{\theta}\right) \\
= & \sum_{i=2}^{2 k}(-1)^{i}\left(\left[(\cos \theta) x_{1}+(\sin \theta) x_{2 k+1}\right]^{T} A x_{i}\right) \operatorname{Pf}\left(\left[X_{\theta}^{T} A X_{\theta}\right]_{1 i}\right) \\
= & (\cos \theta) \sum_{i=2}^{2 k}(-1)^{i}\left(x_{1}^{T} A x_{i}\right) \operatorname{Pf}\left(\left[X^{T} A X\right]_{1 i}\right) \\
& \quad+(\sin \theta) \sum_{i=2}^{2 k}(-1)^{i}\left(x_{2 k+1}^{T} A x_{i}\right) \operatorname{Pf}\left(\left[X^{T} A X\right]_{1 i}\right) \\
& =(\cos \theta) \alpha+(\sin \theta) \beta \in P_{2 k}^{\wedge}(A),
\end{aligned}
$$

where $\alpha=\operatorname{Pf}\left(X_{0}^{T} A X_{0}\right)$ and $\beta:=\operatorname{Pf}\left(X_{\pi / 2}^{T} A X_{\pi / 2}\right) \in \mathbb{C}$. The locus

$$
E_{0}:=\{\xi(\theta): \theta \in[0,2 \pi]\} \subset P_{2 k}^{\wedge}(A)
$$

is an ellipse (possibly degenerate) contained in $P_{2 k}^{\wedge}(A)$. The origin is enclosed by the ellipse. If the ellipse degenerates, then the result follows.

We claim that

$$
0 \in P_{2 k}^{\wedge}(A),
$$

i.e., there is $Y \in \mathbb{R}_{n \times 2 k}$ with orthonormal columns such that $\operatorname{Pf}\left(Y^{T} A Y\right)=$ 0 . We are going to establish the claim.

Case 1: $2 k<n-1$. Let $y_{1} \in \mathbb{R}^{n}$ be any unit vector. Since $2 k<n-1$, if we write $A y_{1}=u+i v$ where $u, v \in \mathbb{R}^{n}$, there are orthonormal vectors $y_{2}, \cdots, y_{2 k} \in \mathbb{R}^{n}$ orthogonal to y_{1}, u, v. Hence there is $Y:=$ $\left[y_{1} \cdots y_{2 k}\right] \in \mathbb{R}_{n \times 2 k}$ with orthonormal columns such that the first row and the first column of $Y^{T} A Y$ are zero vectors.

Case 2: $2 k+1=n$. Notice that the skew symmetric $A \in \mathbb{C}_{n \times n}$ has a zero eigenvalue. So there is a nonzero vector $y \in \mathbb{C}^{n}$ such that $A y=0$. Write

$$
y=\xi_{1} y_{1}+\xi_{2} y_{2}
$$

where $y_{1}, y_{2} \in \mathbb{R}^{n}$ are orthonormal. Extend y_{1}, y_{2} to an orthonormal set $\left\{y_{1}, \ldots, y_{2 k}\right\}$ in \mathbb{R}^{n}. Since $A y=0, A y_{1}$ and $A y_{2}$ are linearly dependent and hence $\operatorname{det}\left(Y^{T} A Y\right)=0$, where $Y:=\left[y_{1} \cdots y_{2 k}\right] \in \mathbb{R}_{n \times 2 k}$. Thus $\operatorname{Pf}\left(Y^{T} A Y\right)=0$.

The claim is now proved, i.e., there is $Y \in \mathbb{R}_{n \times 2 k}$ with orthonormal columns such that $\operatorname{Pf}\left(Y^{T} A Y\right)=0$. Let $Y=\left[y_{1} \cdots y_{2 k}\right]$ and let $y_{2 k+1} \in$ \mathbb{R}^{n} be a unit vector orthogonal to $y_{1}, \ldots, y_{2 k}$. Set

$$
y_{1}(\theta):=(\cos \theta) y_{1}+(\sin \theta) y_{2 k+1}
$$

and

$$
Y_{\theta}:=\left[y_{1}(\theta) y_{2} \cdots y_{2 k}\right] .
$$

Similar to the previous computation, we have

$$
\eta(\theta)=\operatorname{Pf}\left(Y_{\theta}^{T} A Y_{\theta}\right)=(\sin \theta) \gamma \in P_{2 k}^{\wedge}(A),
$$

where $\gamma:=\operatorname{Pf}\left(Y_{\pi / 2}^{T} A Y_{\pi / 2}\right)$. The locus

$$
E_{1}:=\{\eta(\theta): \theta \in[0,2 \pi]\} \subset P_{2 k}^{\wedge}(A)
$$

is a line segment $[-\gamma, \gamma]$ containing the origin. Since the orthogonal group is path connected, there is a continuous path $Z(t) \in \mathbb{R}_{n \times 2 k}(t \in$ $[0,1])$ with orthonormal columns, such that $Z(0)=X$ and $Z(1)=Y$. Consider the continuous function

$$
\begin{aligned}
\varphi(t, \theta): & =\operatorname{Pf}\left((Z(t) R(\theta))^{T} A Z(t) R(\theta)\right) \\
& =\operatorname{Pf}\left(R(\theta)^{T} Z(t)^{T} A Z(t) R(\theta)\right) .
\end{aligned}
$$

Notice that $E_{0}=\{\varphi(0, \theta): \theta \in[0,2 \pi]\}$ and $E_{1}=\{\varphi(1, \theta): \theta \in[0,2 \pi]\}$.
So for each point $\xi \in[0, \alpha]$ there is some $t \in[0,1]$ such that

$$
\xi \in E_{t}:=\{\varphi(t, \theta): \theta \in[0,2 \pi]\} \subset P_{2 k}^{\wedge}(A) .
$$

Hence the star-shapedness result is established.

Now we use Theorem 4.1 to establish the star-shapedness of the decomposable numerical range $R_{2 k}^{\wedge}(A)$.

Theorem 4.2. Let $A \in \mathbb{C}_{n \times n}$ be a complex skew symmetric matrix. Then $R_{k}^{\wedge}(A)$ is star-shaped with respect to the origin for all $1 \leq k \leq n$. More precisely,
(1) $R_{n}^{\wedge}(A)=\{\operatorname{det} A\}$.
(2) $R_{2 k+1}^{\wedge}(A)=\{0\}$, when $1 \leq 2 k+1 \leq n$.
(3) $R_{2 k}^{\wedge}(A)$ is star-shaped with respect to the origin, where $1<$ $2 k \leq n$.

Proof. (1) Obvious.
(2) Notice that the compound matrix $C_{2 k+1}(A)$ is skew symmetric since

$$
C_{2 k+1}(A)^{T}=C_{2 k+1}\left(A^{T}\right)=C_{2 k+1}(-A)=-C_{2 k+1}(A) .
$$

Thus $\left(C_{2 k+1}(A) x^{\wedge}, x^{\wedge}\right)=0$ for all $x^{\wedge} \in \wedge^{2 k+1} \mathbb{C}^{n}$ and the desired result follows from (1.3).
(3) By (3.3)

$$
R_{2 k}^{\wedge}(A)=\left(P_{2 k}^{\wedge}(A)\right)^{2}
$$

Set $C:=P_{2 k}^{\wedge}(A)$. We need to show that if $x \in C$, then the line segment $\left[0, x^{2}\right]$ joining 0 and x^{2} is contained in $C^{2}=R_{2 k}^{\wedge}(A)$. We may
assume that $x \neq 0$. Notice that $\left(e^{i \theta} C\right)^{2}=e^{i 2 \theta} C^{2}$ for any $\theta \in[0,2 \pi]$, i.e., rotating C by the angle θ would rotate C^{2} by 2θ. Moreover the property of star-shapedness with star center 0 remains invariant under rotation. So we may assume that $x>0$. By Theorem 4.1, $[0, x] \in C$. So $\left[0, x^{2}\right] \in C^{2}=R_{2 k}^{\wedge}(A)$.

5. Some Convexity Results

In this section we show that $P_{2 k}^{\wedge}(A)$ is convex if $k=1$ or $2 k+1=n$, where $A \in \mathbb{C}_{n \times n}$ is skew symmetric (convexity of $R_{2 k}^{\wedge}(A)$ is known for $2 k+1=n$ and general $\left.A \in \mathbb{C}_{n \times n}\right)$.
Theorem 5.1. Let $A \in \mathbb{C}_{n \times n}$ be a complex skew symmetric matrix. Then
(a) $P_{2}^{\wedge}(A)$ is convex.
(b) If $n=2 k+1$, then $P_{2 k}^{\wedge}(A)$ is convex.
(c) When $n=3, P_{2}^{\wedge}(A)$ is an elliptical disk centered at the origin and $R_{2}^{\wedge}(A)$ is an elliptical disk (not necessarily centered at the origin). In particular, if

$$
A=\left[\begin{array}{ccc}
0 & x & y \\
-x & 0 & z \\
-y & -z & 0
\end{array}\right],
$$

then

$$
P_{2}^{\wedge}(A)=\left\{(x, y, z) \cdot w: w \in \mathbb{S}_{\mathbb{R}}^{2}\right\}
$$

where $\mathbb{S}_{\mathbb{R}}^{2}$ is the unit sphere in \mathbb{R}^{3} and $s \cdot t:=s_{1} t_{1}+s_{2} t_{2}+s_{3} t_{3}$ denotes the standard inner product of \mathbb{R}^{3}, and

$$
R_{2}^{\wedge}(A)=R(\hat{A}), \quad \hat{A}:=\left[\begin{array}{lll}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right] .
$$

Proof. (a) Without loss of generality we may assume that $2<n$. It is because that if $n=2$, then $P_{2}^{\wedge}(A)=\{\operatorname{Pf}(A)\}$ and $R_{2}^{\wedge}(A)=\{\operatorname{det} A\}$; both are convex.

For all $x \in \mathbb{R}^{n}, x^{T} A x=0$ since A is complex skew symmetric. For $x_{1}, x_{2} \in \mathbb{R}^{n}, x_{1}^{T} A x_{2}=-x_{2}^{T} A x_{1}$ so that

$$
\begin{aligned}
\left(C_{2}(A) x_{1} \wedge x_{2}, x_{1} \wedge x_{2}\right) & =\operatorname{det}\left[\begin{array}{cc}
x_{1}^{T} A x_{1} & x_{1}^{T} A x_{2} \\
x_{2}^{T} A x_{1} & x_{2}^{T} A x_{2}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
0 & x_{1}^{T} A x_{2} \\
x_{2}^{T} A x_{1} & 0
\end{array}\right] \\
& =\left(x_{1}^{T} A x_{2}\right)^{2} \in \mathbb{C} .
\end{aligned}
$$

Write $A=A_{1}+i A_{2}$ where $A_{1}, A_{2} \in \mathbb{R}_{n \times n}$ are real skew symmetric matrices. Now

$$
\begin{aligned}
P_{2}^{\wedge}(A) & =\left\{x_{1}^{T} A x_{2}: x_{1}, x_{2} \in \mathbb{R}^{n} \text { o.n. }\right\} \\
& =\left\{x_{1}^{T} A_{1} x_{2}+i x_{1}^{T} A_{2} x_{2}: x_{1}, x_{2} \in \mathbb{R}^{n} \text { o.n. }\right\} .
\end{aligned}
$$

which can be identified with the subset

$$
\left\{\left(\operatorname{tr} C O^{T} A_{1} O, \operatorname{tr} C O^{T} A_{2} O\right): O \in \mathrm{SO}(n)\right\} \subset \mathbb{R}^{2}
$$

where

$$
C=\frac{1}{2}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \oplus O_{n-2} .
$$

By a result of Tam [16], the set $P_{2}^{\wedge}(A)$ is a convex set containing the origin.
(b) Suppose $2 k+1=n$. Let $\alpha=\operatorname{Pf}\left(X^{T} A X\right)$ and $\beta=\operatorname{Pf}\left(Y^{T} A Y\right)$ where $X, Y \in \mathbb{R}_{n \times 2 k}$ have orthonormal columns. We want to show that the line segment $[\alpha, \beta]$ is contained in $P_{2 k}^{\wedge}(A)$. We may assume that $\alpha \neq-\beta$ by Theorem 4.1. So we can assume that $\alpha \neq \pm \beta$.

Write $X=\left[x_{1} \cdots x_{2 k}\right]$, $Y=\left[y_{1} \cdots y_{2 k}\right]$. Let $U=\operatorname{span}\left\{x_{1}, \ldots, x_{2 k}\right\}$ and $V=\operatorname{span}\left\{y_{1}, \ldots, y_{2 k}\right\}$. By the dimension theorem

$$
\begin{aligned}
\operatorname{dim}(U \cap V) & =\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U+V) \\
& \geq 2 k+2 k-n=4 k-(2 k+1)=2 k-1 .
\end{aligned}
$$

Let $w_{1}, \ldots, w_{2 k-1} \in U \cap V$ be $2 k-1$ orthonormal vectors. Extend $\left\{w_{1}, \ldots, w_{2 k-1}\right\}$ to two orthonormal sets

$$
\left\{w_{1}, \ldots, w_{2 k-1}, x\right\}, \quad\left\{w_{1}, \ldots, w_{2 k-1}, y\right\}
$$

in \mathbb{R}^{n} so that their spans are U and V, respectively. There are $O_{x}, O_{y} \in$ $\mathrm{SO}(2 k)$ such that

$$
W_{x}:=\left[\begin{array}{llll}
w_{1} & \ldots & w_{2 k-1} & x
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{2 k}
\end{array}\right] O_{x}
$$

and

$$
W_{y}:=\left[\begin{array}{llll}
w_{1} & \ldots & w_{2 k-1} & y
\end{array}\right]=\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{2 k}
\end{array}\right] O_{y} .
$$

Then by Pfaffian's property (2)

$$
\begin{aligned}
\operatorname{Pf}\left(W_{x}^{T} A W_{x}\right) & =\operatorname{Pf}\left(\left(X O_{x}\right)^{T} A\left(X O_{x}\right)\right. \\
& =\operatorname{Pf}\left(O_{x}^{T} X^{T} A X O_{x}\right) \\
& =\left(\operatorname{det} O_{x}\right) \operatorname{Pf}\left(X^{T} A X\right)=\alpha .
\end{aligned}
$$

Similarly $\operatorname{Pf}\left(W_{y}^{T} A W_{y}\right)=\beta$.
Since $\alpha \neq \pm \beta, x$ and y must be linearly independent. Let $z_{1}, z_{2} \in \mathbb{R}^{n}$ be orthonormal such that span $\left\{z_{1}, z_{2}\right\}=$ span $\{x, y\}$. Let

$$
W_{\theta}:=\left[w_{1} \cdots w_{2 k-1}(\cos \theta) z_{1}+(\sin \theta) z_{2}\right] \in \mathbb{R}_{n \times 2 k}, \quad \theta \in[0,2 \pi] .
$$

The columns of W_{θ} are orthonormal since x, y are orthogonal to $w_{1}, \ldots, w_{2 k-1}$. Using the idea of the proof of Theorem 4.1, the locus

$$
\begin{aligned}
L & :=\left\{\operatorname{Pf}\left(W_{\theta}^{T} A W_{\theta}\right): \theta \in[0,2 \pi]\right\} \\
& =\left\{(\cos \theta)\left(\operatorname{Pf} W_{0}^{T} A W_{0}\right)+(\sin \theta)\left(\operatorname{Pf} W_{\pi / 2}^{T} A W_{\pi / 2}\right): \theta \in[0,2 \pi]\right\} \\
& \subset P_{2 k}^{\wedge}(A)
\end{aligned}
$$

is an ellipse (possible degenerate) and contains α and β and the ellipse is centered at the origin. All the points enclosed by the ellipse are in $P_{2 k}^{\wedge}(A)$. In particular the line segment $[\alpha, \beta] \subset P_{2 k}^{\wedge}(A)$.
(c) Let

$$
A=\left[\begin{array}{ccc}
0 & x & y \\
-x & 0 & z \\
-y & -z & 0
\end{array}\right]
$$

Recall $R_{2}^{\wedge}(A)=R\left(C_{2}(A)\right)$ since all vectors in $\wedge^{2} \mathbb{R}^{3}$ are decomposable. By a result of [15, Lemma 6], $P_{2}^{\wedge}(A)$ is an elliptical disk centered at the origin. To be precise, if $u, v \in \mathbb{R}^{3}$ are orthogonal, then by direct computation

$$
v^{T} A u=\operatorname{det}\left[\begin{array}{ccc}
z & -y & x \\
v_{1} & v_{2} & v_{3} \\
u_{1} & u_{2} & u_{3}
\end{array}\right] .
$$

Choose the unique $w \in \mathbb{S}_{\mathbb{R}}^{2}$ so that $[u, v, w] \in \operatorname{SO}(3)$. Then $(z,-y, x)^{T}=$ $\alpha u+\beta v+\gamma w$, where $\alpha, \beta, \gamma \in \mathbb{C}$. Then

$$
v^{T} A u=\gamma=(z,-y, x) \cdot w .
$$

Since $R_{2}^{\wedge}(A)=\left[P_{2}^{\wedge}(A)\right]^{2}$, direct computation leads to the desired result.

Remark 5.2. It would be interesting to know if $P_{2 k}^{\wedge}(A)$ and $R_{2 k}^{\wedge}(A)$ are convex or not for general k and for skew symmetric $A \in \mathbb{C}_{n \times n}$ (even the case $R_{2}^{\wedge}(A)$ is unknown).

6. Congruence case

Given $A \in \mathbb{C}_{n \times n}$ and $1 \leq k \leq n$, if unitary similarity in the formulation (1.1) of $W_{k}^{\wedge}(A)$ is replaced by unitary congruence, we have

$$
W_{k}^{T}(A):=\left\{\operatorname{det}\left(\left(U^{T} A U\right)[k \mid k]\right): U \in \mathrm{U}(n)\right\} .
$$

It admits circular symmetry, i.e., if $\alpha \in W_{k}^{T}(A)$, then $e^{i \theta} \alpha \in W_{k}^{T}(A)$ for all $\theta \in \mathbb{R}$. It is because

$$
\left.\operatorname{det}\left(\left(e^{i \theta U} U\right)^{T} A\left(e^{i \theta} U\right)\right)[k \mid k]\right)=e^{i 2 \theta} \operatorname{det}\left(\left(U^{T} A U\right)[k \mid k]\right) .
$$

Similarly if $B \in \mathbb{C}_{n \times n}$ is skew symmetric, then we define

$$
P_{2 k}^{T}(B):=\left\{\operatorname{Pf}\left(\left(U^{T} B U\right)[k \mid k]\right): U \in \mathrm{U}(n)\right\} .
$$

The two sets have the relation $W_{2 k}^{T}(B)=\left(P_{2 k}^{T}(B)\right)^{2}$.
Theorem 6.1. (a) Let $A \in \mathbb{C}_{n \times n}$.
(i) If $1 \leq k<n$, then $W_{k}^{T}(A)$ is a circular disk centered at the origin.
(ii) If $k=n$, then $W_{n}^{T}(A)$ is a circle centered at the origin with radius $\operatorname{det} A$.
(b) Let $A \in \mathbb{C}_{n \times n}$ be skew symmetric.
(i) If $2 \leq 2 k<n$, then $P_{2 k}^{T}(A)$ is a circular disk centered at the origin.
(ii) If $2 k=n$, then $P_{n}^{T}(A)$ is a circle centered at the origin with radius $\operatorname{Pf} A$.

Proof. (a) The case $k=n$ is trivial. Suppose $1 \leq k<n$. Clearly $W_{k}^{T}(A)$ is compact. The function $\varphi: \mathrm{U}(n) \rightarrow \mathbb{C}$ defined by

$$
\varphi(U):=\operatorname{det}\left(\left(U^{T} A U\right)[k \mid k]\right)
$$

is continuous and $\varphi(\mathrm{U}(n))=W_{k}^{T}(A)$. Moreover $\varphi(\alpha U)=\alpha^{k} \varphi(U)$ and n does not divide k. By [2, Theorem 2], $W_{k}^{T}(A)$ is a circular disk centered at the origin.
(b) The case $2 k=n$ is trivial. Similarly the function $\psi: \mathrm{U}(n) \rightarrow \mathbb{C}$ defined by

$$
\psi(U):=\operatorname{Pf}\left(\left(U^{T} A U\right)[2 k \mid 2 k]\right)
$$

is continuous and $\psi(\mathrm{U}(n))=P_{2 k}^{T}(A)$. Moreover $\psi(\alpha U)=\alpha^{k} \psi(U)$ and n does not divide k. By [2, Theorem 2], $P_{2 k}^{T}(A)$ is a circular disk centered at the origin.

References

[1] L. Brickman, On the field of values of a matrix, Proc. Amer. Math. Soc. 12 (1961), 61-66.
[2] M.D. Choi, C. Laurie, H. Radjavi, and P. Rosenthal, On the congruence numerical range and related functions of matrices, Linear and Multilinear Algebra 22 (1987), 1-5.
[3] W.S. Cheung and T.Y Tam, The K-orbit of a normal element in a complex semisimple Lie algebra, Pacific J. Math. 238 (2008), 387-398.
[4] W.S. Cheung and T.Y Tam, Star-shapedness and K-orbits in complex semisimple Lie algebras, to appear in Bulletin Canad. Math. Soc.
[5] W.S. Cheung and N.K. Tsing, The C-numerical range of matrices is starshaped, Linear and Multilinear Algebra 41 (1996), 245-250.
[6] C.D. Godsil, Algebraic Combinatorics, CRC Press, 1993
[7] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[8] P.W. Kasteleyn, The statistics of dimmers on a lattice, Physica 27 (1961), 1209-1225.
[9] M. Marcus, Derivations, Plücker relations, and the numerical range, Indiana Univ. Math. J. 22 (1972/73), 1137-1149.
[10] M. Marcus and I. Filippenko, Linear operators preserving the decomposable numerical range, Linear and Multilinear Algebra 7 (1979), 27-36.
[11] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3 (1919), 314-316.
[12] A. McIntosh, The Toeplitz-Hausdorff theorem and ellipticity conditions, Amer. Math. Monthly 85 (1978), 475-477.
[13] R. Raghavendran, Toeplitz-Hausdorff theorem on numerical ranges, Proc. Amer. Math. Soc. 20 (1969), 284-285.
[14] T.Y. Tam, Another proof of a result of Marcus without Plücker relations, Linear and Multilinear Algebra 29 (1991), 313-314.
[15] T.Y. Tam, An extension of a convexity theorem of the generalized numerical range associated with $\mathrm{SO}(2 n+1)$, Proc. Amer. Math. Soc. 127 (1999), 35-44.
[16] T.Y. Tam, Convexity of generalized numerical range associated with a compact Lie group, J. Austral. Math. Soc. 71 (2001), 1-10.
[17] N.K. Tsing, On the shape of the generalized numerical ranges, Linear and Multilinear Algebra 10 (1981), 173-182.
[18] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107-111.

Department of Mathematics and Statistics, Auburn University, AL 36849-5310, USA

E-mail address: cheungwaishun@gmail.com, tamtiny@auburn.edu

[^0]: 2000 Mathematics Subject Classification. Primary 15A60, 15A75

