Generalization of Ky Fan-Amir-Moeź-Horn-Mirsky's Result on the Eigenvalues and Real Singular Values of a Matrix

> Wen Yan Ph.D Oral Defense Mathematics & Statistics Auburn University

> > October 31, 2005

Given $A \in \mathbb{C}_{n \times n}$ with e-values $\lambda \in \mathbb{C}^n$ Hermitian part $\frac{A^* + A}{2}$ has e-values $\alpha \in \mathbb{R}^n$.

Ky Fan (1951): $\operatorname{Re} \lambda \prec \alpha$.

Amir-Moéz and Horn (1958), Mirsky (1958), Sherman and Thompson (1972): the converse is true.

Abbreviation: FAHM for Ky Fan, Amir-Moéz, Horn and Mirsky

Goals:

1. Generalize the results in the context of complex semisimple Lie algebras.

2. Derive inequalities for classical cases $\mathfrak{a}_n, \mathfrak{b}_n$, $\mathfrak{c}_n, \mathfrak{d}_n$.

3. The real case is also discussed.

Chapter 1. Introduction

Hermitian decomposition of $A \in \mathbb{C}_{n \times n}$:

$$A = \frac{1}{2}(A - A^*) + \frac{1}{2}(A + A^*).$$

The e-values of $A_1 = \frac{1}{2}(A + A^*)$ and $A_2 = \frac{1}{2i}(A - A^*)$ are called real and imaginary s-values.

Majorization: $a, b \in \mathbb{R}^n$, $a \prec b$ if

$$\sum_{i=1}^{k} a_{[i]} \leq \sum_{i=1}^{k} b_{[i]}, \quad k = 1, \dots, n-1,$$
$$\sum_{i=1}^{n} a_{[i]} = \sum_{i=1}^{n} b_{[i]}.$$

Theorem 1.2 (Ky Fan, 1951) Given $A \in \mathbb{C}_{n \times n}$, the real parts of the e-values $\lambda \in \mathbb{C}^n$ of A is majorized by the real s-values $\alpha \in \mathbb{R}^n$ of A, i.e., $\operatorname{Re} \lambda \prec \alpha$.

Theorem 1.3 (Amir-Moéz-Horn and Mirsky, 1958) If $\lambda \in \mathbb{C}^n$ and $\alpha \in \mathbb{R}^n$ such that $\operatorname{Re} \lambda \prec \alpha$, then there exists $A \in \mathbb{C}_{n \times n}$ such that λ 's are the e-values of A and α 's are the real s-values of A.

An equivalent form:

Theorem 1.4 (Sherman and Thompson, 1972) If *H* is a given Hermitian matrix with e-values $\beta \in \mathbb{R}^n$ and if $\alpha \in \mathbb{R}^n$ satisfies $\alpha \prec \beta$, then there exists a skew Hermitian matrix *K* such that α is the real part of the e-values of K + H.

A framework \rightarrow semisimple Lie algebras

Motivation: A translation of A: $A + \xi I$ for $\xi \in \mathbb{C}$, translates the e-values of A by ξ and the real s-values of A by Re ξ . Thus it suffices to consider those $A \in \mathbb{C}_{n \times n}$ such that tr A = 0 in FAHM's result.

Let us look at the formulation of FAHM's result:

- 1. Eigenvalues
- (a) Matrix setting:

(b) Lie algebra:

$$\begin{array}{ccc} \mathsf{AdK} & \mathsf{proj} \\ A & \longrightarrow & B(\in \mathfrak{b}) & \longrightarrow & \text{``e-values''} \\ & & \rho : \mathfrak{g} \to \mathfrak{h} \end{array}$$

where \mathfrak{b} is a Borel subalgebra and \mathfrak{h} is a Cartan subalgebra.

2. Majorization

(a)

HLP

$\alpha \prec \beta \iff \alpha \in \operatorname{conv} S_n \beta$

where conv: convex hull, S_n : full symmetric group.

(b) semisimple Lie algebra

Kostant's result $\alpha, \ \beta \in (i\mathfrak{t})_+ \iff \alpha \in \operatorname{conv} W\beta$ $\beta - \alpha \in \operatorname{dual}_{i\mathfrak{t}}(i\mathfrak{t})_+$

Real singular values $\mathfrak{sl}(n,\mathbb{C})$:

 $\mathfrak{k} \oplus i\mathfrak{k}$ Cartan decomposition

Ky Fan's result may be stated as

 $\pi(\operatorname{Ad} K(X+Z) \cap \mathfrak{b}) \subset \operatorname{conv} WZ, \quad (1)$ where $Z \in i\mathfrak{t}, X \in \mathfrak{k}$.

AHM's result (in the version of Sherman and Thompson) may be written as

conv $WZ \subset \bigcup_{X \in \mathfrak{k}} \pi(\operatorname{Ad} K(X + Z) \cap \mathfrak{b}).$ (2) Combining (1) and (2) we have

 $\bigcup_{X \in \mathfrak{k}} \pi(\operatorname{Ad} K(X + Z) \cap \mathfrak{b}) = \operatorname{conv} WZ. \quad (3)$

Notice that (3) may be stated as

 $\pi((\mathfrak{k} + \mathrm{Ad}K(Z)) \cap \mathfrak{b}) = \mathrm{conv}\,WZ.$

- Chapter 1: Introduction
- Chapter 2: A proof of FAHM's result
- Chapter 3: Basics of complex Lie algebras
- Chapter 4: Extend FAHM's result to complex semisimple Lie algebras.
- Chapter 5 & 6: Inequalities corresponding to the classical Lie algebras
- Chapter 7: Examine real Lie algebras
- Chapter 8: Inequalities relating the e-values, the real and imaginary s-values for sl(2, C) and sl(2, ℝ).

Chapter 2. A proof of FAHM's result

Theorem 2.9 (FAHM) Let $A \in \mathbb{C}_{n \times n}$ with evalues $\lambda \in \mathbb{C}^n$ and real s-values $\alpha \in \mathbb{R}^n$. Then $\operatorname{Re} \lambda \prec \alpha$. Conversely, if $\lambda \in \mathbb{C}^n$, $\alpha \in \mathbb{R}^n$ such that $\operatorname{Re} \lambda \prec \alpha$, then there exists $A \in \mathbb{C}_{n \times n}$ with e-values λ 's and real s-values α 's.

Proof: (Ky Fan) If A has e-values $\lambda_1, \ldots, \lambda_n$, then there exists a unitary matrix $U \in U(n)$ such that

$$Y := UAU^{-1} = \begin{pmatrix} \lambda_1 & * & * \\ & \ddots & * \\ & & \lambda_n \end{pmatrix}$$

Now $A = U^{-1}YU$ and

$$\frac{A+A^*}{2} = U^{-1}(\frac{Y+Y^*}{2})U.$$

Thus A and Y have the same e-values and real s-values. Now $\frac{1}{2}(Y + Y^*)$ is Hermitian and has diagonal entries Re λ 's and e-values α 's. By a result of Schur, Re $\lambda \prec \alpha$.

(AHM) Conversely, suppose $\lambda \in \mathbb{C}^n$ and $\alpha \in \mathbb{R}^n$ such that $\operatorname{Re} \lambda \prec \alpha$. By a result of Horn, there is a Hermitian matrix $H = (h_{ij}) \in \mathbb{C}_{n \times n}$ with e-values α 's and diagonal entries $\operatorname{Re} \lambda$'s. The upper triangular matrix

$$A := \begin{pmatrix} \lambda_1 & 2h_{12} & \dots & 2h_{1n} \\ & \lambda_2 & \dots & 2h_{2n} \\ & & \ddots & & \vdots \\ & & & & \lambda_n \end{pmatrix} \in \mathbb{C}_{n \times n}$$

has e-values λ 's and real s-values α 's since $\frac{1}{2}(A + A^*) = H$, of which the e-values are α 's.

Key elements:

Schur's triangularization theorem, Schur's result \rightarrow Ky Fan's result.

Horn's result \rightarrow AHM's result.

Chapter 3. Preliminaries

 $\mathfrak{g} = a$ complex semisimple Lie algebra.

Adjoint representation of G:

$$\mathsf{Ad}: G \to \mathsf{Aut}(\mathfrak{g})$$

where $\operatorname{Ad}(g)$ is the derivative of $i_g : G \to G$, $s \mapsto gsg^{-1}$ at the identity.

Adjoint representation of \mathfrak{g} :

ad : $\mathfrak{g} \mapsto \operatorname{End} \mathfrak{g}$, $(\operatorname{ad} X)(Y) = [X, Y]$

Killing form: $B(X,Y) = tr (ad X \circ ad Y)$

Cartan's Theorem: \mathfrak{g} is semisimple if and only if the Killing form of \mathfrak{g} is nondegenerate.

Cartan subalgebra \mathfrak{h} : a maximal abelian subalgebra and $\operatorname{ad}_{\mathfrak{g}}H$ is semisimple for all $H \in \mathfrak{h}$, i.e., diagonalizable. Set

 $\mathfrak{g}^{\alpha} := \{ X \in \mathfrak{g} : [H, X] = \alpha(H)X \ \forall H \in \mathfrak{h} \}.$

Then \mathfrak{g} is a direct sum of the \mathfrak{g}^{α} .

Root system: Δ is the set of all nonzero α such that $\mathfrak{g}^{\alpha} \neq 0$.

Proposition 3.8 (root space decomposition of \mathfrak{g} with respect to \mathfrak{h})

$$\mathfrak{g} = \mathfrak{g}^0 \dot{+} \sum_{\alpha \in \Delta} \mathfrak{g}^\alpha. \tag{4}$$

(a) $\mathfrak{h} = \mathfrak{g}^0$ and $[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}] = \mathfrak{g}^{\alpha+\beta}$,

(b) $B|_{\mathfrak{h}\times\mathfrak{h}}$ is nondegenerate; so there is an vector space isomorphism $\tau : \mathfrak{h}^* \to \mathfrak{h}$ such that $H_{\alpha} := \tau(\alpha), \ \alpha \in \mathfrak{h}^*$ satisfies

$$\alpha(H) = B(H, H_{\alpha})$$

for all $H \in \mathfrak{h}$,

(c) Δ spans \mathfrak{h}^* , the dual space of \mathfrak{h} ,

Remark 3.9 The space $V := \sum_{\alpha \in \Delta} \mathbb{R}^{\alpha}$ has a real inner product defined by

 $\langle \varphi, \psi \rangle = B(H_{\varphi}, H_{\psi}) = \varphi(H_{\psi}) = \psi(H_{\varphi}),$

 $\varphi, \psi \in \mathfrak{h}^*$, where H_{α} is defined by (b). Furthermore, $V|_{\mathfrak{h}_0} = \mathfrak{h}_0^*$, where $\mathfrak{h}_0 = \sum_{\alpha \in \Delta} \mathbb{R} H_{\alpha}$.

Weyl group: $W = W(\mathfrak{g}, \mathfrak{h})$ is generated by the reflections

$$s_{\alpha}(\varphi) := \varphi - \frac{2\langle \varphi, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

for all $\varphi \in V$ where $\alpha \in \Delta$, carry Δ onto itself.

Weyl Chambers: Components of V divided by the hyperplanes defined by $\alpha \in \Delta$,

$$\langle \alpha, \xi \rangle = 0.$$

The group W permute the Weyl chambers transitively.

Under the identification W acts on \mathfrak{h}_0 .

Chapter 4. The complex semisimple case

K: a real compact connected semisimple Lie group.

G: complexification of K

 $\mathfrak{k},\ \mathfrak{g}$ Lie algebras

 $\mathfrak{g} = \mathfrak{k} \oplus i\mathfrak{k}.$

Fix a maximal torus T of K with Lie algebra denoted by \mathfrak{t} .

 $\mathfrak{h} = \mathfrak{t} \oplus i\mathfrak{t}$ is a Cartan subalgebra of \mathfrak{g} .

Root space decomposition of \mathfrak{g} :

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{lpha},$$

where Δ is the root system of $(\mathfrak{g}, \mathfrak{h})$.

Borel subalgebras: maximal solvable subalgebras

(Standard) Borel subalgebra:

$$\mathfrak{b} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}^{\alpha} \tag{5}$$

Adjoint group: Int \mathfrak{g} (=AdG) the group generated by $e^{\operatorname{ad} X}$

Theorem 4.1 The Borel subalgebras of a complex semisimple Lie algebra g are conjugate under Intg.

Proposition 4.2 (Djoković and Tam, 2003)

(a) The Borel subalgebras of \mathfrak{g} are all conjugate under AdK.

(b) Let \mathfrak{b} be any Borel subalgebra. Then

 $\mathsf{Ad}K(X) \cap \mathfrak{b} \neq \phi$

Let θ be the Cartan involution of the (real) Lie algebra $\mathfrak{g} = \mathfrak{k} \oplus i\mathfrak{k}$.

 $\theta(\mathfrak{h}) = \mathfrak{h} \text{ and } \theta(\mathfrak{g}^{\alpha}) = \mathfrak{g}^{-\alpha} \text{ for all } \alpha \in \Delta.$

 $\pi:\mathfrak{g}
ightarrow i\mathfrak{t}$, orthogonal projection

Theorem 4.5 (Kostant 1973)

$$\pi(\operatorname{Ad} K(Z)) = \operatorname{conv} WZ \tag{6}$$

Theorem 4.6 (Extension of FAHM's result) Let $\mathfrak{g} = \mathfrak{k} \oplus i \mathfrak{k}$ be complex semisimple. If $Z \in i \mathfrak{t}$, then

 $\bigcup_{X \in \mathfrak{k}} \pi(\operatorname{Ad} K(X + Z) \cap \mathfrak{b}) = \operatorname{conv} WZ, \quad (7)$

where \mathfrak{b} is given in (5) and W is the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. Equivalently

$$\pi((\mathfrak{k} + \operatorname{Ad} K(Z)) \cap \mathfrak{b}) = \operatorname{conv} WZ.$$
 (8)

Proof: We prove $\pi((\mathfrak{k} + \operatorname{Ad} K(Z)) \cap \mathfrak{b}) = \operatorname{conv} WZ$ ' \subset ':

Let $Y \in \mathfrak{k} + \operatorname{Ad} K(Z)$. Then $Y = X + \operatorname{Ad} k(Z)$ for some $X \in \mathfrak{k}$ and $k \in K$. By Kostant's result (6),

 $\pi(\operatorname{Ad} K(Z)) = \operatorname{conv} WZ,$

and with the fact that $\mathfrak{k} \perp i \mathfrak{t}$ we have

$$\pi((\mathfrak{k} + \operatorname{Ad} K(Z)) \cap \mathfrak{b}) \subset \pi(\mathfrak{k} + \operatorname{Ad} K(Z)) \\ \subset \operatorname{conv} WZ.$$
(9)

'⊃':

Conversely, let $\beta \in \operatorname{conv} WZ$. By Kostant's result (6) again, there exists $Y \in \operatorname{Ad} K(Z)$ such that $\pi(Y) = \beta$. Then Y can be decomposed as

$$Y = Y_0 + \sum_{\alpha \in \Delta^+} (Y_\alpha + Y_{-\alpha}),$$

 $Y_{\alpha} \in \mathfrak{g}^{\alpha}$ and $Y_{-\alpha} \in \mathfrak{g}^{-\alpha}$. Since $\theta(Y) = -Y$,

$$-Y_0 + \sum_{\alpha \in \Delta^+} (-Y_\alpha - Y_{-\alpha})$$

= $\theta Y_0 + \sum_{\alpha \in \Delta^+} (\theta Y_\alpha + \theta Y_{-\alpha}).$

Since the sums are direct and $\theta(\mathfrak{g}^{\alpha}) = \mathfrak{g}^{-\alpha}$, it follows that $Y_0 \in \mathfrak{h} \cap i\mathfrak{k} = i\mathfrak{t}$ and

$$Y = Y_0 + \sum_{\alpha \in \Delta^+} (Y_\alpha - \theta Y_\alpha).$$

Set

$$X := \sum_{\alpha \in \Delta^+} (Y_\alpha + \theta Y_\alpha) \in \mathfrak{k}.$$

Then

$$X + Y = Y_0 + 2\sum_{\alpha \in \Delta^+} Y_\alpha$$

$$\in (X + \operatorname{Ad} K(Z)) \cap \mathfrak{b}.$$

Clearly $\pi(X + Y) = \pi(Y) = \beta$. This proves
 $\pi((\mathfrak{k} + \operatorname{Ad} K(Z)) \cap \mathfrak{b}) \supset \operatorname{conv} WZ.$ (10)
So $\pi((\mathfrak{k} + \operatorname{Ad} K(Z)) \cap \mathfrak{b}) = \operatorname{conv} WZ.$

Remark 4.7 When $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, the theorem is simply FAHM's result with an appropriate translation.

Pictures of the convex hull conv $W\beta$ for $\beta \in i\mathfrak{t}$ for some low dimensional cases.

Chapter 5. The inequalities for \mathfrak{a}_n and \mathfrak{c}_n

 \mathfrak{g} : a complex semisimple Lie algebra

h: a Cartan subalgebra

 $\mathfrak{b} = \mathfrak{h} \oplus \sum_{\alpha \in \Delta^+} \mathfrak{g}^{\alpha}$: a Borel subalgebra

 $\Pi = \{\alpha_j, j = 1, \dots, n\}: \text{ set of simple roots}$

 $\rho: \mathfrak{g} \to \mathfrak{h}, \ \pi: \mathfrak{g} \to i\mathfrak{t}$ the orthogonal projections

$$V = \sum_{i=1}^{n} \mathbb{R}\alpha_i \quad \mathfrak{h}_0 = i\mathfrak{t}$$

Fundamental dominant weights (FDW) are the basis dual to $\frac{2\alpha_i}{(\alpha_i,\alpha_i)}$, i = 1, ..., n: $\lambda_1, ..., \lambda_n$

Fundamental Weyl chamber (FWC):

$$(i\mathfrak{t})_+ = \{H \in i\mathfrak{t} : \alpha_j(H) \ge 0, j = 1, \dots, n\}.$$

Proposition 5.1 The FWC $(i\mathfrak{t})_+$ is the cone

$$C = \{\sum_{j=1}^{n} a_j \lambda_j : a_j \ge 0, j = 1, \dots, n\}$$

generated by λ_j , $j = 1, \ldots, n$.

The dual cone dual $_{i\mathfrak{t}}(i\mathfrak{t})_+ \subset i\mathfrak{t}$ of $(i\mathfrak{t})_+$

dual
$$_{i\mathfrak{t}}(i\mathfrak{t})_+$$

- $:= \{X \in i\mathfrak{t} : (X, Y) \ge 0, \forall Y \in (i\mathfrak{t})_+\}$
- = $\{X \in i\mathfrak{t} : (X, \lambda_j) \ge 0, j = 1, ..., n\}.$

Lemma 5.2 (Kostant 1973)

(a) Let $Z \in (i\mathfrak{t})_+$. Then for all $w \in W$,

$$Z - wZ \in \mathsf{dual}_{i\mathfrak{t}}(i\mathfrak{t})_+.$$

(b) Let $Y, Z \in (i\mathfrak{t})_+$. Then

 $Y \in \operatorname{conv} WZ \iff Z - Y \in \operatorname{dual}_{i\mathfrak{t}}(i\mathfrak{t})_+.$

 $Z - Y \in C := \operatorname{dual}_{i\mathfrak{t}}(i\mathfrak{t})_+ \text{ for } \mathfrak{sl}(3,\mathbb{C})$

Weak majorization: $a, b \in \mathbb{R}^n$. $a \prec_w b$ if

$$\sum_{i=1}^{k} a_{[i]} \le \sum_{i=1}^{k} b_{[i]}, \qquad k = 1, \dots, n.$$

In $\mathfrak{g} = \mathfrak{sl}(n,\mathbb{C})$ and $\mathfrak{g} = \mathfrak{sp}(n,\mathbb{C})$,

(a) $\rho : \mathfrak{b} \to \mathfrak{h}$: e-values

(b) $\pi: \mathfrak{b} \to i\mathfrak{t}$: real part of e-values

Inequalities

- (a) If $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, then FAHM's result.
- (b) If $\mathfrak{g} = \mathfrak{sp}(n, \mathbb{C})$, then Proposition 5.7: The *n* largest nonnegative real parts of the e-values of $A \in \mathfrak{sp}(n, \mathbb{C})$ are weakly majorized by the *n* largest nonnegative real singular values of *A*. Conversely given $\alpha, \beta \in \mathbb{R}^n$ with positive entries, if $\alpha \prec_w \beta$, then there exists $A \in \mathfrak{sp}(n, \mathbb{C})$ such that $\pm \alpha_1, \ldots, \pm \alpha_n$ are the real parts of the evalues of *A* and $\pm \beta_1, \ldots, \pm \beta_n$ are the real singular values of *A*.

Chapter 6. The inequalities for \mathfrak{b}_n and \mathfrak{d}_n

Problem : In Chapter 3, models $\mathfrak{g} = \mathfrak{so}(2n + 1, \mathbb{C})$ and $\mathfrak{g} = \mathfrak{so}(2n, \mathbb{C})$ for \mathfrak{b}_n and \mathfrak{d}_n , respectively. It is not easy to see

 $\rho: \mathfrak{b} \to \mathfrak{h}, \quad \pi: \mathfrak{b} \to i\mathfrak{t}$

amount taking the e-values and the real parts of the e-values, respectively.

A fix: switch to another model $\tilde{\mathfrak{g}}$.

Lemma 6.3 and Proposition 6.10 For any X in $\mathfrak{so}(2n + 1, \mathbb{C})$ or $\mathfrak{so}(2n, \mathbb{C})$, $\rho(\operatorname{Ad}(K)X \cap \mathfrak{b})$: e-values of X

 $\pi(\operatorname{Ad}(K)X \cap \mathfrak{b})$: real part e-values of X

Proposition 6.5 Let A be in $\mathfrak{so}(2n+1,\mathbb{C})$ or $\mathfrak{so}(2n,\mathbb{C})$. Let $\pm\beta_1,\ldots,\pm\beta_n$ be the real singular values of A. Let

(a)

$$\begin{pmatrix} 0 & i\alpha_1 \\ -i\alpha_1 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & i\alpha_n \\ -i\alpha_n & 0 \end{pmatrix} \oplus (0)$$
$$\in \pi(\operatorname{Ad}K(A) \cap \mathfrak{b}),$$
if $X \in \mathfrak{so}(2n+1, \mathbb{C}),$

(b) or

$$\begin{pmatrix} 0 & i\alpha_1 \\ -i\alpha_1 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & i\alpha_n \\ -i\alpha_n & 0 \end{pmatrix}$$
$$\in \pi(\operatorname{Ad} K(A) \cap \mathfrak{b}),$$
if $X \in \mathfrak{so}(2n, \mathbb{C})$

Thus $\pm \alpha_1, \ldots, \pm \alpha_n$ are the real parts of the eigenvalues of A. Then

(a)

$$\sum_{j=1}^k |\alpha|_{[j]} \le \sum_{j=1}^k |\beta|_{[j]}, \quad k = 1, \dots, n,$$
(Weak majorization) if $X \in \mathfrak{so}(2n+1, \mathbb{C})$

(b)

$$\begin{split} \sum_{j=1}^{k} |\alpha|_{[j]} &\leq \sum_{j=1}^{k} |\beta|_{[j]}, \ k = 1, \dots, n - 1 \\ \sum_{j=1}^{n-1} |\alpha|_{[j]} + \delta_1 |\alpha|_{[n]} &\leq \sum_{j=1}^{n-1} |\beta|_{[j]} + \delta_2 |\beta|_{[n]}, \\ \sum_{j=1}^{n-1} |\alpha|_{[j]} - \delta_1 |\alpha|_{[n]} &\leq \sum_{j=1}^{n-1} |\beta|_{[j]} - \delta_2 |\beta|_{[n]}, \\ \end{split}$$
 where

$$\delta_1 = \operatorname{sign}(\alpha_1 \cdots \alpha_n),$$

$$\delta_2 = \operatorname{sign}\left[(-i)^n \operatorname{Pf}\left(\frac{1}{2}(A+A^*)\right)\right]$$

if $X \in \mathfrak{so}(2n, \mathbb{C}).$

Conversely, if above inequalities hold for some real *n*-tuples α and β , then we can find *A* in $\mathfrak{so}(2n+1,\mathbb{C})$ and $\mathfrak{so}(2n,\mathbb{C})$, respectively, satisfies

- (a) $\pm \alpha$, 0 are the real part of the eigenvalues of A, $\pm \beta$, 0 are the real singular values of A,
- (b) $\pm \alpha$ are the real part of the eigenvalues of A, $\pm \beta$ are the real singular values of A, and $sign[(-i)^n Pf(\frac{1}{2}(A+A^*))] = sign(\beta_1 \cdots \beta_n).$

Remark: The difference between the cases for 2n + 1 and 2n comes from the different actions of their Weyl groups.

(a) $\mathfrak{so}(2n+1,\mathbb{C})$, the Weyl group acts on $i\mathfrak{t}$ by:

$$(h_1,\ldots,h_n)^T\mapsto (\pm h_{\sigma(1)},\ldots,\pm h_{\sigma(n)})^T, \quad \sigma\in S_n.$$

(b) $\mathfrak{so}(2n,\mathbb{C})$, the Weyl group acts on *i*t by:

 $(h_1, \ldots, h_n)^T \mapsto (\pm h_{\sigma(1)}, \ldots, \pm h_{\sigma(n)})^T, \quad \sigma \in S_n,$ where the number of negative signs is even.

Chapter 7. The real semisimple case

 $\mathfrak{g} = a$ real semisimple Lie algebra

 $\mathfrak{h} = a$ Cartan subalgebra of \mathfrak{g}

 $B(\cdot, \cdot)$ the Killing form on \mathfrak{g}

Example 7.1 There are non-conjugate Cartan subalgebras: $\mathfrak{sl}(2,\mathbb{R})$

$$\mathfrak{a} = \mathbb{R} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \ \mathfrak{b} = \mathbb{R} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right).$$

Cartan decomposition of $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$:

(a)
$$\theta: X + Y \to X - Y \ (X \in \mathfrak{k}, Y \in \mathfrak{p})$$

(b) $B_{\theta}(X,Y) = -B(X,\theta Y)$ inner product on \mathfrak{g}

 $\mathfrak{a}_{\mathfrak{p}} = \max$ maximal abelian subspace in \mathfrak{p}

A Cartan subalgebra \mathfrak{a} containing $\mathfrak{a}_\mathfrak{p}$ is of the form

 $\mathfrak{a} = \mathfrak{a}_{\mathfrak{k}} \oplus \mathfrak{a}_{\mathfrak{p}}, \ \mathfrak{a}_{\mathfrak{k}} = \mathfrak{a} \cap \mathfrak{k}, \ \mathfrak{a}_{\mathfrak{p}} = \mathfrak{a} \cap \mathfrak{p}.$

Since $(\operatorname{ad} H)^* = \operatorname{ad} H$, for all $H \in \mathfrak{a}_p$ and $\operatorname{ad} \mathfrak{a}_p$ is abelian,

$$\mathfrak{g} = \mathfrak{g}^{0} + \sum_{\alpha \in \Sigma^{+}} (\mathfrak{g}^{\alpha} \oplus \mathfrak{g}^{-\alpha}), \qquad (11)$$

is the restricted root space decomposition of \mathfrak{g} relative to $\mathfrak{a}_\mathfrak{p},\,\Sigma^+$ the set of restricted positive roots.

 $N(\mathfrak{a}_{\mathfrak{p}}) = \text{normalizer of } \mathfrak{a}_{\mathfrak{p}} \text{ in } K$ $Z(\mathfrak{a}_{\mathfrak{p}}) = \text{centralizer of } \mathfrak{a}_{\mathfrak{p}} \text{ in } K$

Weyl group W: $N(\mathfrak{a}_{\mathfrak{p}})/Z(\mathfrak{a}_{\mathfrak{p}})$

 $\pi_{\mathfrak{a}_{\mathfrak{p}}}:\mathfrak{g}\to\mathfrak{a}_{\mathfrak{p}}$ orthogonal projection

Theorem 7.2 (Kostant 1973) For $Z \in \mathfrak{a}_{\mathfrak{p}}$, $\pi_{\mathfrak{a}_{\mathfrak{p}}}(\operatorname{Ad} K(Z)) = \operatorname{conv} WZ.$ (12) **Theorem 7.4** Let $\mathfrak{a} \supset \mathfrak{a}_{\mathfrak{p}}$ be a Cartan subalgebra, $\mathfrak{b} = \mathfrak{a} + \dot{\Sigma}_{\alpha \in \Sigma} + \mathfrak{g}^{\alpha}$. Then for each $\beta \in \mathfrak{a}_{\mathfrak{p}}$,

 $\pi((\mathfrak{k} + \mathrm{Ad}K(\beta)) \cap \mathfrak{b}) = \mathrm{conv} W\beta.$

Proof: Similar to Theorem 4.6.

Remark 7.5 Theorem 7.4 is a AHM's type result for the real semisimple Lie algebras.

Proposition 7.6 For any $X \in \mathfrak{sl}(n, \mathbb{R})$, there exists $k \in SO(n)$ such that kXk^{-1} is of block upper triangular form where the (main diagonal) blocks are either 1×1 or 2×2 :

$$kXk^{-1} = \begin{pmatrix} A_1 & & * \\ & A_2 & & \\ & & \ddots & \\ & & & A_s \end{pmatrix},$$

with zero trace, where $A_k = \begin{pmatrix} a_k & b_k \\ -b_k & a_k \end{pmatrix}$, or $A_k = (c_k)$, $a_k, b_k, c_k \in \mathbb{R}$, $k = 1, \dots, s$.

Remark Unlike the complex case,

(1) given $X \in \mathfrak{g}$, the adjoint orbit $\operatorname{Ad} K(X)$ may not intersect a specific maximal solvable subalgebra \mathfrak{b} .

(2) two maximal solvable subalgebras may not be conjugate.

A Cartan subalgebra \mathfrak{c} is called a standard Cartan subalgebra if $\mathfrak{c} = \mathfrak{c}_{\mathfrak{k}} \dot{+} \mathfrak{c}_{\mathfrak{p}}$, where

 $\mathfrak{a}_{\mathfrak{k}} \subset \mathfrak{c}_{\mathfrak{k}} := \mathfrak{c} \cap \mathfrak{k}, \qquad \mathfrak{c}_{\mathfrak{p}} := \mathfrak{c} \cap \mathfrak{p} \subset \mathfrak{a}_{\mathfrak{p}}.$

Proposition 7.14 $\mathfrak{c} = \mathfrak{c}_{\mathfrak{k}} + \mathfrak{c}_{\mathfrak{p}}$ standard Cartan subalgebra, $\pi_{\mathfrak{c}_{\mathfrak{p}}} : \mathfrak{g} \to \mathfrak{c}_{\mathfrak{p}}$ orthogonal projection. Then

 $\operatorname{conv} W\beta \cap \mathfrak{c}_{\mathfrak{p}} = \pi_{\mathfrak{c}_{\mathfrak{p}}}(\operatorname{Ad} K(\beta)) = \pi_{\mathfrak{c}_{\mathfrak{p}}}(\operatorname{conv} W\beta).$

Let \mathfrak{s} be a standard maximal solvable subalgebra containing the standard Cartan subalgebra

c. Since $\mathfrak{c}_{\mathfrak{p}} \subset \mathfrak{a}_{\mathfrak{p}} \subset \mathfrak{p}$, $\mathfrak{c}_{\mathfrak{p}} \perp \mathfrak{k}$ so that $\pi_{\mathfrak{c}_{\mathfrak{p}}}((\mathfrak{k} + \operatorname{Ad} K(\beta)) \cap \mathfrak{s}) \subset \pi_{\mathfrak{c}_{\mathfrak{p}}}(\mathfrak{k} + \operatorname{Ad} K(\beta))$ $= \pi_{\mathfrak{c}_{\mathfrak{p}}}(\operatorname{Ad} K(\beta))$ $= \operatorname{conv} W\beta \cap \mathfrak{c}_{\mathfrak{p}}.$

Question: Does set equality hold?

Answer: No. Not even for some normal real Lie algebras.

Example 7.15 $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{R})$. \mathfrak{k} real skew symmetric matrices \mathfrak{p} real symmetric matrices $\mathfrak{a}_{\mathfrak{p}} = \operatorname{diag}(a, b, -a - b)$ $\mathfrak{c}_{\mathfrak{p}} = \operatorname{diag}(a, a, -2a)$. Let $\beta = \operatorname{diag}(1, 1, -2)$. Pick

$$H = (-\frac{1}{2}, -\frac{1}{2}, 1) \in \operatorname{conv} W\beta \cap \mathfrak{c}_{\mathfrak{p}}$$

$$H \notin \pi_{\mathfrak{c}_{\mathfrak{p}}}\{(\mathfrak{k} + \mathrm{Ad}K(\beta)) \cap \mathfrak{s}_i\},\$$

where i = 1, 2.

Question: Given $X \in \mathfrak{g}$. Is $AdK(X) \cap \mathfrak{s} \neq \phi$ for some standard maximal solvable subalgebra \mathfrak{s} ?

Partial answer: Yes for compact \mathfrak{g} .

Proposition 7.12 Ad $K(X) \cap \mathfrak{s} \neq \phi$ if \mathfrak{g} is compact.

General answer: No, in general.

Example 7.13

$$SU(1,1) = \left\{ \left(\begin{array}{cc} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{array} \right) : |\alpha|^2 - |\beta|^2 = 1 \right\},$$

whose Lie algebra is a real form of $\mathfrak{sl}(2,\mathbb{C})$:

$$\mathfrak{su}_{1,1} = \left\{ \begin{pmatrix} ia & c \\ \overline{c} & -ia \end{pmatrix} : a \in \mathbb{R}, c \in \mathbb{C} \right\},$$

$$K = \left\{ \operatorname{diag} \left(e^{i\theta}, e^{-i\theta} \right) : \theta \in \mathbb{R} \right\},$$

$$\mathfrak{k} = \left\{ \left(\begin{array}{c} ia & 0 \\ 0 & -ia \end{array} \right) : a \in \mathbb{R} \right\},$$

$$\mathfrak{p} = \left\{ \left(\begin{array}{c} 0 & c \\ \overline{c} & 0 \end{array} \right) : c \in \mathbb{C} \right\},$$

$$\mathfrak{ap} = \left\{ \left(\begin{array}{c} 0 & b \\ b & 0 \end{array} \right) : b \in \mathbb{R} \right\}.$$

Two non-conjugate standard maximal solvable subalgebras: $\mathfrak{s}_1=\mathfrak{k}$ and

$$\mathfrak{s}_2 = \mathfrak{a}_{\mathfrak{p}} + \mathfrak{g}^{\alpha}(H) = \mathbb{R} \left(\begin{array}{cc} -ia & ia+b \\ -ia+b & ia \end{array} \right)$$

But for j = 1, 2,

$$\operatorname{Ad} K(\begin{pmatrix} -i & \epsilon \\ \epsilon & i \end{pmatrix}) \cap \mathfrak{s}_j = \phi, \quad \text{if } \epsilon < 1.$$

Theorem 7.7 (Sugiura 1959) \mathfrak{g} a real semisimple Lie algebra

(1) Every Cartan subalgebra of \mathfrak{g} is conjugate to a standard Cartan subalgebra via Int (\mathfrak{g}).

(2) Two standard Cartan subalgebras are conjugate via $Int(\mathfrak{g})$ if and only if their vector parts are conjugate under the Weyl group W of $(\mathfrak{g}, \mathfrak{a}_p)$.

 $\mathfrak{c} = \mathfrak{c}_{\mathfrak{k}} + \mathfrak{c}_{\mathfrak{p}}$ standard Cartan subalgebra, $\mathfrak{c}_{\mathfrak{p}} \subset \mathfrak{a}_{\mathfrak{p}}$,

 $\mathfrak g$ has a root space decomposition with respect to $\mathfrak c_{\mathfrak p}$:

$$\mathfrak{g} = \mathfrak{g}^{\mathsf{O}} + \sum_{\alpha \in R} \mathfrak{g}^{\alpha},$$

 $H \in \mathfrak{c}_{\mathfrak{p}}$ is called $\mathfrak{c}_{\mathfrak{p}}$ -singular if there exists $\alpha \in R$ such that $\alpha(H) = 0$, otherwise H is called $\mathfrak{c}_{\mathfrak{p}}$ general. A connected component in the set of \mathfrak{c}_p -general elements of \mathfrak{c}_p is called a \mathfrak{c}_p -chamber.

Let C be a $\mathfrak{c}_{\mathfrak{p}}$ -chamber in $\mathfrak{c}_{\mathfrak{p}}$. Then $\mathfrak{g}^{\alpha}(H)$ is independent of the choice of H in C and thus may be written as $\mathfrak{g}^{\alpha}(C)$.

Theorem 7.9 (Mostow 1961)

(1) Any maximal solvable subalgebra contains a Cartan subalgebra, hence is conjugate to a standard maximal solvable subalgebra.

(2) Any maximal solvable subalgebra containing a standard Cartan subalgebra $\mathfrak{c} = \mathfrak{c}_{\mathfrak{k}} + \mathfrak{c}_{\mathfrak{p}}$ is of the form $\mathfrak{c} + \mathfrak{g}^+(C)$ for some $\mathfrak{c}_{\mathfrak{p}}$ -chamber C.

standard Cartan subalgebra \rightarrow non-conjugate $\mathfrak{c}_{\mathfrak{p}} \rightarrow$ maximal solvable subalgebra

Example 7.11 $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{R})$. Non-conjugate Cartan subalgebras:

$$\mathfrak{c}_{1} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a - b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$
$$\mathfrak{c}_{2} = \left\{ \begin{pmatrix} a & b & 0 \\ -b & a & 0 \\ 0 & 0 & -2a \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

Non-conjugate maximal solvable subalgebras:

$$\mathfrak{s}_{1} := \left\{ \left(\begin{array}{ccc} a & c & e \\ 0 & b & d \\ 0 & 0 & -a - b \end{array} \right) \right\}, \\ \mathfrak{s}_{2} := \left\{ \left(\begin{array}{ccc} a & b & c \\ -b & a & d \\ 0 & 0 & -2a \end{array} \right) \right\}, \\ \mathfrak{s}_{3} := \left\{ \left(\begin{array}{ccc} -2a & c & d \\ 0 & a & b \\ 0 & -b & a \end{array} \right) \right\}.$$

Chapter 8 The e-values and the real and imaginary s-values for $\mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{sl}(2,\mathbb{R})$

Question: What is the necessary and sufficient condition on $\lambda \in \mathbb{C}^n$, $\alpha, \beta \in \mathbb{R}^n$ so that a matrix $A \in \mathbb{C}_{n \times n}$ exists with e-values λ 's, real s-values α 's and imaginary s-values β 's?

Proposition 8.1 (complex case) Let $\alpha, \beta \in \mathbb{R}$ and $a + ib \in \mathbb{C}$. Then there exists $A \in \mathfrak{sl}(2, \mathbb{C})$ whose e-values, real s-values, and imaginary svalues are $\pm(a+ib)$, $\pm \alpha$, and $\pm \beta$, respectively, if and only if

(1) $(-a,a) \prec (-\alpha,\alpha)$, $(-b,b) \prec (-\beta,\beta)$, and (2) $\beta^2 - b^2 = \alpha^2 - a^2$.

Proposition 8.2 (real case) Let $\alpha, \beta \in \mathbb{R}$ and $a + ib \in \mathbb{C}$. Then there exists $A \in \mathfrak{sl}(2, \mathbb{R})$ whose e-values, real s-values, and imaginary svalues are $\pm(a+ib)$, $\pm \alpha$, and $\pm \beta$, respectively, if and only if

(1) b = 0, $(-a, a) \prec (-\alpha, \alpha)$, and $\beta^2 = \alpha^2 - a^2$, or

(2) $a = \alpha = 0$, $b = \pm \beta$.