Generalization of Ky

Fan-Amir-Moeź-Horn-Mirsky's

Result on the Eigenvalues and

Real Singular Values of a

Matrix

Wen Yan
Ph.D Oral Defense
Mathematics \& Statistics
Auburn University

October 31, 2005

Given $A \in \mathbb{C}_{n \times n}$ with e-values $\lambda \in \mathbb{C}^{n}$ Hermitian part $\frac{A^{*}+A}{2}$ has e-values $\alpha \in \mathbb{R}^{n}$.

Ky Fan (1951): $\operatorname{Re} \lambda \prec \alpha$.

Amir-Moéz and Horn (1958), Mirsky (1958), Sherman and Thompson (1972): the converse is true.

Abbreviation: FAHM for Ky Fan, Amir-Moéz, Horn and Mirsky

Goals:

1. Generalize the results in the context of complex semisimple Lie algebras.
2. Derive inequalities for classical cases $\mathfrak{a}_{n}, \mathfrak{b}_{n}$, $\mathfrak{c}_{n}, \mathfrak{d}_{n}$.
3. The real case is also discussed.

Chapter 1. Introduction

Hermitian decomposition of $A \in \mathbb{C}_{n \times n}$:

$$
A=\frac{1}{2}\left(A-A^{*}\right)+\frac{1}{2}\left(A+A^{*}\right) .
$$

The e-values of $A_{1}=\frac{1}{2}\left(A+A^{*}\right)$ and $A_{2}=$ $\frac{1}{2 i}\left(A-A^{*}\right)$ are called real and imaginary svalues.

Majorization: $a, b \in \mathbb{R}^{n}, a \prec b$ if

$$
\begin{aligned}
\sum_{i=1}^{k} a_{[i]} & \leq \sum_{i=1}^{k} b_{[i]}, \quad k=1, \ldots, n-1, \\
\sum_{i=1}^{n} a_{[i]} & =\sum_{i=1}^{n} b_{[i]} .
\end{aligned}
$$

Theorem 1.2 (Ky Fan, 1951) Given $A \in$ $\mathbb{C}_{n \times n}$, the real parts of the e-values $\lambda \in \mathbb{C}^{n}$ of A is majorized by the real s-values $\alpha \in \mathbb{R}^{n}$ of A, i.e., $\operatorname{Re} \lambda \prec \alpha$.

Theorem 1.3 (Amir-Moéz-Horn and Mirsky, 1958) If $\lambda \in \mathbb{C}^{n}$ and $\alpha \in \mathbb{R}^{n}$ such that $\operatorname{Re} \lambda \prec \alpha$, then there exists $A \in \mathbb{C}_{n \times n}$ such that λ 's are the e-values of A and α 's are the real s-values of A.

An equivalent form:

Theorem 1.4 (Sherman and Thompson, 1972) If H is a given Hermitian matrix with e-values $\beta \in \mathbb{R}^{n}$ and if $\alpha \in \mathbb{R}^{n}$ satisfies $\alpha \prec \beta$, then there exists a skew Hermitian matrix K such that α is the real part of the e-values of $K+H$.

A framework \rightarrow semisimple Lie algebras

Motivation: A translation of $A: A+\xi I$ for $\xi \in \mathbb{C}$, translates the e-values of A by ξ and the real s-values of A by $\operatorname{Re} \xi$. Thus it suffices to consider those $A \in \mathbb{C}_{n \times n}$ such that $\operatorname{tr} A=0$ in FAHM's result.

Let us look at the formulation of FAHM's result:

1. Eigenvalues
(a) Matrix setting:

(b) Lie algebra:

$$
A \xrightarrow{\text { AdK }} B(\in \mathfrak{b}) \xrightarrow{\longrightarrow} \stackrel{\text { proj }}{\longrightarrow} \text { ge-values" }
$$

where \mathfrak{b} is a Borel subalgebra and \mathfrak{h} is a Cartan subalgebra.
2.Majorization
(a)

$$
\alpha \prec \beta \stackrel{\text { HLP }}{\Longleftrightarrow} \alpha \in \operatorname{conv} S_{n} \beta
$$

where conv: convex hull, S_{n} : full symmetric group.
(b) semisimple Lie algebra

Kostant's result

$$
\begin{aligned}
& \alpha, \beta \in(i \mathfrak{t})_{+} \\
& \beta-\alpha \in \text { dual }_{i \mathfrak{t}}(i \mathfrak{t})_{+}
\end{aligned} \Longleftrightarrow \alpha \in \operatorname{convW\beta }
$$

Real singular values $\mathfrak{s l}(n, \mathbb{C})$:

$$
\mathfrak{k} \oplus i \mathfrak{k} \quad \text { Cartan decomposition }
$$

Ky Fan's result may be stated as

$$
\begin{equation*}
\pi(\mathrm{Ad} K(X+Z) \cap \mathfrak{b}) \subset \operatorname{conv} W Z \tag{1}
\end{equation*}
$$

where $Z \in i \mathfrak{t}, \quad X \in \mathfrak{k}$.

AHM's result (in the version of Sherman and Thompson) may be written as

$$
\begin{equation*}
\operatorname{conv} W Z \subset \cup_{X \in \mathfrak{k}} \pi(\operatorname{Ad} K(X+Z) \cap \mathfrak{b}) \tag{2}
\end{equation*}
$$

Combining (1) and (2) we have

$$
\begin{equation*}
\cup_{X \in \mathfrak{k}} \pi(\operatorname{Ad} K(X+Z) \cap \mathfrak{b})=\mathrm{conv} W Z \tag{3}
\end{equation*}
$$

Notice that (3) may be stated as

$$
\pi((\mathfrak{k}+\operatorname{Ad} K(Z)) \cap \mathfrak{b})=\mathrm{conv} W Z
$$

- Chapter 1: Introduction
- Chapter 2: A proof of FAHM's result
- Chapter 3: Basics of complex Lie algebras
- Chapter 4: Extend FAHM's result to complex semisimple Lie algebras.
- Chapter 5 \& 6: Inequalities corresponding to the classical Lie algebras
- Chapter 7: Examine real Lie algebras
- Chapter 8: Inequalities relating the e-values, the real and imaginary s-values for $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{s l}(2, \mathbb{R})$.

Chapter 2. A proof of FAHM's result

Theorem 2.9 (FAHM) Let $A \in \mathbb{C}_{n \times n}$ with evalues $\lambda \in \mathbb{C}^{n}$ and real s-values $\alpha \in \mathbb{R}^{n}$. Then $\operatorname{Re} \lambda \prec \alpha$. Conversely, if $\lambda \in \mathbb{C}^{n}, \alpha \in \mathbb{R}^{n}$ such that $\operatorname{Re} \lambda \prec \alpha$, then there exists $A \in \mathbb{C}_{n \times n}$ with e-values λ 's and real s-values α 's.

Proof: (Ky Fan) If A has e-values $\lambda_{1}, \ldots, \lambda_{n}$, then there exists a unitary matrix $U \in \mathrm{U}(n)$ such that

$$
Y:=U A U^{-1}=\left(\begin{array}{ccc}
\lambda_{1} & * & * \\
& \ddots & * \\
& & \lambda_{n}
\end{array}\right)
$$

Now $A=U^{-1} Y U$ and

$$
\frac{A+A^{*}}{2}=U^{-1}\left(\frac{Y+Y^{*}}{2}\right) U .
$$

Thus A and Y have the same e-values and real s-values. Now $\frac{1}{2}\left(Y+Y^{*}\right)$ is Hermitian and has diagonal entries $\operatorname{Re} \lambda$'s and e-values α 's. By a result of Schur, $\operatorname{Re} \lambda \prec \alpha$.
(AHM) Conversely, suppose $\lambda \in \mathbb{C}^{n}$ and $\alpha \in$ \mathbb{R}^{n} such that $\operatorname{Re} \lambda \prec \alpha$. By a result of Horn, there is a Hermitian matrix $H=\left(h_{i j}\right) \in \mathbb{C}_{n \times n}$ with e-values α 's and diagonal entries Re λ 's. The upper triangular matrix

$$
A:=\left(\begin{array}{cccc}
\lambda_{1} & 2 h_{12} & \ldots & 2 h_{1 n} \\
& \lambda_{2} & \ldots & 2 h_{2 n} \\
& & \ddots & \vdots \\
& & & \lambda_{n}
\end{array}\right) \in \mathbb{C}_{n \times n}
$$

has e-values λ 's and real s-values α 's since $\frac{1}{2}\left(A+A^{*}\right)=H$, of which the e-values are α 's.

Key elements:
Schur's triangularization theorem, Schur's result \rightarrow Ky Fan's result.
Horn's result \rightarrow AHM's result.

Chapter 3. Preliminaries

$\mathfrak{g}=$ a complex semisimple Lie algebra.

Adjoint representation of G :

$$
\text { Ad }: G \rightarrow \operatorname{Aut}(\mathfrak{g})
$$

where $\operatorname{Ad}(g)$ is the derivative of $i_{g}: G \rightarrow G$, $s \mapsto g s g^{-1}$ at the identity.

Adjoint representation of \mathfrak{g} :

$$
\text { ad }: \mathfrak{g} \mapsto \text { End } \mathfrak{g}, \quad(\operatorname{ad} X)(Y)=[X, Y]
$$

Killing form: $\quad B(X, Y)=\operatorname{tr}(\operatorname{ad} X \circ \operatorname{ad} Y)$

Cartan's Theorem: \mathfrak{g} is semisimple if and only if the Killing form of \mathfrak{g} is nondegenerate.

Cartan subalgebra \mathfrak{h} : a maximal abelian subalgebra and $\operatorname{ad}_{\mathfrak{g}} H$ is semisimple for all $H \in \mathfrak{h}$, i.e., diagonalizable.

Set

$$
\mathfrak{g}^{\alpha}:=\{X \in \mathfrak{g}:[H, X]=\alpha(H) X \forall H \in \mathfrak{h}\} .
$$

Then \mathfrak{g} is a direct sum of the \mathfrak{g}^{α}.

Root system: Δ is the set of all nonzero α such that $\mathfrak{g}^{\alpha} \neq 0$.

Proposition 3.8 (root space decomposition of \mathfrak{g} with respect to \mathfrak{h})

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}^{0}+\dot{\sum}_{\alpha \in \Delta^{\mathfrak{g}}} \mathfrak{g}^{\alpha} . \tag{4}
\end{equation*}
$$

(a) $\mathfrak{h}=\mathfrak{g}^{0}$ and $\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}\right]=\mathfrak{g}^{\alpha+\beta}$,
(b) $\left.B\right|_{\mathfrak{h} \times \mathfrak{h}}$ is nondegenerate; so there is an vector space isomorphism $\tau: \mathfrak{h}^{*} \rightarrow \mathfrak{h}$ such that $H_{\alpha}:=\tau(\alpha), \alpha \in \mathfrak{h}^{*}$ satisfies

$$
\alpha(H)=B\left(H, H_{\alpha}\right)
$$

for all $H \in \mathfrak{h}$,
(c) Δ spans \mathfrak{h}^{*}, the dual space of \mathfrak{h},

Remark 3.9 The space $V:=\sum_{\alpha \in \Delta} \mathbb{R} \alpha$ has a real inner product defined by

$$
\langle\varphi, \psi\rangle=B\left(H_{\varphi}, H_{\psi}\right)=\varphi\left(H_{\psi}\right)=\psi\left(H_{\varphi}\right)
$$

$\varphi, \psi \in \mathfrak{h}^{*}$, where H_{α} is defined by (b). Furthermore, $\left.V\right|_{\mathfrak{h}_{0}}=\mathfrak{h}_{0}^{*}$, where $\mathfrak{h}_{0}=\sum_{\alpha \in \Delta} \mathbb{R} H_{\alpha}$.

Weyl group: $W=W(\mathfrak{g}, \mathfrak{h})$ is generated by the reflections

$$
s_{\alpha}(\varphi):=\varphi-\frac{2\langle\varphi, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha
$$

for all $\varphi \in V$ where $\alpha \in \Delta$, carry Δ onto itself.

Weyl Chambers: Components of V divided by the hyperplanes defined by $\alpha \in \Delta$,

$$
\langle\alpha, \xi\rangle=0
$$

The group W permute the Weyl chambers transitively.

Under the identification W acts on \mathfrak{h}_{0}.

Chapter 4. The complex semisimple case

K : a real compact connected semisimple Lie group.
G : complexification of K
$\mathfrak{k}, \mathfrak{g}$ Lie algebras
$\mathfrak{g}=\mathfrak{k} \oplus i \mathfrak{k}$.

Fix a maximal torus T of K with Lie algebra denoted by t .
$\mathfrak{h}=\mathfrak{t} \oplus i \mathfrak{t}$ is a Cartan subalgebra of \mathfrak{g}.

Root space decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha},
$$

where Δ is the root system of $(\mathfrak{g}, \mathfrak{h})$.

Borel subalgebras: maximal solvable subalgebras
(Standard) Borel subalgebra:

$$
\begin{equation*}
\mathfrak{b}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha} \tag{5}
\end{equation*}
$$

Adjoint group: Int \mathfrak{g} ($=\mathrm{Ad} G$) the group generated by $e^{\text {ad } X}$

Theorem 4.1 The Borel subalgebras of a complex semisimple Lie algebra \mathfrak{g} are conjugate under Int \mathfrak{g}.

Proposition 4.2 (Djoković and Tam, 2003)
(a) The Borel subalgebras of \mathfrak{g} are all conjugate under $\operatorname{Ad} K$.
(b) Let \mathfrak{b} be any Borel subalgebra. Then

$$
\operatorname{Ad} K(X) \cap \mathfrak{b} \neq \phi
$$

Let θ be the Cartan involution of the (real) Lie algebra $\mathfrak{g}=\mathfrak{k} \oplus i \mathfrak{k}$.
$\theta(\mathfrak{h})=\mathfrak{h}$ and $\theta\left(\mathfrak{g}^{\alpha}\right)=\mathfrak{g}^{-\alpha}$ for all $\alpha \in \Delta$.
$\pi: \mathfrak{g} \rightarrow i \mathfrak{t}$, orthogonal projection

Theorem 4.5 (Kostant 1973)

$$
\begin{equation*}
\pi(\operatorname{Ad} K(Z))=\operatorname{conv} W Z \tag{6}
\end{equation*}
$$

Theorem 4.6 (Extension of FAHM's result) Let $\mathfrak{g}=\mathfrak{k} \oplus i \mathfrak{k}$ be complex semisimple. If $Z \in i t$, then

$$
\begin{equation*}
\cup_{X \in \mathfrak{k}} \pi(\operatorname{Ad} K(X+Z) \cap \mathfrak{b})=\mathrm{conv} W Z \tag{7}
\end{equation*}
$$

where \mathfrak{b} is given in (5) and W is the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. Equivalently

$$
\begin{equation*}
\pi((\mathfrak{k}+\operatorname{Ad} K(Z)) \cap \mathfrak{b})=\mathrm{conv} W Z \tag{8}
\end{equation*}
$$

Proof: We prove $\pi((\mathfrak{k}+\operatorname{Ad} K(Z)) \cap \mathfrak{b})=\operatorname{conv} W Z$ ' C^{\prime} :
Let $Y \in \mathfrak{k}+\operatorname{Ad} K(Z)$. Then $Y=X+\operatorname{Ad} k(Z)$ for some $X \in \mathfrak{k}$ and $k \in K$. By Kostant's result (6),

$$
\pi(\operatorname{Ad} K(Z))=\operatorname{conv} W Z,
$$

and with the fact that $\mathfrak{k} \perp i$ t we have

$$
\begin{align*}
\pi((\mathfrak{k}+\operatorname{Ad} K(Z)) \cap \mathfrak{b}) & \subset \pi(\mathfrak{k}+\operatorname{Ad} K(Z)) \\
& \subset \operatorname{conv} W Z . \tag{9}
\end{align*}
$$

'כ':
Conversely, let $\beta \in \operatorname{conv} W Z$. By Kostant's result (6) again, there exists $Y \in \operatorname{Ad} K(Z)$ such that $\pi(Y)=\beta$. Then Y can be decomposed as

$$
Y=Y_{0}+\sum_{\alpha \in \Delta^{+}}\left(Y_{\alpha}+Y_{-\alpha}\right)
$$

$Y_{\alpha} \in \mathfrak{g}^{\alpha}$ and $Y_{-\alpha} \in \mathfrak{g}^{-\alpha}$. Since $\theta(Y)=-Y$,

$$
\begin{aligned}
& -Y_{0}+\sum_{\alpha \in \Delta^{+}}\left(-Y_{\alpha}-Y_{-\alpha}\right) \\
= & \theta Y_{0}+\sum_{\alpha \in \Delta^{+}}\left(\theta Y_{\alpha}+\theta Y_{-\alpha}\right) .
\end{aligned}
$$

Since the sums are direct and $\theta\left(\mathfrak{g}^{\alpha}\right)=\mathfrak{g}^{-\alpha}$, it follows that $Y_{0} \in \mathfrak{h} \cap i \mathfrak{k}=i t$ and

$$
Y=Y_{0}+\sum_{\alpha \in \Delta^{+}}\left(Y_{\alpha}-\theta Y_{\alpha}\right) .
$$

Set

$$
X:=\sum_{\alpha \in \Delta^{+}}\left(Y_{\alpha}+\theta Y_{\alpha}\right) \in \mathfrak{k} .
$$

Then

$$
\begin{aligned}
X+Y & =Y_{0}+2 \sum_{\alpha \in \Delta^{+}} Y_{\alpha} \\
& \in(X+\operatorname{Ad} K(Z)) \cap \mathfrak{b} .
\end{aligned}
$$

Clearly $\pi(X+Y)=\pi(Y)=\beta$. This proves

$$
\pi((\mathfrak{k}+\operatorname{Ad} K(Z)) \cap \mathfrak{b}) \supset \operatorname{conv} W Z .
$$

So $\pi((\mathfrak{k}+\operatorname{Ad} K(Z)) \cap \mathfrak{b})=\operatorname{conv} W Z$.

Remark 4.7 When $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$, the theorem is simply FAHM's result with an appropriate translation.

Pictures of the convex hull conv $W \beta$ for $\beta \in i$ t for some low dimensional cases.

The Convex Hull conv $W \beta$ For \mathfrak{a}_{2}

The Convex Hull

 conv $W \beta$ For \mathfrak{d}_{2}
Chapter 5. The inequalities for \mathfrak{a}_{n} and \mathfrak{c}_{n}

\mathfrak{g} : a complex semisimple Lie algebra
$\mathfrak{h}:$ a Cartan subalgebra
$\mathfrak{b}=\mathfrak{h} \oplus \sum_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha}:$ a Borel subalgebra
$\Pi=\left\{\alpha_{j}, j=1, \ldots, n\right\}:$ set of simple roots
$\rho: \mathfrak{g} \rightarrow \mathfrak{h}, \pi: \mathfrak{g} \rightarrow i t$ the orthogonal projections
$V=\sum_{i=1}^{n} \mathbb{R} \alpha_{i} \quad \mathfrak{h}_{0}=i t$
Fundamental dominant weights (FDW) are the basis dual to $\frac{2 \alpha_{i}}{\left(\alpha_{i}, \alpha_{i}\right)}, i=1, \ldots, n$:

$$
\lambda_{1}, \ldots, \lambda_{n}
$$

Fundamental Weyl chamber (FWC):

$$
(i \mathfrak{t})_{+}=\left\{H \in i \mathfrak{t}: \alpha_{j}(H) \geq 0, j=1, \ldots, n\right\} .
$$

Proposition 5.1 The FWC $(i t)_{+}$is the cone

$$
C=\left\{\sum_{j=1}^{n} a_{j} \lambda_{j}: a_{j} \geq 0, j=1, \ldots, n\right\}
$$

generated by $\lambda_{j}, j=1, \ldots, n$.
The dual cone dual ${ }_{i t}(i t)_{+} \subset i t$ of $(i t)_{+}$

$$
\begin{aligned}
& \text { dual }_{i t}(i \mathfrak{t})_{+} \\
:= & \left\{X \in i t:(X, Y) \geq 0, \forall Y \in(i \mathfrak{t})_{+}\right\} \\
= & \left\{X \in i \mathfrak{t}:\left(X, \lambda_{j}\right) \geq 0, j=1, \ldots, n\right\} .
\end{aligned}
$$

Lemma 5.2 (Kostant 1973)
(a) Let $Z \in(i t)_{+}$. Then for all $w \in W$,

$$
Z-w Z \in \text { dual }_{i t}(i t)_{+} .
$$

(b) Let $Y, Z \in(i t)_{+}$. Then

$$
Y \in \operatorname{conv} W Z \Longleftrightarrow Z-Y \in \text { dual }_{i t}(i t)_{+} .
$$

$\underbrace{\alpha_{2}=e_{2}-e_{3}^{c}}_{\alpha_{1}=e_{1}-e_{2}}$

$$
Z-Y \in C:=\text { dual }_{i t}(i t)_{+} \text {for } \mathfrak{s l}(3, \mathbb{C})
$$

Weak majorization: $a, b \in \mathbb{R}^{n} . a \prec_{w} b$ if

$$
\sum_{i=1}^{k} a_{[i]} \leq \sum_{i=1}^{k} b_{[i]}, \quad k=1, \ldots, n .
$$

In $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$ and $\mathfrak{g}=\mathfrak{s p}(n, \mathbb{C})$,
(a) $\rho: \mathfrak{b} \rightarrow \mathfrak{h}$: e-values
(b) $\pi: \mathfrak{b} \rightarrow i$ t: real part of e-values

Inequalities

(a) If $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$, then FAHM's result.
(b) If $\mathfrak{g}=\mathfrak{s p}(n, \mathbb{C})$, then Proposition 5.7:

The n largest nonnegative real parts of the e-values of $A \in \mathfrak{s p}(n, \mathbb{C})$ are weakly majorized by the n largest nonnegative real singular values of A. Conversely given $\alpha, \beta \in \mathbb{R}^{n}$ with positive entries, if $\alpha \prec_{w} \beta$, then there exists $A \in \mathfrak{s p}(n, \mathbb{C})$ such that $\pm \alpha_{1}, \ldots, \pm \alpha_{n}$ are the real parts of the evalues of A and $\pm \beta_{1}, \ldots, \pm \beta_{n}$ are the real singular values of A.

Chapter 6. The inequalities for \mathfrak{b}_{n} and \mathfrak{d}_{n}

Problem : In Chapter 3, models $\mathfrak{g}=\mathfrak{s o}(2 n+$ $1, \mathbb{C})$ and $\mathfrak{g}=\mathfrak{s o}(2 n, \mathbb{C})$ for \mathfrak{b}_{n} and \mathfrak{d}_{n}, respectively. It is not easy to see

$$
\rho: \mathfrak{b} \rightarrow \mathfrak{h}, \quad \pi: \mathfrak{b} \rightarrow i \mathfrak{t}
$$

amount taking the e-values and the real parts of the e-values, respectively.
A fix: switch to another model \mathfrak{g}.

Lemma 6.3 and Proposition 6.10 For any X in $\mathfrak{s o}(2 n+1, \mathbb{C})$ or $\mathfrak{s o}(2 n, \mathbb{C})$,
$\rho(\operatorname{Ad}(K) X \cap \mathfrak{b}):$ e-values of X
$\pi(\operatorname{Ad}(K) X \cap \mathfrak{b})$: real part e-values of X

Proposition 6.5 Let A be in $\mathfrak{s o}(2 n+1, \mathbb{C})$ or $\mathfrak{s o}(2 n, \mathbb{C})$. Let $\pm \beta_{1}, \ldots, \pm \beta_{n}$ be the real singular values of A. Let
(a)

$$
\begin{aligned}
& \quad\left(\begin{array}{cc}
0 & i \alpha_{1} \\
-i \alpha_{1} & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & i \alpha_{n} \\
-i \alpha_{n} & 0
\end{array}\right) \oplus(0) \\
& \in \pi(\operatorname{Ad} K(A) \cap \mathfrak{b}), \\
& \text { if } X \in \mathfrak{s o}(2 n+1, \mathbb{C}),
\end{aligned}
$$

(b) or

$$
\begin{aligned}
& \quad\left(\begin{array}{cc}
0 & i \alpha_{1} \\
-i \alpha_{1} & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & i \alpha_{n} \\
-i \alpha_{n} & 0
\end{array}\right) \\
& \in \pi(\operatorname{Ad} K(A) \cap \mathfrak{b}) \\
& \text { if } X \in \mathfrak{s o}(2 n, \mathbb{C})
\end{aligned}
$$

Thus $\pm \alpha_{1}, \ldots, \pm \alpha_{n}$ are the real parts of the eigenvalues of A. Then
(a)

$$
\sum_{j=1}^{k}|\alpha|_{[j]} \leq \sum_{j=1}^{k}|\beta|_{[j]}, \quad k=1, \ldots, n,
$$

(Weak majorization) if $X \in \mathfrak{s o}(2 n+1, \mathbb{C})$
(b)

$$
\begin{aligned}
& \qquad \sum_{j=1}^{k}|\alpha|_{[j]} \leq \sum_{j=1}^{k}|\beta|_{[j]}, k=1, \ldots, n- \\
& \sum_{j=1}^{n-1}|\alpha|_{[j]}+\delta_{1}|\alpha|_{[n]} \leq \sum_{j=1}^{n-1}|\beta|_{[j]}+\delta_{2}|\beta|_{[n]}, \\
& \sum_{j=1}^{n-1}|\alpha|_{[j]}-\delta_{1}|\alpha|_{[n]} \leq \sum_{j=1}^{n-1}|\beta|_{[j]}-\delta_{2}|\beta|_{[n]}, \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
\delta_{1} & =\operatorname{sign}\left(\alpha_{1} \cdots \alpha_{n}\right), \\
\delta_{2} & =\operatorname{sign}\left[(-i)^{n} \operatorname{Pf}\left(\frac{1}{2}\left(A+A^{*}\right)\right)\right]
\end{aligned}
$$

if $X \in \mathfrak{s o}(2 n, \mathbb{C})$.

Conversely, if above inequalities hold for some real n-tuples α and β, then we can find A in $\mathfrak{s o}(2 n+1, \mathbb{C})$ and $\mathfrak{s o}(2 n, \mathbb{C})$, respectively, satisfies
(a) $\pm \alpha, 0$ are the real part of the eigenvalues of $A, \pm \beta, 0$ are the real singular values of A,
(b) $\pm \alpha$ are the real part of the eigenvalues of A,
$\pm \beta$ are the real singular values of A, and $\operatorname{sign}\left[(-i)^{n} \operatorname{Pf}\left(\frac{1}{2}\left(A+A^{*}\right)\right)\right]=\operatorname{sign}\left(\beta_{1} \cdots \beta_{n}\right)$.

Remark: The difference between the cases for $2 n+1$ and $2 n$ comes from the different actions of their Weyl groups.
(a) $\mathfrak{s o}(2 n+1, \mathbb{C})$, the Weyl group acts on $i t$ by:

$$
\left(h_{1}, \ldots, h_{n}\right)^{T} \mapsto\left(\pm h_{\sigma(1)}, \ldots, \pm h_{\sigma(n)}\right)^{T}, \quad \sigma \in S_{n} .
$$

(b) $\mathfrak{s o}(2 n, \mathbb{C})$, the Weyl group acts on $i t$ by:

$$
\left(h_{1}, \ldots, h_{n}\right)^{T} \mapsto\left(\pm h_{\sigma(1)}, \ldots, \pm h_{\sigma(n)}\right)^{T}, \quad \sigma \in S_{n},
$$

where the number of negative signs is even.

Chapter 7. The real semisimple case

$\mathfrak{g}=$ a real semisimple Lie algebra
$\mathfrak{h}=$ a Cartan subalgebra of \mathfrak{g}
$B(\cdot, \cdot)$ the Killing form on \mathfrak{g}

Example 7.1 There are non-conjugate Cartan subalgebras: $\mathfrak{s l}(2, \mathbb{R})$
$\mathfrak{a}=\mathbb{R}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathfrak{b}=\mathbb{R}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

Cartan decomposition of $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$:
(a) $\theta: X+Y \rightarrow X-Y(X \in \mathfrak{k}, Y \in \mathfrak{p})$
(b) $B_{\theta}(X, Y)=-B(X, \theta Y)$ inner product on \mathfrak{g}

$\mathfrak{a}_{\mathfrak{p}}=$ maximal abelian subspace in \mathfrak{p}

A Cartan subalgebra \mathfrak{a} containing $\mathfrak{a}_{\mathfrak{p}}$ is of the form

$$
\mathfrak{a}=\mathfrak{a}_{\mathfrak{k}} \oplus \mathfrak{a}_{\mathfrak{p}}, \quad \mathfrak{a}_{\mathfrak{k}}=\mathfrak{a} \cap \mathfrak{k}, \quad \mathfrak{a}_{\mathfrak{p}}=\mathfrak{a} \cap \mathfrak{p}
$$

Since $(\operatorname{ad} H)^{*}=$ ad H, for all $H \in \mathfrak{a}_{\mathfrak{p}}$ and ad $\mathfrak{a}_{\mathfrak{p}}$ is abelian,

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}^{0} \dot{+} \dot{\sum}_{\alpha \in \Sigma+}\left(\mathfrak{g}^{\alpha} \oplus \mathfrak{g}^{-\alpha}\right) \tag{11}
\end{equation*}
$$

is the restricted root space decomposition of \mathfrak{g} relative to $\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+}$the set of restricted positive roots.
$N\left(\mathfrak{a}_{\mathfrak{p}}\right)=$ normalizer of $\mathfrak{a}_{\mathfrak{p}}$ in K
$Z\left(\mathfrak{a}_{\mathfrak{p}}\right)=$ centralizer of $\mathfrak{a}_{\mathfrak{p}}$ in K
Weyl group $W: N\left(\mathfrak{a}_{\mathfrak{p}}\right) / Z\left(\mathfrak{a}_{\mathfrak{p}}\right)$
$\pi_{\mathfrak{a}_{\mathfrak{p}}}: \mathfrak{g} \rightarrow \mathfrak{a}_{\mathfrak{p}}$ orthogonal projection
Theorem 7.2 (Kostant 1973) For $Z \in \mathfrak{a}_{\mathfrak{p}}$,

$$
\begin{equation*}
\pi_{\mathfrak{a}_{\mathfrak{p}}}(\operatorname{Ad} K(Z))=\mathrm{conv} W Z \tag{12}
\end{equation*}
$$

Theorem 7.4 Let $\mathfrak{a} \supset \mathfrak{a}_{\mathfrak{p}}$ be a Cartan subalgebra, $\mathfrak{b}=\mathfrak{a}+\dot{\Sigma}_{\alpha \in \Sigma}+\mathfrak{g}^{\alpha}$. Then for each $\beta \in \mathfrak{a}_{\mathfrak{p}}$,

$$
\pi((\mathfrak{k}+\operatorname{Ad} K(\beta)) \cap \mathfrak{b})=\operatorname{conv} W \beta .
$$

Proof: Similar to Theorem 4.6.

Remark 7.5 Theorem 7.4 is a AHM's type result for the real semisimple Lie algebras.

Proposition 7.6 For any $X \in \mathfrak{s l}(n, \mathbb{R})$, there exists $k \in \mathrm{SO}(n)$ such that $k X k^{-1}$ is of block upper triangular form where the (main diagonal) blocks are either 1×1 or 2×2 :

$$
k X k^{-1}=\left(\begin{array}{cccc}
A_{1} & & & * \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{s}
\end{array}\right)
$$

with zero trace, where $A_{k}=\left(\begin{array}{cc}a_{k} & b_{k} \\ -b_{k} & a_{k}\end{array}\right)$, or $A_{k}=\left(c_{k}\right), a_{k}, b_{k}, c_{k} \in \mathbb{R}, k=1, \ldots, s$.

Remark Unlike the complex case,
(1) given $X \in \mathfrak{g}$, the adjoint orbit $\operatorname{Ad} K(X)$ may not intersect a specific maximal solvable subalgebra \mathfrak{b}.
(2) two maximal solvable subalgebras may not be conjugate.

A Cartan subalgebra \mathfrak{c} is called a standard Cartan subalgebra if $\mathfrak{c}=\mathfrak{c}_{\mathfrak{k}} \dot{+} \mathfrak{c}_{\mathfrak{p}}$, where

$$
\mathfrak{a}_{\mathfrak{k}} \subset \mathfrak{c}_{\mathfrak{k}}:=\mathfrak{c} \cap \mathfrak{k}, \quad \mathfrak{c}_{\mathfrak{p}}:=\mathfrak{c} \cap \mathfrak{p} \subset \mathfrak{a}_{\mathfrak{p}} .
$$

Proposition $7.14 \mathfrak{c}=\mathfrak{c}_{\mathfrak{k}} \dot{+} \mathfrak{c}_{\mathfrak{p}}$ standard Cartan subalgebra, $\pi_{\mathfrak{c}_{\mathfrak{p}}}: \mathfrak{g} \rightarrow \mathfrak{c}_{\mathfrak{p}}$ orthogonal projection. Then
$\operatorname{conv} W \beta \cap \mathfrak{c}_{\mathfrak{p}}=\pi_{\mathfrak{c}_{\mathfrak{p}}}(\operatorname{Ad} K(\beta))=\pi_{\mathfrak{c}_{\mathfrak{p}}}(\operatorname{conv} W \beta)$.

Let \mathfrak{s} be a standard maximal solvable subalgebra containing the standard Cartan subalgebra
c. Since $\mathfrak{c}_{\mathfrak{p}} \subset \mathfrak{a}_{\mathfrak{p}} \subset \mathfrak{p}, \mathfrak{c}_{\mathfrak{p}} \perp \mathfrak{k}$ so that

$$
\begin{aligned}
\pi_{\mathfrak{c}_{\mathfrak{p}}}((\mathfrak{k}+\operatorname{Ad} K(\beta)) \cap \mathfrak{s}) & \subset \pi_{\mathfrak{c}_{\mathfrak{p}}}(\mathfrak{k}+\operatorname{Ad} K(\beta)) \\
& =\pi_{\mathfrak{c}_{\mathfrak{p}}}(\operatorname{Ad} K(\beta)) \\
& =\operatorname{conv} W \beta \cap \mathfrak{c}_{\mathfrak{p}}
\end{aligned}
$$

Question: Does set equality hold?

Answer: No. Not even for some normal real Lie algebras.

Example $7.15 \mathfrak{g}=\mathfrak{s l}(3, \mathbb{R})$.
\mathfrak{k} real skew symmetric matrices
\mathfrak{p} real symmetric matrices
$\mathfrak{a}_{\mathfrak{p}}=\operatorname{diag}(a, b,-a-b)$
$\mathfrak{c}_{\mathfrak{p}}=\operatorname{diag}(a, a,-2 a)$.
Let $\beta=\operatorname{diag}(1,1,-2)$.
Pick

$$
\begin{gathered}
H=\left(-\frac{1}{2},-\frac{1}{2}, 1\right) \in \operatorname{conv} W \beta \cap \mathfrak{c}_{\mathfrak{p}} \\
H \notin \pi_{\mathfrak{c p}_{p}}\left\{(\mathfrak{k}+\operatorname{Ad} K(\beta)) \cap \mathfrak{s}_{i}\right\},
\end{gathered}
$$

where $i=1,2$.
Question: Given $X \in \mathfrak{g}$. Is $\operatorname{Ad} K(X) \cap \mathfrak{s} \neq \phi$ for some standard maximal solvable subalgebra \mathfrak{s} ?

Partial answer: Yes for compact \mathfrak{g}.
Proposition 7.12 $\operatorname{Ad} K(X) \cap \mathfrak{s} \neq \phi$ if \mathfrak{g} is compact.

General answer: No, in general.

Example 7.13

$$
\operatorname{SU}(1,1)=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right):|\alpha|^{2}-|\beta|^{2}=1\right\}
$$

whose Lie algebra is a real form of $\mathfrak{s l}(2, \mathbb{C})$:

$$
\begin{aligned}
\mathfrak{s u}_{1,1} & =\left\{\left(\begin{array}{cc}
i a & c \\
\bar{c} & -i a
\end{array}\right): a \in \mathbb{R}, c \in \mathbb{C}\right\} \\
K & =\left\{\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right): \theta \in \mathbb{R}\right\} \\
\mathfrak{k} & =\left\{\left(\begin{array}{cc}
i a & 0 \\
0 & -i a
\end{array}\right): a \in \mathbb{R}\right\} \\
\mathfrak{p} & =\left\{\left(\begin{array}{ll}
0 & c \\
\bar{c} & 0
\end{array}\right): c \in \mathbb{C}\right\} \\
\mathfrak{a}_{\mathfrak{p}} & =\left\{\left(\begin{array}{ll}
0 & b \\
b & 0
\end{array}\right): b \in \mathbb{R}\right\} .
\end{aligned}
$$

Two non-conjugate standard maximal solvable subalgebras: $\mathfrak{s}_{1}=\mathfrak{k}$ and

$$
\mathfrak{s}_{2}=\mathfrak{a}_{\mathfrak{p}}+\mathfrak{g}^{\alpha}(H)=\mathbb{R}\left(\begin{array}{cc}
-i a & i a+b \\
-i a+b & i a
\end{array}\right)
$$

But for $j=1,2$,

$$
\operatorname{AdK}\left(\left(\begin{array}{cc}
-i & \epsilon \\
\epsilon & i
\end{array}\right)\right) \cap \mathfrak{s}_{j}=\phi, \quad \text { if } \epsilon<1
$$

Theorem 7.7 (Sugiura 1959) \mathfrak{g} a real semisimple Lie algebra
(1) Every Cartan subalgebra of \mathfrak{g} is conjugate to a standard Cartan subalgebra via Int (g).
(2)Two standard Cartan subalgebras are conjugate via Int (g) if and only if their vector parts are conjugate under the Weyl group W of ($\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}}$).
$\mathfrak{c}=\mathfrak{c}_{\mathfrak{k}} \dot{+} \mathfrak{c}_{\mathfrak{p}}$ standard Cartan subalgebra, $\mathfrak{c}_{\mathfrak{p}} \subset \mathfrak{a}_{\mathfrak{p}}$,
\mathfrak{g} has a root space decomposition with respect to $\mathfrak{c}_{\mathrm{p}}$:

$$
\mathfrak{g}=\mathfrak{g}^{0} \dot{+} \sum_{\alpha \in R} \mathfrak{g}^{\alpha},
$$

$H \in \mathfrak{c}_{\mathfrak{p}}$ is called $\mathfrak{c}_{\mathfrak{p}}$-singular if there exists $\alpha \in R$ such that $\alpha(H)=0$, otherwise H is called $\mathfrak{p}_{\mathfrak{p}^{-}}$ general.

A connected component in the set of $\mathfrak{c}_{\mathfrak{p}}$-general elements of $\mathfrak{c}_{\mathfrak{p}}$ is called a $\mathfrak{c}_{\mathfrak{p}}$-chamber.

Let C be a $\mathfrak{c}_{\mathfrak{p}}$-chamber in $\mathfrak{c}_{\mathfrak{p}}$. Then $\mathfrak{g}^{\alpha}(H)$ is independent of the choice of H in C and thus may be written as $\mathfrak{g}^{\alpha}(C)$.

Theorem 7.9 (Mostow 1961)

(1) Any maximal solvable subalgebra contains a Cartan subalgebra, hence is conjugate to a standard maximal solvable subalgebra.
(2) Any maximal solvable subalgebra containing a standard Cartan subalgebra $\mathfrak{c}=\mathfrak{c}_{\mathfrak{k}} \dot{\mathfrak{c}_{\mathfrak{p}}}$ is of the form $\mathfrak{c}+\mathfrak{g}^{+}(C)$ for some $\mathfrak{c}_{\mathfrak{p}}$-chamber C.
standard Cartan subalgebra \rightarrow non-conjugate $\mathfrak{c}_{\mathfrak{p}} \rightarrow$ maximal solvable subalgebra

Example $7.11 \mathfrak{g}=\mathfrak{s l}(3, \mathbb{R})$. Non-conjugate Cartan subalgebras:

$$
\begin{aligned}
& \mathfrak{c}_{1}=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & -a-b
\end{array}\right): a, b \in \mathbb{R}\right\} \\
& \mathfrak{c}_{2}=\left\{\left(\begin{array}{ccc}
a & b & 0 \\
-b & a & 0 \\
0 & 0 & -2 a
\end{array}\right): a, b \in \mathbb{R}\right\} .
\end{aligned}
$$

Non-conjugate maximal solvable subalgebras:

$$
\begin{aligned}
\mathfrak{s}_{1} & :=\left\{\left(\begin{array}{ccc}
a & c & e \\
0 & b & d \\
0 & 0 & -a-b
\end{array}\right)\right\}, \\
\mathfrak{s}_{2} & :=\left\{\left(\begin{array}{ccc}
a & b & c \\
-b & a & d \\
0 & 0 & -2 a
\end{array}\right)\right\}, \\
\mathfrak{s}_{3} & :=\left\{\left(\begin{array}{ccc}
-2 a & c & d \\
0 & a & b \\
0 & -b & a
\end{array}\right)\right\} .
\end{aligned}
$$

Chapter 8 The e-values and the real and imaginary s-values for $\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{s l}(2, \mathbb{R})$

Question: What is the necessary and sufficient condition on $\lambda \in \mathbb{C}^{n}, \alpha, \beta \in \mathbb{R}^{n}$ so that a matrix $A \in \mathbb{C}_{n \times n}$ exists with e-values λ 's, real s -values α 's and imaginary s-values β 's?

Proposition 8.1 (complex case) Let $\alpha, \beta \in \mathbb{R}$ and $a+i b \in \mathbb{C}$. Then there exists $A \in \mathfrak{s l}(2, \mathbb{C})$ whose e-values, real s-values, and imaginary svalues are $\pm(a+i b), \pm \alpha$, and $\pm \beta$, respectively, if and only if
(1) $(-a, a) \prec(-\alpha, \alpha),(-b, b) \prec(-\beta, \beta)$, and (2) $\beta^{2}-b^{2}=\alpha^{2}-a^{2}$.

Proposition 8.2 (real case) Let $\alpha, \beta \in \mathbb{R}$ and $a+i b \in \mathbb{C}$. Then there exists $A \in \mathfrak{s l}(2, \mathbb{R})$ whose e-values, real s-values, and imaginary svalues are $\pm(a+i b), \pm \alpha$, and $\pm \beta$, respectively, if and only if
(1) $b=0,(-a, a) \prec(-\alpha, \alpha)$, and $\beta^{2}=\alpha^{2}-a^{2}$, or
(2) $a=\alpha=0, b= \pm \beta$.

