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Abstract

Let V be an n-dimensional inner product space over C, and let H be a subgroup
of the symmetric group on {1, . . . ,m}. Suppose χ : H → C is an irreducible character
(not necessarily of degree 1). Let V m

χ (H) denote the symmetry class of tensors over

V associated with H and χ and let K(T ) ∈ End (V m
χ (H)) be the induced operator of

T ∈ End (V ).
It is known that if T is normal, unitary, positive (semi-)definite, Hermitian, then

K(T ) has the corresponding property. Furthermore, if T1 = ξT2 for some ξ ∈ C with
ξm = 1, then K(T1) = K(T2). The converse of these statements are not valid in general.
Necessary and sufficient conditions on χ and the operators T, T1, T2 ensuring the validity
of the converses of the above statements are given. These extend the results of those
on linear characters by Li and Zaharia.
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1 Introduction

Let V be an n-dimensional inner product space over C. Let Sm be the symmetric group of
degree m on the set {1, . . . ,m}. Each σ ∈ Sm gives rise to a linear operator P (σ) on ⊗mV :

P (σ)(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m), v1, . . . , vm ∈ V

on the decomposable tensors v1 ⊗ v2 ⊗ · · · ⊗ vm.
Suppose H is a subgroup of Sm, and χ : H → C is an irreducible character of H (not

necessarily linear). The symmetrizer

Sχ :=
χ(e)
|H|

∑

σ∈H

χ(σ)P (σ) ∈ End (⊗mV )

is an orthoprojector with respect to the induced inner product on ⊗mV :

(u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm) =
m∏

i=1

(ui, vi),

and the range of Sχ

V m
χ (H) := Sχ(⊗mV )

is called the symmetry class of tensors over V associated with H and χ. The elements in
V m

χ (H) of the form Sχ(v1 ⊗ · · · ⊗ vm) are called decomposable symmetrized tensors and are
denoted by v1 ∗ · · · ∗ vm.

For any T ∈ End (V ), there is a unique induced operator K(T ) acting on V m
χ (H)

satisfying
K(T )v1 ∗ . . . ∗ vm = Tv1 ∗ · · · ∗ Tvm.

Indeed V m
χ (H) is stable under ⊗mT and K(T ) = ⊗mT |V m

χ (H). Thus K(T )v∗ = (⊗mT )v∗,

v∗ ∈ V m
χ (H). Clearly K(ξT ) = ξmK(T ), ξ ∈ C.

It is known (see [8]) that if T is normal, unitary, positive (semi-)definite, and (skew)
Hermitian, then K(T ) has the corresponding property; if T1 = ξT2 for some complex number
ξ with ξm = 1, then K(T1) = K(T2). But the converses are not true in general. For linear
characters χ, Li and Zaharia [7] gave necessary and sufficient conditions on χ and the
operators T , S so that the following hold.

(I) If K(T ) 6= 0 is normal or unitary, then T has the corresponding property.

(II) If there exists η ∈ C with |η| = 1 such that ηK(T ) 6= 0 is Hermitian (respectively,
positive definite or positive semi-definite), then ξT also has the corresponding property
for some ξ ∈ C with (i) ξm = η or (ii) m is even ξm = −1 (respectively, ξm = 1).
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(III) Suppose K(T ) 6= 0. Then a linear operator S satisfies K(S) = K(T ) if and only if
S = ξT for some ξ ∈ C with ξm = 1.

The results in [7] explained all the known counterexamples and existing results in the lit-
erature. The purpose of this paper is to extend the results in [7] to nonlinear irreducible
characters. The structure of symmetry classes of tensors and induced operators associated
with nonlinear characters are more complicated than that corresponding to the linear char-
acters. For example, if χ is linear and if T has a matrix representation with respect to
an orthonormal basis, then K(T ) has a natural matrix representation in terms of a corre-
sponding orthonormal basis. But this is not true for nonlinear irreducible characters (see
the next section). In [7], the analysis depends heavily on the matrix representation of T

and K(T ) with respect to the standard orthonormal bases. It is not clear from the proofs
in [7] that the results are also valid for nonlinear characters as well. To get around the
problem mentioned above, we do not fix matrix representations in advance. The key steps
in our proofs often involve choosing triangular bases for T and K(T ) judiciously. Once the
suitable bases for T and K(T ) are chosen, some arguments are quite similar to those in [7].
Nonetheless, for the sake of completeness and easy reference, we choose to include those
arguments.

Our paper is organized as follows. In Section 2, we give some preliminary results for
induced operators. In Section 3 we present several lemmas. In Section 4 we divide (χ, n)
into several classes, that will determine whether (I), (II), or (III) hold subsequently; some
examples will be given to these classes. In Section 5 we determine the necessary and
sufficient conditions on the irreducible character χ on H ≤ Sm and operators T and S on
V for which (I) or (II) holds. In Section 6 we determine when (III) holds.

2 Preliminaries

In this section, we present some preliminary results for induced operators. One may see
[8, 9, 11, 12] for some general background.

Let I(H) be the set of irreducible characters of H. If χ, ξ ∈ I(H) and χ 6= ξ, then SχSξ =
0. Moreover

∑
χ∈I(H) Sχ is the identity operator on ⊗mV . So we have the orthogonal sum

⊗mV =
∑̇

χ∈I(G)
V m

χ (H).

Let Γm,n be the set of sequences α = (α(1), . . . , α(m)) with 1 ≤ α(j) ≤ n for j =
1, . . . ,m. Two sequences α and β in Γm,n are said to be equivalent modulo H, denoted by
α ∼ β, if there exists σ ∈ H such that β = ασ. This equivalence relation partitions Γm,n

into equivalence classes. Let ∆ be a system of representatives for the equivalence classes so
that each sequence in ∆ is first in lexicographic order in its equivalence class. Define ∆̄ as
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the subset of ∆ consisting of those sequences α ∈ ∆ such that

να :=
∑

σ∈Hα

χ(σ) 6= 0,

where Hα := {σ ∈ H : ασ = α} is the stabilizer subgroup of α, that is, (χ, 1)Hα :=
1

|Hα|
∑

σ∈Hα
χ(σ) 6= 0, or equivalently, the restriction of χ to Hα contains the principal

character as an irreducible constituent. Indeed (χ, 1)Hα 6= 0 amounts to (χ, 1)Hα > 0 since
(χ, 1)Hα is the number of occurrences of the principal character in the restriction of χ to
Hα.

If B = {e1, . . . , en} is a basis for V , then {e⊗α := eα(1)⊗· · ·⊗ eα(m) : α ∈ Γm,n} is a basis
for ⊗mV . Let

e∗α := Sχe⊗α =
χ(e)
|H|

∑

σ∈H

χ(σ)eασ−1(1) ⊗ · · · ⊗ eασ−1(m),

for each α ∈ Γm,n. Then {e∗α : α ∈ Γm,n} is a spanning set for the space V m
χ (H), but it

may not be linearly independent. Indeed some vectors may even be zero. It can be shown
that e∗α 6= 0 if and only if the restriction of χ to Hα contains the principal character as an
irreducible constituent. Let

Ω := {α ∈ Γm,n : (χ, 1)Hα > 0},

and hence ∆̄ = ∆ ∩ Ω. For any τ ∈ Sn, Hτα = Hα and thus

τΩ = Ω, τ ∈ Sn. (2.1)

(Note that for α ∈ Γm,n we write ασ for σ ∈ Sm permuting the entries of (α(1), . . . , α(m)),
and we write τα = (τ(α(1)), . . . , τ(α(m))) for τ ∈ Sn that changes the entries of α.) The
set {e∗α : α ∈ Ω} consists of the nonzero elements of {e∗α : α ∈ Γm,n}. Moreover

V m
χ (H) = ⊕α∈∆̄ 〈e∗ασ : σ ∈ H〉 , (2.2)

a direct sum of the orbital subspaces Oα := 〈e∗ασ : σ ∈ H〉, α ∈ ∆̄, which denotes the span
of the set {e∗ασ : σ ∈ H} and Freese’s theorem asserts that

dimOα = sα :=
χ(e)
|Hα|

∑

σ∈Hα

χ(σ) = χ(e)(χ, 1)Hα . (2.3)

Thus the set B∗ := {e∗α : α ∈ ∆̄} is a linearly independent set. We now construct a basis
for V m

χ (H). For each α ∈ ∆̄, we find a basis for the orbital subspace Oα: choose a set
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{α1, . . . , αsα} from {ασ : σ ∈ H} such that {e∗α1
, . . . , e∗αsα

} is a basis for Oα. Execute this

procedure for each γ ∈ ∆̄. If {α, β, · · ·} is the lexicographically ordered set ∆̄, take

∆̂ = {α1, . . . , αsα , β1, . . . , βsβ
, . . .}

to be ordered as indicated. The elements of ∆̂ are no longer lexicographically ordered and
B̂∗ := {e∗α : α ∈ ∆̂} is a basis for V m

χ (H). Clearly ∆̄ ⊂ ∆̂ ⊂ Ω. Though ∆̂ is not unique, it

does not depend on the basis B since ∆ and ∆ do not depend on B. Thus if B′ = {f1, . . . , fn}
is another basis for V , then {f∗α : α ∈ ∆̂} is still a basis for V m

χ (H).
The inner product of V induces an inner product on V m

χ (H):

(u∗, v∗) =
χ(e)
|H|

∑

σ∈H

χ(σ)
m∏

t=1

(ut, vσ(t)). (2.4)

So if B = {e1, . . . , en} is an orthonormal basis for V , then

(e∗α, e∗β) =

{
0 if α 6∼ β
χ(e)
|H|

∑
σ∈Hα

χ(σ) if α = β,

and thus

‖e∗α‖2 =
χ(e)
|H|

∑

σ∈Hα

χ(σ).

Hence (2.2) becomes V m
χ (H) =

∑̇
α∈∆̄ 〈e∗ασ : σ ∈ H〉, an orthogonal sum. However, those

e∗α’s of {e∗α : α ∈ ∆̂} belonging to the same orbital subspace need not be orthogonal.

It is known [12, p.103] and also follows from (2.3) that ∆̄ = ∆̂ if and only if χ is linear.
In such cases, {e∗α : α ∈ ∆̄} is an orthogonal basis for V m

χ (H).
We give several common examples of symmetry classes of tensors and induced operators.

Example 2.1 Let 1 ≤ m ≤ n, H = Sm and χ be the alternate character, that is, χ(σ) =

sgn (σ). Then V m
χ (H) is the mth exterior space ∧mV , ∆̄ = ∆̂ = Qm,n, the set of strictly

increasing sequences in Γm,n, ∆ = Gm,n, the set of nondecreasing sequences in Γm,n and
K(T ) is the mth compound of T ∈ End (V ), usually denoted by Cm(T ).

Example 2.2 Let H = Sm and χ ≡ 1 be the principal character. Then V m
χ (H) is the

mth completely symmetric space over V = Cn, ∆̄ = ∆̂ = ∆ = Gm,n, and K(T ) is the mth
induced power of T ∈ End (V ), usually denoted by Pm(T ).

Example 2.3 Let H = {e} where e is the identity in Sm (χ ≡ 1 is the only irreducible

character). Then V m
χ (H) = ⊗mV , ∆̄ = ∆̂ = ∆ = Γm,n, and K(T ) = ⊗mT is the mth

tensor power of T ∈ End (V ).
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We now provide an example with nonlinear irreducible character.

Example 2.4 Consider S3 and use the (only) nonlinear irreducible character χ = χ3 in [3,
p.157], that is, χ3(e) = 2, χ3((12)) = 0, χ((123)) = −1. If n = dimV = 2, then [11, p.164]

∆̄ = {(1, 1, 2), (1, 2, 2)}, ∆̂ = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 2)}.
Let B = {e1, e2} be a basis for V and let T ∈ End (V ) be defined by

[T ]B =
(

a b

c d

)
.

Then B∗ = {e∗(1,1,2), e
∗
(1,2,1), e

∗
(1,2,2), e

∗
(2,1,2)} is a basis for V m

χ (H), and (see [12, p.98-101])

e∗(2,1,1) = −e∗(1,1,2) − e∗(1,2,1), e∗(2,2,1) = −e∗(1,2,2) − e∗(2,1,2).

By direct computation

[K(T )]B∗ =




a2d− abc 0 abd− b2c 0
0 a2d− abc abd− b2c b2c− abd

acd− bc2 0 ad2 − bcd 0
acd− bc2 bc2 − acd 0 ad2 − bcd




Observe that B∗ is not an orthogonal basis even if B is an orthonormal basis, since

(e∗(1,1,2), e
∗
(1,2,1)) = (e∗(1,2,2), e

∗
(2,1,2)) = −1

3
.

Let mj(α) denote the number of occurrence of j in the sequence α ∈ ∆̂. The following
contains some properties of the induced operator.

Proposition 2.5 [11, 12] Let S, T be linear operators on V and assume ∆̄ 6= φ.

(a) K(IV ) = IV m
χ (H).

(b) K(ST ) = K(S)K(T ).
(c) T is invertible if and only if K(T ) is. Moreover, we have K(T−1) = K(T )−1.
(d) K(T ∗) = K(T )∗.
(e) If the matrix representation of T with respect to the basis B is in (lower or upper)

triangular or in diagonal form, then so is K(T ) with respect to the basis B̂∗.
(f) If T is normal, unitary, positive (semi-)definite, Hermitian or skew-Hermitian (when m

is odd), so is K(T ).
(g) If T has eigenvalues λ1, . . . , λn, and singular values s1 ≥ · · · ≥ sn, then K(T ) has

eigenvalues
∏n

j=1 λ
mj(α)
j and singular values

∏n
j=1 s

mj(α)
j , α ∈ ∆̂.

(h) If rank (T ) = r, then rankK(T ) = |Γm,r ∩ ∆̂|.
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Remark 2.6 To prove (g) one may use Schur Triangularization Theorem [11, p.239] to find
a triangular basis for T so that the matrix representation of T has diagonal entries λ1, . . . , λn.
In fact, Schur Triangularization Theorem allows any order of λ’s. Hence, we see that

if (k1, . . . , kn) is a sequence of nonnegative integers such that
∏n

j=1 λ
kj

j is an eigenvalue of

K(T ) with multiplicity r, then for any σ ∈ Sn,
∏n

j=1 λ
kj

σ(j) is also an eigenvalue of K(T ) with

multiplicity r. As a result, TrK(T ) is a symmetric polynomial of λ1, . . . , λn. For the singular
values of T , we can write T = U |T | for some unitary operators U and a positive semi-definite
operator |T | such that |T |2 = T ∗T . Then the singular values of T are the eigenvalues of
|T |, and the singular values of K(T ) = K(U)K(|T |) are the eigenvalues of K(|T |). Thus,
the assertion follows. We will use condition (g) frequently in our study. This observation
on eigenvalues can also be deduced as follows. Since Hα = Hτα, τ ∈ Sn, α ∈ Γm,n, we have
α ∈ ∆̄ if and only if τα ∼ β ∈ ∆̄; in addition dimOα = dimOβ since Hασ = σ−1Hασ,
σ ∈ H. Moreover for α, α′ ∈ Γm,n, τ ∈ Sn, τα ∼ τα′ if and only if α ∼ α′. Clearly
mi(τα) = mτ−1(i)(α), i = 1, . . . , n. Denote mα := (m1(α), . . . , mn(α)). Then for any given

τ ∈ Sn, the sets {α ∈ ∆̂ : mα = (k1, . . . , kn)} and {α ∈ ∆̂ : mα = (kτ(1), . . . , kτ(n))} are of
the same size where k’s are nonnegative integers.

In the subsequent discussion, we shall use µ(∆̄) to denote the smallest integer r such

that Γm,r ∩ ∆̄ 6= ∅. Similarly we can define µ(∆̂) but it is clear that µ(∆̄) = µ(∆̂). As a
result, an operator T on V satisfies K(T ) = 0 if and only if rank (T ) < µ(∆̄) by Proposition
2.5 (h). Furthermore, we say that T is the direct sum T1 ⊕ T2 if V has a subspace V1 so
that V1 is invariant under both T and T ∗; T1 is then the restriction of T on V1, and T2 is
the restriction of T on the orthogonal complement of V1 in V . As usual, if T has the matrix
representation A, then TrT = TrA and det (T ) = det (A).

3 Some Lemmas

Given two vectors x, y ∈ Rn, we say that x is majorized by y if the sum of entries of the
two vectors are the same, and the sum of the k largest entries of x is not larger than that
of y for k = 1, . . . , n− 1. We need the following result, that also follows from the corollary
in [1]. Given an irreducible character χ on H ≤ Sm, define

Ω(χ,H) := {α ∈ Γm,n : (χ, 1)Hα > 0},

and m(Ω(χ,H)) := {(m1(α), . . . , mn(α)) : α ∈ Ω(χ,H)} ⊆ Nn be the collection of vectors
of multiplicities of all α ∈ Ω(χ,H).

Lemma 3.1 Suppose χ is an irreducible character on H ≤ Sm. The following conditions
are equivalent for a sequence (k1, . . . , kn) ∈ Nn.
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(a) (k1, . . . , kn) ∈ m(Ω(χ,H)).

(b) There is an irreducible character ψ on Sm with (ψ, χ)H 6= 0 such that

(k1, . . . , kn) ∈ m(Ω(ψ, Sm)),

equivalently, (k1, . . . , kn) is majorized by the vector of partition corresponding to the
irreducible character ψ.

Consequently, if α ∈ ∆̄ and if (k1, . . . , kn) ∈ Nn is majorized by (m1(α), . . . , mn(α)), then
there exists β ∈ ∆̄ such that (m1(β), . . . , mn(β)) = (k1, . . . , kn).

Proof: The equivalence of the conditions in (b) is due to Merris [10]. Also see [11, Theorem
6.37].

Let χ be an irreducible character of H ≤ Sm, and χ̃ the character on Sm induced by χ.
Let G = (Sm)α be the stabilizer of α ∈ Γm,n in Sm. For every y ∈ Sm, one readily checks
that Hαy = y−1Gy ∩H is the stabilizer of αy in H. Then we have

∑

σ∈G

χ̃(σ) =
∑

σ∈G

1
|H|

∑
y ∈ Sm

y−1σy ∈ H

χ(y−1σy) =
1
|H|

∑

y∈Sm

∑

σ∈Hαy

χ(σ). (3.5)

Each term on the right side
∑

σ∈Hαy
χ(σ) = |Hαy|(χ, 1)Hαy ≥ 0 since (χ, 1)Hαy is the number

of occurrences of the principal character in the restriction of χ to Hαy.
(a) =⇒ (b) If α ∈ Ω(χ,H), then

∑
σ∈Hα

χ(σ) > 0. So the right side of (3.5) is not

smaller than 1
|H|

∑
σ∈Hα

χ(σ) > 0. Hence, from the left side of (3.5), one of the irreducible

constituents of χ̃ on Sm, say ψ, must satisfy
∑

σ∈G ψ(σ) > 0, that is, m(α) ∈ m(Ω(ψ, Sm)).
Clearly, we have (ψ, χ)H = (ψ, χ̃)Sm > 0 by the Frobenius Reciprocity Theorem.
(b) =⇒ (a) Suppose ψ is an irreducible character on Sm such that (ψ, χ)H 6= 0, and
for some α ∈ Γm,n with m(α) := (k1, . . . , kn) ∈ m(Ω(ψ, Sm)), that is,

∑
σ∈G ψ(σ) > 0.

Then the character χ̃ on Sm induced by χ must contain ψ as a constituent, by the Frobe-
nius Reciprocity Theorem. Thus the left side of (3.5)

∑
σ∈G χ̃(σ) ≥ ∑

σ∈G ψ(σ) > 0. So
there exists π ∈ Sm such that

∑
σ∈Hαπ

χ(σ) > 0. Notice that m(απ) = m(α) and hence
(k1, . . . , kn) ∈ m(Ω(χ,H)).

The last assertion follows readily from the result of Merris stated in (b). 2

Remark 3.2 From the proof one readily sees that if α ∈ ∆̂ with multiplicity vector
m(α) = (k1, . . . , kn), then for any given σ ∈ Sn, there is a β ∈ ∆̂ such that m(β) =
(m1(β), . . . ,mn(β)) = (kσ(1), . . . , kσ(n)). This is consistent with Remark 2.6.

The next lemma is due to Horn and Weyl.
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Lemma 3.3 [2, 13] Suppose λ1, . . . , λn are complex numbers with |λ1| ≥ · · · ≥ |λn|, and
s1 ≥ · · · ≥ sn are nonnegative real numbers. Then there exists T ∈ End (V ) with singular
values s1, . . . , sn and eigenvalues λ1, . . . , λn if and only if

∏n
j=1 |λj | =

∏n
j=1 sj and

k∏

j=1

|λj | ≤
k∏

j=1

sj for k = 1, . . . , n− 1.

The following characterizations of normal operators are known; for example, see [5].

Lemma 3.4 Let T ∈ End (V ). The following are equivalent.
(a) T is normal.
(b) The moduli of the eigenvalues of T are the singular values of T .
(c) The sum of the moduli of the eigenvalues of T equals the sum of its singular values.

Lemma 3.5 Suppose R, S ∈ End (V ) have nonnegative eigenvalues a1 ≥ · · · ≥ an ≥ 0 and

b1 ≥ · · · ≥ bn ≥ 0, respectively, such that
∏k

j=1 aj ≤
∏k

j=1 bj for all k = 1, . . . , n. Then

TrK(R) ≤ TrK(S).

Proof: Suppose R and S satisfy the assumption. By Lemma 3.3, there exists a linear
operator T on V having singular values b1 ≥ · · · ≥ bn−1 ≥ b̃n and eigenvalues a1 ≥ · · · ≥ an,
where

b̃n =
{

(a1 . . . an)/(b1 · · · bn−1) if bn > 0,
0 otherwise.

Then

TrK(R) = TrK(T ) (by the construction of T )

≤ Tr {K(T )∗K(T )}1/2 (by Lemma 3.3)

≤ TrK(S) (by the construction of T ).

2

Recall that mj(α) is the number of occurrence of j in α ∈ ∆̂.

Lemma 3.6 Suppose Γm,r ∩ ∆̄ contains an element α with mp(α) > mq(α) for some 1 ≤
p 6= q ≤ r. Let R, S ∈ End (V ) have eigenvalues a1 ≥ · · · ≥ an > 0 and b1 ≥ · · · ≥ bn > 0,
respectively, with ar > 0, (b1, . . . , bn) is obtained from (a1, . . . , an) by replacing (aj , aj+1)
with (ajt, aj+1/t) for some t > 1 and 1 ≤ j < r. Then TrK(R) < TrK(S).
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Proof: By Remark 2.6,

TrK(diag (x1, . . . , xn)) =
∑

α∈∆̂

n∏

j=1

x
mj(α)
j

is a symmetric polynomial in x1, . . . , xn. Thus TrK(S)−TrK(R) is a nonnegative combi-
nation of terms of the form

(ajt)mj(α)(aj+1/t)mj+1(α) − a
mj(α)
j a

mj+1(α)
j+1 .

By Remark 2.6, there exists β ∈ ∆̂ with m(β) := (m1(β), . . . ,mn(β)) if and only if there

exists β̃ ∈ ∆̂ so that m(β̃) is obtained from m(β) by switching the jth and (j + 1)st entries

(β and β̃ may be identical and the following gk(t) is simply zero). So TrK(S)−TrK(R) is
actually a nonnegative combination of terms of the form

gk(t) := (aht)k + (ah+1/t)k − (ak
h + ak

h+1) = [ak
h − (ah+1/t)k](tk − 1) ≥ 0 (3.6)

with 0 ≤ k ≤ r (k = |mh(α)−mh+1(α)|). Notice that gk(t) is positive if k > 0 and ah > 0.

Since Γm,r ∩ ∆̂ contains an element α with mp(α) > mq(α) for some 1 ≤ p 6= q ≤ r, by

Remark 2.6, there exists β ∈ Γm,r ∩ ∆̂ such that mj(β) > mj+1(β). By Remark 2.6 again,

there exists β̃ ∈ Γm,r ∩ ∆̂ such that m(β̃) can be obtained from m(β) by switching the jth

and j + 1st entries. Clearly β, β̃ ∈ ∆̂ are not identical. Set k0 := mj(β)−mj+1(β) and

η := (ajaj+1)mj+1(β)
r∏

i=1,i6=j,j+1

a
mi(β)
i > 0,

since ar > 0. Then

0 < η[(ajt)k0 + (aj+1/t)k0 − (ak0
j + ak0

j+1)]

= [
r∏

i=1

b
mi(β)
i +

r∏

i=1

b
mi(β̃)
i ]− [

r∏

i=1

a
mi(β)
i +

r∏

i=1

a
mi(β̃)
i ]

≤
∑

α∈∆̂

(
n∏

i=1

b
mi(α)
i −

n∏

i=1

a
mi(α)
i

)

= TrK(S)− TrK(R).

Hence, we have TrK(S) > TrK(R) as asserted. 2
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4 Different Types of Characters

In [7], the authors identified different types of linear characters χ so that (I) – (III) hold.
Here, we extend the results to nonlinear characters. It turns out that the results are similar
to the linear case even though the proofs are more involved.

Theorem 4.1 Let r̃ be an integer satisfying r̃ ≥ µ(∆̄) > 1. The following conditions are
equivalent.
(a) Every α ∈ Γm,r̃ ∩ ∆̄ satisfies m1(α) = · · · = mr̃(α) and r̃ = µ(∆̄) (hence r̃|m).
(b) There exists a nonnormal T ∈ End (V ) with rank (T ) = r̃ such that K(T ) is normal.
(c) For any T ∈ End (V ) of the form T1 ⊕ 0, where T1 is an invertible operator acting

on a r̃-dimensional subspace V1 of V , the induced operator K(T ) is a multiple of an
orthogonal projection PT on V m

χ (H).
In addition, if (c) holds, then the orthogonal projection PT is indeed the natural projec-
tion from V m

χ (H) onto the orthogonal sum ⊕α∈∆̄∩Γm,r
Oα with respect to an orthonormal

triangularization basis {e1, . . . , er} for T1 in V1, where r := µ(∆̄).

Proof: The implication (c) =⇒ (b) is clear.
(b) =⇒ (a): Suppose T ∈ End (V ) is not normal and rank (T ) = r̃ so that K(T ) is

a (nonzero) normal operator. Let T have singular values s1 ≥ · · · ≥ sn and eigenvalues
λ1, . . . , λn with |λ1| ≥ · · · ≥ |λn|. As T is not normal and has rank r̃, by Lemma 3.4 there

is a smallest integer p with p ≤ r̃ such that sp > |λp|. By Lemma 3.3,
∏k

j=1 |λj | ≤
∏k

j=1 sj

for k = 1, . . . , r̃, and |∏n
j=1 λj | =

∏n
j=1 sj . Let D̃ ∈ End (V ) have matrix representation

[D̃]B = diag (|λ1|, . . . , |λn|) with respect to an orthonormal basis B; construct D ∈ End (V )
with [D]B = diag (d1, . . . , dn) as follows.

1. If sp = · · · = sr̃, set dr̃ = |λp| and dk = sk for other k. (Note that this can only
happen when r̃ < n.)

2. If sp = · · · = sh > sh+1 for some h < r̃, set t =: min{sh/|λh|,
√

sh/sh+1} > 1, when

λh 6= 0, otherwise t :=
√

sh/sh+1, (dh, dh+1) = (sh/t, tsh+1) and dk = sk for other k.

In both cases, we have d1 ≥ · · · ≥ dn and

k∏

j=1

|λj | ≤
k∏

j=1

dj , k = 1, . . . , n− 1,

and
∏n

j=1 |λj | =
∏n

j=1 dj which is equal to 0 if r̃ < n. By Lemma 3.5, we have

TrK(D̃) ≤ TrK(D).
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Suppose that (a) were not true. By the definition of D and Lemma 3.6, we have

TrK(D) < TrK(|T |),

where |T | is the positive semidefinite square root of T ∗T , that is, |T |2 = T ∗T , and has
eigenvalues s1, . . . , sr̃, 0, . . . , 0. As a result,

TrK(D̃) < TrK(|T |).

Since the eigenvalues of K(D̃) are just the moduli of those of K(T ), by Lemma 3.4, K(T )
is not normal, which is a contradiction.

Finally, since Γm,r ∩ ∆̄ ⊆ Γm,r̃ ∩ ∆̄, if r̃ > r := µ(∆̄) then every element α ∈ Γm,r ∩ ∆̄ ⊆
Γm,r̃ ∩ ∆̄ will satisfy m1(α) = · · · = mr(α) = mr̃(α) = 0, which is a contradiction. Thus
r̃ = r.

(a) =⇒ (c) Suppose (a) holds, and suppose T = T1⊕0, where T1 is an invertible operator
acting on a r̃-dimensional subspace V1 of V . Then the number of nonzero eigenvalues
of K(T ) is the same as number of the nonzero singular values of K(T ); all the nonzero

eigenvalues equal det (T1)m/r̃ and all the nonzero singular values equal |det (T1)|m/r̃. Thus
K(T ) is a multiple of an orthogonal projection, that is, (c) holds.

Let V = V1 ⊕ V2 (dimV1 = r) be an orthogonal sum such that V1 and V2 are invariant
under T and the restrictions of T on Vi, i = 1, 2 are T1 and 0, respectively. By Schur’s
triangularization theorem we may let {e1, . . . , er} be an orthonormal basis for V1 such that

T1ei = λiei + ui, i = 1, . . . , r,

where ui ∈ span {e1, . . . , ei−1}, i = 2, . . . , r and u1 := 0. Let {er+1, . . . , en} be an or-

thonormal basis for V2. If k is in the image of α ∈ ∆̂, where k = r + 1, . . . , n, then
K(T )e∗α = Teα(1) ∗ · · · ∗ Teα(m) = 0. When α ∈ ∆̂ ∩ Γm,r,

K(T )e∗α = T1eα(1) ∗ · · · ∗ T1eα(m)

= (λα(1)eα(1) + uα(1)) ∗ · · · ∗ (λα(1)eα(m) + uα(m))

= (
m∏

j=1

λα(j))e
∗
α +

∑
cγe∗γ ,

where the sum is over those γ ∈ ∆̂ ∩ Γm,r such that γ(i) ≤ α(i), 1 ≤ i ≤ m with at

least one strict inequality. Since all ω ∈ ∆̂ ∩ Γm,r satisfy m(ω) = (m/r, . . . , m/r), each
e∗γ has exactly m/r copies of er as constituents which must come from Ter’s in the above
expression. Continuing the argument, we conclude that the m/r copies ei of e∗γ are from

Tei, i = 1, . . . , r. This implies e∗γ = e∗α, a contradiction. So K(T )e∗α = (detT1)m/re∗α,
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α ∈ ∆̂ ∩ Γm,r. Thus K(T ) is (detT1)m/rI while restricted to
∑

α∈∆̄∩Γm,r
Oα and 0 while

restricted to the orthogonal complement of
∑

α∈∆̄∩Γm,r
Oα. 2

Applying Theorem 4.1 with r̃ = n, we get the following corollary (cf. Theorem 1.1 in [9,
Chapter 6]).

Corollary 4.2 Let H and χ be given. The following conditions are equivalent.
(a) Every element α ∈ ∆̄ satisfies m1(α) = · · · = mn(α) = m/n.
(b) K(T ) = ξT I, for any T ∈ Aut (V ).

In addition, if the (b) holds, then ξT = (detT )m/nI.

Proof: The orthogonal projection from V m
χ (H) into itself is a scalar multiple of the identity

map. So by Theorem 4.1, we conclude the equivalence of (a) and (b). Now let λ1, . . . , λn

be the eigenvalues of T . If (a) holds, the eigenvalues of K(T ) are equal to (detT )m/n. Thus

ξT = (detT )m/n.

Definition 4.3 In the following, we say that (χ, n) is of determinant type if any one (and
hence all) of the conditions (a) – (c) in Corollary 4.2 holds, with µ(∆̄) > 1. Furthermore,
we say that (χ, n) is of the special type if any one (and hence all) the conditions (a) – (c)
in Theorem 4.1 holds with µ(∆̄) > 1; otherwise, we say that (χ, n) is of the general type.
Notice that the determinant type is a particular case of special type.

Note that the alternate character on Sn with dimV = n > 1 is of the determinant
type (∆̄ = {(1, . . . , n)} and µ(∆̄) = n); the alternate character on Sm with 1 < m < n

and dimV = n, is of the special type but not of the determinant type (∆̄ = Qm,n and
µ(∆̄) = m); and the principal character is of the general type (µ(∆̄) = 1 since Gm,n ⊂ ∆̄
[8, p.108] for all n ≥ 1). Here we give some additional examples of (χ, n) that are of the
special type, determinant type, and the general type.

Example 4.4 Consider the alternating group A4 in S4 and use the linear character χ2 in
[3, p.181], that is, χ2(σ) = 1 if σ is the identity or a product of two disjoint transpositions,

and if 1 ≤ i < j < k ≤ 4 then χ2((i, j, k)) = ω and χ2((i, k, j)) = ω2, where ω = e2πi/3.

(a) If n = 2, then

∆̂ = ∆̄ = {(1, 1, 2, 2)},
and (χ2, 2) is of the determinant type since µ(∆̄) = 2 = n, Γ4,2 ∩ ∆̄ = {(1, 1, 2, 2)}.

(b) If n = 3, then

∆̂ = ∆̄ = {(j, j, k, k) : 1 ≤ j < k ≤ 3} ∪ {(1, 1, 2, 3), (1, 2, 2, 3), (1, 2, 3, 3)}.
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Now (χ2, 3) is of the special type since µ(∆̄) = 2, Γ4,2∩∆̄ = {(j, j, k, k) : 1 ≤ j < k ≤ 3}
but not of the determinant type.

(c) In general, when n ≥ 4 = m, then

{(j, j, k, k) : 1 ≤ j < k ≤ n} ⊂ ∆̄,

and ∆̄ does not contain other α whose image has order 2. So (χ2, n) is of the special
type since µ(∆̄) = 2, Γ4,2 ∩ ∆̄ = {(j, j, k, k) : 1 ≤ j < k ≤ n} but not of the determinant
type. So besides the exterior spaces ∧mV (dimV = n), we have other special types
(χ, n) with m < n.

Remark 4.5 If we require n = m, then (ε, n) is the only determinant type, where ε : Sn →
C is the alternate character. It is because for any irreducible character χ on H with m = n,
{(1, 2, . . . , n)} = Qn,n ⊂ ∆̄. If (χ, n) is of determinant type, then ∆̄ = Qn,n otherwise there
is (i1, i2, . . . , in)(6= (1, 2, . . . , n)) ∈ ∆̄. By Corollary 4.2, (i1, . . . , in) is a rearrangement of
(1, 2, . . . , n). Let {e1, . . . , en} be a basis for V and let T ∈ End (V ) such that Tek = eik ,
k = 1, . . . , n,. Then K(T )e1 ∗ · · · ∗ en = ei1 ∗ · · · ∗ ein and the vectors e1 ∗ · · · ∗ en and
ei1 ∗ · · · ∗ ein are linearly independent by (2.2). Thus K(T ) is not a scalar multiple of the
identity, contradicting Corollary 4.2 (b). Now ∆̄ = Qn,n and hence H = Sn and χ = ε [12,
p.96].

Example 4.6 Consider S3 and use the (only) nonlinear irreducible character χ3 in [3,
p.157], that is, χ3(e) = 2, χ3((12)) = 0, χ3((123)) = −1.

(a) If n = 2, then

∆̄ = {(1, 1, 2), (1, 2, 2)}, ∆̂ = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 2)},

and (χ3, 2) is of the general type.

(b) [12] If n = 3, then

∆̄ = {(1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), (2, 2, 3), (2, 3, 3)},

and

∆̂ = {(1, 1, 2), (1, 2, 1); (1, 1, 3), (1, 3, 1); (1, 2, 2), (2, 1, 2); (1, 2, 3), (1, 3, 2),
(2, 1, 3), (2, 3, 1); (1, 3, 3), (3, 1, 3); (2, 2, 3), (2, 3, 2); (2, 3, 3), (3, 2, 3)},

and (χ3, 3) is of the general type.
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5 Operator properties

In the following, we characterize T ∈ End (V ) so that K(T ) is normal. We exclude the
trivial case when K(T ) = 0, or equivalently, when T ∈ End (V ) has rank (T ) < µ(∆̄).

Theorem 5.1 Let r = µ(∆̄) and T ∈ End (V ) with rank (T ) ≥ r. Then K(T ) is normal if
and only if one of the following holds.
(a) T is normal.
(b) (χ, n) is of the special type, and T = T1⊕0, where T1 is an invertible nonnormal operator

acting on an r-dimensional subspace V1 of V .

Proof: If (a) holds, then K(T ) is normal by Proposition 2.5 (f). If (b) holds, then K(T )
is normal by Theorem 4.1 (c).

Conversely, let T ∈ End (V ) satisfy r̃ := rank (T ) ≥ r so that K(T ) is a nonzero normal
operator. Assume that (a) does not hold, that is, (b) of Theorem 4.1 holds. Thus by
Theorem 4.1 rank (T ) = r and T has the desired form. 2

Corollary 5.2 Suppose (χ, n) is not of the determinant type, and T ∈ End (V ) is invertible.
Then T is normal if and only if K(T ) is normal.

Proof: The necessity part is clear. To prove the converse, suppose K(T ) is normal. Then
Theorem 5.1 (a) or (b) holds. Since rank (T ) = n, if (b) holds, then (χ, n) is of the
determinant type by Theorem 4.1, contradicting the assumption on (χ, n). Hence, we see
that (a) holds, and the result follows. 2

By Corollary 4.2, if every element α in ∆̄ satisfies m1(α) = · · · = mn(α), then n = µ(∆̄)

and K(T ) = det (T )m/nI for all T ∈ End (V ). Consequently, K(T ) is positive definite

(respectively, unitary) if and only if det (T )m/n > 0 (respectively, |det (T )| = 1). Apart
from this trivial case, we will show that K(T ) is a nonzero multiple of a positive definite
(respectively, unitary) operator if and only if T is.

Theorem 5.3 Suppose (χ, n) is not of the determinant type, and T ∈ End (V ). If there
exists η ∈ C with |η| = 1 such that ηK(T ) is positive definite then there exists ξ ∈ C with
ξm = η such that ξT is positive definite.

Proof: The sufficiency part is clear. To prove the converse, suppose ηK(T ) is positive defi-
nite, where η ∈ C with |η| = 1. Then K(T ) is normal. Since (χ, n) is not of the determinant
type and K(T ) is invertible, by Corollary 5.2 we see that T is normal. Furthermore, if T

has eigenvalues λ1, . . . , λn, then none of them is zero by Remark 2.6.
To complete the proof, we show that there exists ξ ∈ C such that ξm = η and λj = ξ|λj |

for all 1 ≤ j ≤ n, as follows. Since (χ, n) is not of the determinant type, there exists α ∈ ∆̄
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such that mp(α) < mq(α) for some 1 ≤ p < q ≤ n. By Lemma 3.1, there exists β ∈ ∆̄ such
that (mp(β), mq(β)) = (mp(α)+1, mq(α)−1) and mt(β) = mt(α) for t 6= p, q. Now, for any
1 < j ≤ n, there exists a permutation σ ∈ Sn so that σ(p) = 1 and σ(q) = j. Furthermore,

by Proposition 2.5 (g), we see that λα =
∏n

i=1 λ
mi(α)
σ(i) and λβ =

∏n
i=1 λ

mi(β)
σ(i) are eigenvalues

of K(T ). It follows that ηλα and ηλβ are eigenvalues of ηK(T ), and hence both of them
are positive. Consequently,

λα/λβ = λj/λ1 > 0, 1 ≤ j ≤ n.

Thus, all the eigenvalues of T have the same argument, that is, ξT is positive definite for
some ξ ∈ C with |ξ| = 1. Since both K(ξT ) = ξmK(T ) and ηK(T ) are positive definite, we
see that ξm = η as asserted. 2

Theorem 5.4 Suppose (χ, n) is not of the determinant type. Let T ∈ End (V ). Then K(T )
is unitary or a nonzero scalar if and only if T has the corresponding property.

Proof: The sufficiency part is clear. To prove the converse, suppose K(T ) is unitary
(respectively, a scalar). Since (χ, n) is not of the determinant type and K(T ) is normal,
by Corollary 5.2 we see that T is normal. Suppose T has eigenvalues λ1, . . . , λn. One
can use arguments similar to those in the proof of Theorem 5.3 to show that |λj/λ1| = 1
(respectively, λj/λ1 = 1) for all j = 2, . . . , n. The result follows. 2

Theorem 5.5 Let r = µ(∆̄) and T ∈ End (V ) with rank (T ) ≥ r. If there exists η ∈ C with
|η| = 1 such that ηK(T ) is (i) Hermitian, (ii) positive semi-definite, or (iii) an orthogonal
projection, then one of the following holds.
(a) There exists ξ ∈ C with ξm = η such that ξT has the corresponding property.
(b) (χ, n) is of the special type, and T = T1 ⊕ 0, where T1 is an invertible operator acting

on an r-dimensional subspace V1 of V , and ηdet (T1)m/r is (i) real, (ii) positive, or (iii)
equal to 1.

Proof: The sufficiency part is clear. Conversely, if K(T ) satisfies (i), (ii), or (iii), then
K(T ) is normal. Hence T satisfies condition (a) or (b) of Theorem 5.1. If Theorem 5.1 (a)
holds, then T is normal. One can use arguments similar to those in the proof of Theorem
5.3 to show that condition (a) of this theorem holds. If Theorem 5.1 (b) holds, one easily
checks that condition (b) of Theorem 5.5 holds.

2

Note that Theorem 5.5 (i) covers the special cases when K(T ) is Hermitian or skew-
Hermitian.
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6 Equality of induced operators

We now determine the conditions for two induced operators to be equal.

Theorem 6.1 Let r = µ(∆̄). Then S, T ∈ End (V ) satisfy K(S) = K(T ) if and only if
one of the following holds.
(a) rank (S) < r and rank (T ) < r.
(b) There exists ξ ∈ C with ξm = 1 such that S = ξT .
(c) (χ, n) is of the special type, and there are unitary operators U, V ∈ End (V ) such that

USV = S1⊕0 and UTV = T1⊕0, where S1 and T1 acting on an r-dimensional subspace
V1 of V , and det (S1)m/r = det (T1)m/r.

Proof: If (a) or (b) holds, then clearly K(S) = K(T ). If (c) holds, then by Theorem 4.1

K(U)K(S)K(V ) = K(S1 ⊕ 0) = K(T1 ⊕ 0) = K(U)K(T )K(V )

and hence K(S) = K(T ). Conversely, suppose K(S) = K(T ). If K(S) = K(T ) = 0,
then (a) holds. Otherwise, let U, V ∈ End (V ) be unitary such that USV has matrix
representation [USV ]B = diag (a1, . . . , ak, 0, . . . , 0) with respect to an orthonormal basis
B = {e1, . . . , en}, where k ≥ r and a1 ≥ · · · ≥ ak > 0. Suppose D, P ∈ End (V ) are such
that

[D]B = diag (1/a1, . . . , 1/ak)⊕ In−k and [P ]B = Ik ⊕ 0n−k.

Then

K(P ) = K(USV D)

= K(U)K(S)K(V )K(D)

= K(U)K(T )K(V )K(D)

= K(UTV D)

is an orthogonal projection. Then Theorem 5.5 (a) or (b.iii) holds.
Case 1. If Theorem 5.5 (b.iii) holds for UTV D, that is, k = r and [UTV D]B is unitarily

similar to C ⊕ 0n−r ∈ Mn such that det (C)m/r = 1. Suppose

[UTV D]B =
(

C1 C2

C3 C4

)

such that C1 ∈ Mr. Now

K(P ) = K(P 3) = (K(P ))3 = K(P )K(UTV D)K(P ) = K(PUTV DP ) = K

((
C1 0
0 0

))
.
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Using the fact that (χ, n) is of the special type, we see that

1 = (ζ1 · · · ζr)m/r = det (C1)m/r,

where ζ1, . . . , ζr are the eigenvalues of C1. Thus |det (C1)| = |det (C)| is the product of
the r largest singular values of C ⊕ 0n−r, which is unitarily similar to [UTV D]B. By [4,
Theorem 4], we see that [UTV D]B = C1 ⊕ C4. Since UTV D has rank r, we see that
C4 = 0n−r. Thus condition (c) of the theorem holds with [USV ]B = A1 ⊕ 0n−r and
[UTV ]B = [UTV D]B[D]−1

B = C1A1 ⊕ 0n−r, where A1 = diag (a1, . . . , ar).
Case 2. If Theorem 5.5 (a) holds for UTV D, that is, ζUTV D is an orthogonal projection

for some ζ ∈ C with ζm = 1. Suppose

[ζUTV D]B =
(

C1 C2

C∗
2 C3

)

with C1 ∈ Mk. We claim that C1 = Ik, and hence [ζUTV D]B = Ik ⊕ 0n−k. If our claim
were not true, then C1 has eigenvalues c1 ≥ · · · ≥ ck with 1 ≥ c1 and 1 > ck ≥ 0. Since
[P (ζUTV D)P ]B = C1⊕ 0n−k, it follows from Theorem 5.5 that K(P (ζUTV D)P ) is not an
orthogonal projection. But then

K(P ) = K(P 3) = (K(P ))3 = K(P )K(ζUTV D)K(P ) = K(P (ζUTV D)P ),

which is a contradiction. Thus our claim is proved and hence [USV ]B = A1 and [ζUTV ]B =
[ζUTV D]B[D]−1

B = A1, where A1 = diag (a1, . . . , ak, 0, . . . , 0), that is, condition (b) of the
theorem holds with ξ = ζ. 2

The results in this sections explain why if χ is the principal character or if rank (T ) > m,
then (I) – (III) hold. Also, one sees why (I) – (III) fail if χ is the alternate character on
Sm. In particular, we have the following corollary.

Corollary 6.2 Suppose (χ, n) is not of the determinant type.
(a) Let S, T ∈ End (V ) be such that

rank (T ) ≥
{

µ(∆̄) + 1 if (χ, n) is of the special type,
µ(∆̄) otherwise.

Then (I) – (III) hold.
(b) If (χ, n) is of the special type, then there exist S, T ∈ End (V ) (with ranks equal to µ(∆̄) )

such that all of (I) – (III) fail.
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