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Integral Equations
and Operator Theory

λ-Aluthge iteration and spectral radius

Tin-Yau Tam

Abstract. Let T ∈ B(H) be an invertible operator on the complex Hilbert
space H. For 0 < λ < 1, we extend Yamazaki’s formula of the spectral radius
in terms of the λ-Aluthge transform ∆λ(T ) := |T |λU |T |1−λ where T = U |T |
is the polar decomposition of T . Namely, we prove that limn→∞ |||∆n

λ(T ) ||| =
r(T ) where r(T ) is the spectral radius of T and ||| · ||| is a unitarily invariant
norm such that (B(H), ||| · ||| ) is a Banach algebra with ||| I ||| = 1.

1. Introduction

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. For 0 < λ < 1, the λ-Aluthge transform of T [2, 5, 11, 15]
is

∆λ(T ) := |T |λU |T |1−λ,

where T = U |T | is the polar decomposition of T , that is, U is a partial isometry
and |T | = (T ∗T )1/2. Set ∆n

λ(T ) := ∆λ(∆n−1
λ (T )), n ≥ 1 and ∆0

λ(T ) := T . When
λ = 1

2 , it is called the Althuge transform [1] of T . See [3, 4, 7, 8, 11, 12, 13, 19].
Yamazaki [18] established the following interesting result

lim
n→∞

‖∆n
1
2
(T )‖ = r(T ), (1.1)

where r(T ) is the spectral radius of T and ‖T‖ is the spectral norm of T . Wang
[17] then gave an elegant simple proof of (1.1) but apparently there is a gap. See
Remark 2.6 for details and Remark 2.9 for a fix. Clearly

‖∆λ(T )‖ ≤ ‖T‖ (1.2)

and thus {‖∆n
λ(T )‖}n∈N is nonincreasing. Since the spectra of T and ∆λ(T ) are

identical [11, 5],
r(∆λ(T )) = r(T ). (1.3)
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Antezana, Massey and Stojanoff [5] proved that for any square matrix X,

lim
n→∞

‖∆n
λ(X)‖ = r(X). (1.4)

When T is invertible, the polar decomposition T = U |T | is unique [16, p.315] in
which U is unitary and |T | is invertible positive so that ∆λ(T ) is also invertible.
Our goal is to show that (1.4) is true for invertible operator T ∈ B(H) and
unitarily invariant norm under which B(H) is a Banach algebra with ||| I ||| = 1
[16, p.227-228], by extending the ideas in [17].

2. Main results

The following inequalities are known as Heinz’s inequalities [10, 14].

Lemma 2.1. (Heinz) Let ||| · ||| be a unitarily invariant norm on B(H). For positive
A,B ∈ B(H), X ∈ B(H) and 0 ≤ α ≤ 1,

|||AαXB1−α ||| ≤ |||AX ||| α |||XB ||| 1−α (2.1)
|||AαXBα ||| ≤ |||AXB ||| α |||X ||| 1−α. (2.2)

Remark 2.2. In [17] inequality (2.2) and McIntosh inequality

|||A∗XB ||| ≤ |||AA∗X ||| 1/2 |||XBB∗ ||| 1/2

are used in the proof of (1.1). Yamazaki’s proof [18] uses (2.2). We note that (2.2)
and McIntosh’s inequality follow from (2.1).

We simply write T0 := T and Tn := ∆n
λ(T ), n ∈ N, once we fix 0 ≤ λ ≤ 1.

Lemma 2.3. Let T ∈ B(H) and 0 ≤ λ ≤ 1. Let ||| · ||| be a unitarily invariant norm
on B(H). Then for k, n ∈ N,

||| (Tn+1)k ||| ≤ ||| (Tn)k ||| . (2.3)

So for each k ∈ N, limn→∞ ||| (Tn)k ||| exists. Moreover if T is invertible, then

||| (Tn+1)k|Tn|2λ−1 ||| ≤ ||| (Tn)k+1 ||| λ ||| (Tn)k−1 ||| 1−λ, (2.4)

||| |Tn|1−2λ(Tn+1)k ||| ≤ ||| (Tn)k+1 ||| 1−λ ||| (Tn)k−1 ||| λ. (2.5)

Proof. Denote by Tn = UnTn the polar decomposition of Tn. Since Tn+1 =
|Tn|λUn|Tn|1−λ,

(Tn+1)k = |Tn|λ(Tn)k−1Un|Tn|1−λ. (2.6)

By (2.1)

||| (Tn+1)k ||| ≤ ||| |Tn|(Tn)k−1Un ||| λ ||| (Tn)k−1Un|Tn| ||| 1−λ = ||| (Tn)k |||
since ||| · ||| is unitarily invariant. So (2.3) is established.

Suppose that T is invertible so that |Tn|2λ−1 exists for 0 ≤ λ ≤ 1. From (2.6)

(Tn+1)k|Tn|2λ−1 = |Tn|λ(Tn)k−1Un|Tn|λ.



Vol. 99 (9999) λ-Aluthge iteration and spectral radius 3

Since ||| · ||| is unitarily invariant and Un is unitary, by (2.2)

||| (Tn+1)k|Tn|2λ−1 ||| ≤ ||| |Tn|(Tn)k−1Un|Tn| ||| λ ||| (Tn)k−1Un ||| 1−λ

= ||| (Tn)k+1 ||| λ ||| (Tn)k−1 ||| 1−λ.

Similarly (2.5) is established. ¤

When λ = 1/2, |Tn|2λ−1 = I for any T ∈ B(H). But the above computation
does not work without assuming that T is invertible since the polar decomposition
of a general T ∈ B(T ) only yields T = U |T | where U is only a partial isometry
[16, p.316]. The spectral norm enjoys ‖T‖ = ‖ |T | ‖ which is not valid for general
unitarily invariant norm ||| · ||| .

Lemma 2.4. (Spectral radius formula) [16, p.235] Suppose that B(H) is a Banach
algebra with respect to the norm ||| · ||| (not necessarily unitarily invariant). For
T ∈ B(H),

r(T ) = lim
k→∞

|||T k ||| 1/k = inf
k∈N

|||T k ||| 1/k.

In particular |||T ||| ≥ r(T ).

For B(H) to be a Banach algebra with respect to ||| · ||| , the norm in Lemma
2.4 has to be submultiplicative, i.e., |||ST ||| ≤ |||S ||| |||T ||| [16, p.227]. The unitarily
invariant norm ||| · ||| in Lemma 2.3 need not be so. The condition ||| I ||| = 1 is
inessential for the formula r(T ) = limk→∞ |||T k ||| 1/k, i.e, it is still valid even
||| I ||| > 1. The formula r(T ) = infk∈N |||T k ||| 1/k is valid for any normed algebra [6,
p.236]).

Lemma 2.5. Suppose that B(H) is a Banach algebra with respect to the unitarily
invariant norm ||| · ||| and ||| I ||| = 1. Let 0 < λ < 1. Let sk := limn→∞ ||| (Tn)k |||
and s := s1. If T ∈ B(H) is non-quasinilpotent, then s > 0. Moreover if T ∈ B(H)
is invertible, then sk = sk for each k ∈ N.

Proof. Let T ∈ B(H). By (2.3), for each k ∈ N, the sequence { ||| (Tn)k ||| }n∈N is
nonincreasing so that sk := limn→∞ ||| (Tn)k ||| exists. By Lemma 2.4 and (1.3)
|||Tn ||| ≥ r(Tn) = r(T ). The spectrum σ(T ) of T is a compact nonempty set. If T
is non-quasinilpotent, i.e., r(T ) > 0 so that

s := s1 = lim
n→∞

|||Tn ||| ≥ r(T ) > 0. (2.7)

Now assume that T is invertible. We proceed by induction to show that sk = sk

for all k ∈ N. When k = 1, the statement is trivial. Suppose that the statement is
true for 1 ≤ k ≤ m.

Case 1: 0 < λ ≤ 1/2. By (2.1) (A = |Tn|, X = B = I) we have

0 < ||| |Tn|1−2λ ||| ≤ ||| |Tn| ||| 1−2λ
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since ||| I ||| = 1 and 0 ≤ 1 − 2λ < 1. Since T is invertible, |Tn| is also invertible
and thus |Tn|2λ−1 exists. So

||| (Tn+1)m |||
||| |Tn| ||| 1−2λ

≤ ||| (Tn+1)m |||
||| |Tn|1−2λ |||

≤ ||| (Tn+1)m|Tn|2λ−1 ||| since ||| · ||| is submultiplicative

≤ ||| (Tn)m+1 ||| λ ||| (Tn)m−1 ||| 1−λ by (2.4)

≤ ||| (Tn)m ||| λ |||Tn ||| λ ||| (Tn)m−1 ||| 1−λ.

By the induction hypothesis, taking limits as n →∞ yields

sm

s1−2λ
≤ sλ

m+1s
(m−1)(1−λ) ≤ smλsλs(m−1)(1−λ),

where s > 0 by (2.7). We have s(m+1)λ ≤ sλ
m+1 ≤ s(m+1)λ and hence sm+1 = sm+1.

Case 2. 1/2 < λ < 1. Similar to Case 1, by (2.1) we have

||| |Tn|2λ−1 ||| ≤ ||| |Tn| ||| 2λ−1

and

||| (Tn+1)m |||
||| |Tn| ||| 2λ−1

≤ ||| (Tn+1)m |||
||| |Tn|2λ−1 |||

≤ ||| |Tn|1−2λTm
n+1 |||

≤ ||| (Tn)m+1 ||| 1−λ ||| (Tn)m−1 ||| λ by (2.5)

≤ ||| (Tn)m ||| 1−λ |||Tn ||| 1−λ ||| (Tn)m−1 ||| λ.

So
sm

s2λ−1
≤ s1−λ

m+1s
(m−1)λ ≤ sm(1−λ)s(1−λ)s(m−1)λ

which leads to sm+1 = sm+1. ¤

Remark 2.6. Suppose λ = 1/2. In the proof of [17, Lemma 4], the possibility that
s = 0 is not considered (the spectral ‖ · ‖ is the norm under consideration). It
amounts to r(T ) = 0, that is, T is quasinilpotent [9, p.50], [13, p.381]. In the
above induction proof, if λ = 1/2, one cannot deduce that sm+1 = sm+1 for ||| · ||| ,
granted that sm ≤ s

1/2
m+1s

(m−1)/2 ≤ sm (that relies on (2.4) which is under the
assumption that T is invertible) is valid. However if ||| · ||| = ‖ · ‖ and λ = 1/2 (the
setting in [17]), then one has sk = sk for all k ∈ N because ‖T‖ = ‖ |T | ‖ for any
T ∈ B(H).

Theorem 2.7. Suppose that B(H) is a Banach algebra with respect to the unitarily
invariant norm ||| · ||| and ||| I ||| = 1. Let T ∈ B(H) be invertible and 0 < λ < 1.
Then

lim
n→∞

|||∆n
λ(T ) ||| = r(T ). (2.8)
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Proof. From (2.3) and Lemma 2.5, for each k ∈ N, the sequence { ||| (Tn)k ||| 1/k}n∈N
is nonincreasing and converges to s := limn→∞ |||Tn ||| . So for all n, k ∈ N,

s ≤ ||| (Tn)k ||| 1/k.

Recall (2.7) s ≥ r(T ). Suppose r(T ) < s, that is, r(Tn) < s (for all n). Then for a
fixed n ∈ N and sufficiently large k, by Lemma 2.4, we would have

||| (Tn)k ||| 1/k < s,

a contradiction. So r(T ) = s. ¤

We remark that (2.8) is not true if λ = 0 (since ∆n
0 (T ) = T for all n so that

|||∆n
0 (T ) ||| = |||T ||| ) or λ = 1 (since |||∆n

1 (T ) ||| = |||T ||| for all n). The condition
||| I ||| = 1 is essential, for example, if ||| · ||| = α‖ · ‖ where α > 1, then ||| I ||| = α
but (2.7) is not valid.

Corollary 2.8. Let T ∈ B(H) be invertible and 0 < λ < 1. Then

lim
n→∞

‖∆n
λ(T )‖ = r(T ).

Clearly (1.4) follows from Corollary 2.8 by the continuity of spectral radius
and the continuity of ∆1/2 [5, Theorem 3.6] in the finite dimensional case. However,
such continuity result is invalid for the infinite dimensional case [9, p.54]. Moreover
the group of invertible operators is not dense [9, p.70].

We surmise that Theorem 2.7 is true for non-invertible T ∈ B(T ) as well.

Remark 2.9. Of course the statement in Corollary 2.8 is valid for any T ∈ B(H)
when λ = 1/2, i.e., (1.1). As pointed out in Remark 2.6, there is a gap in the
proof in [17]. We now fill the gap. By Remark 2.6 limn→∞ ‖∆n

1/2(T )‖ = r(T )
is valid for non-quasinilpotent T ∈ B(H) as the proof of Theorem 2.7 works for
non-quasinilpotent T (because (2.3) is valid for any T ∈ B(H) and sk = sk for non-
quasinilpotent by Remark 2.6). If T is quasinilpotent, then consider the orthogonal
sum T ⊕ cI ∈ B(H ⊕ H). We may consider T 6= 0. Notice that T ⊕ cI is non-
quasinilpotent if c > 0. Since ∆n

1/2(T ⊕ cI) = ∆n
1/2(T )⊕∆n

1/2(cI) = ∆n
1/2(T )⊕ cI

and r(T ⊕ cI) = r(cI) = c, by Remark 2.6,

max{‖∆n
1/2(T )‖, c} = ‖∆n

1/2(T )⊕ cI‖ = ‖∆n
1/2(T ⊕ cI)‖ → r(T ⊕ cI) = c,

for any c > 0, as n →∞. Letting c → 0 to yield limn→∞ ‖∆n
1/2(T )‖ = 0.

Acknowledgement: The author is thankful to Ilya Spitkovsky for some helpful
comments that lead to the improvement of the paper, in particular Remark 2.9.
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