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A-Aluthge iteration and spectral radius
Tin-Yau Tam

Abstract. Let ' € B(H) be an invertible operator on the complex Hilbert
space H. For 0 < A < 1, we extend Yamazaki’s formula of the spectral radius
in terms of the A\-Aluthge transform Ax(T) := |T|*U|T|*~>* where T = U|T|
is the polar decomposition of T'. Namely, we prove that lim,—. || AY(T) || =
r(T) where r(T) is the spectral radius of 7" and || - || is a unitarily invariant
norm such that (B(H), || - ||) is a Banach algebra with || I || = 1.

1. Introduction

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. For 0 < A < 1, the A-Aluthge transform of T' [2} [5, [TT), [T5]
is

ANT) = [TPUITI',
where T' = U|T)| is the polar decomposition of T, that is, U is a partial isometry
and |T| = (T*T)"/2. Set AY(T) := Ax(AY H(T)), n > 1 and AY(T) := T. When
A = 1 it is called the Althuge transform [1] of T. See [3, 4, [7, 8, [T, 12, 13, [19].

2
Yamazaki [18] established the following interesting result
Tim_ ([ A} ()] = (D), (1)

where 7(T) is the spectral radius of T' and ||T'|| is the spectral norm of T. Wang
[17] then gave an elegant simple proof of (I.1) but apparently there is a gap. See
Remark 2.6 for details and Remark [2.9 for a fix. Clearly

[AXD)] < [Tl (1.2)
and thus {||AY(T)||}nen is nonincreasing. Since the spectra of T and Ax(T") are
identical [111 5],

r(A\(T)) = r(T). (1.3)
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Antezana, Massey and Stojanoff [5] proved that for any square matrix X,

Tim_ [ AR(X)] = r(X). (1.4)
When T is invertible, the polar decomposition T' = U|T| is unique [16, p.315] in
which U is unitary and |T'| is invertible positive so that Ay (T) is also invertible.
Our goal is to show that (1.4) is true for invertible operator 7' € B(H) and

unitarily invariant norm under which B(H) is a Banach algebra with || I] =1
[16, p.227-228], by extending the ideas in [17].

2. Main results

The following inequalities are known as Heinz’s inequalities [10), [14].

Lemma 2.1. (Heinz) Let || - || be a unitarily invariant norm on B(H). For positive
ABeB(H), X € B(H) and 0< a < 1,
JA“XB=] < JAX|*|XB['™ (2.1)
J4°XBo| < JAXBJo|X |t

Remark 2.2. In [17] inequality (2.2) and McIntosh inequality
| A*XB| < | AA*X | '* | XBB* | '/

are used in the proof of (L.I)). Yamazaki’s proof [18] uses (2.2). We note that (2.2)
and McIntosh’s inequality follow from (2.1)).

We simply write Ty := T and T,, := AY(T'), n € N, once we fix 0 < X < L.

Lemma 2.3. Let T € B(H) and 0 < A < 1. Let || - | be a unitarily invariant norm
on B(H). Then for k,n € N,

(T )™ I < I(T)" - (2.3)
So for each k € N, lim,, o || (73,)* || exists. Moreover if T is invertible, then

I (T )1 T () I () (2.4)
T =22 (Tgen) (T A T (2.5)

IAINA

Proof. Denote by T, = U,T, the polar decomposition of T,,. Since T,,+1 =
T AU T2,
(Tn+1)k = |Tn|A(T7L)k71Un|Tn|17>\- (2-6)
By (2.1)
I (T )* Il < Nl (T)* " U I (L) T UL Tl 1 = (T

since || - || is unitarily invariant. So (2.3) is established.
Suppose that T is invertible so that |T},|?*~! exists for 0 < A < 1. From (2.0)

(Tn+1)k|Tn|2)\71 = |Tn|)\(Tn)k71Un‘Tn|/\-
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Since || - || is unitarily invariant and U, is unitary, by (2.2)

(T )M 1T < Tl (T0) o U T I () U 12
() (T

Similarly (2.5) is established. O

When A = 1/2, |T,,|**~! = I for any T € B(H). But the above computation
does not work without assuming that 7T is invertible since the polar decomposition
of a general T' € B(T) only yields T' = U|T| where U is only a partial isometry
[16, p.316]. The spectral norm enjoys ||T|| = || || || which is not valid for general
unitarily invariant norm || - || .

Lemma 2.4. (Spectral radius formula) [16, p.235] Suppose that B(H) is a Banach
algebra with respect to the norm || - || (not necessarily unitarily invariant). For
T € B(H),

r(T) = lim ||T%| Y% = inf | T% | /*.
k—o0 keN
In particular | T'|| > (7).

For B(H) to be a Banach algebra with respect to || - ||, the norm in Lemma
2.4lhas to be submultiplicative, i.e., || ST || < || S| IT || [16, p.227]. The unitarily
invariant norm || - || in Lemma 2.3/ need not be so. The condition ||[I] =1 is
inessential for the formula 7(T) = limy_.o || T% || /%, i.e, it is still valid even
I I > 1. The formula r(T) = infgxey || 7% || */* is valid for any normed algebra [0,
p.236)).

Lemma 2.5. Suppose that B(H) is a Banach algebra with respect to the unitarily
invariant norm || - || and ||| = 1. Let 0 < A < 1. Let sg := lim,, o || (T0,)* ||
and s := s1. If T' € B(H) is non-quasinilpotent, then s > 0. Moreover if T' € B(H)
is invertible, then s, = s* for each k € N.

Proof. Let T € B(H). By (2.3), for each k € N, the sequence { || (T},)" || }nen is
nonincreasing so that sy := lim, .o || (T)* || exists. By Lemma 2.4 and (1.3)
I Tl = r(Tn) = r(T). The spectrum o(T') of T is a compact nonempty set. If T’
is non-quasinilpotent, i.e., (T") > 0 so that

si=s1= lim [T, >7(T)>0. (2.7)

Now assume that 7" is invertible. We proceed by induction to show that s = s*
for all k € N. When k = 1, the statement is trivial. Suppose that the statement is
true for 1 < k < m.

Case 1: 0 < A <1/2. By (2.1) (A=1T,|, X = B=1I) we have

—2A —2A
0 < T2 < Tl 12
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since ||I]] =1 and 0 <1— 2\ < 1. Since T is invertible, |T},| is also invertible
and thus |T,|>* ! exists. So
I (T )™ I (T )™
Tl =22 = T2
< N (Tge )™ TP since || - || is submultiplicative
< @)™ @)™ by @24)
< @)™ I N I (T

By the induction hypothesis, taking limits as n — oo yields

sm
S < s;\an(m*l)(l*A) < gMAAm=D-N)

where s > 0 by (2.7). We have s(mTDA < g2 < s(m+DA and hence ;41 = s™FL.
Case 2. 1/2 < A < 1. Similar to Case 1, by (2.1) we have

TP~ < Tl 122

and
I (T )™ I o B (T )™ ]
Il 2= = I TaPA
< T =20l
< @)™ A @)Y by @25)
< @)™ I NT T )™
So
528*77: < 1A MDA < gm0 (123 (1)
which leads to s,,41 = s™ 11 O

Remark 2.6. Suppose A = 1/2. In the proof of [I7, Lemma 4], the possibility that
s = 0 is not considered (the spectral || - || is the norm under consideration). It
amounts to r(T) = 0, that is, T is quasinilpotent [9, p.50], [13, p.381]. In the
above induction proof, if A = 1/2, one cannot deduce that s, = s™*! for || - ||,

granted that s < sin/ils(mfl)m < s™ (that relies on (2.4) which is under the
assumption that T is invertible) is valid. However if || - || = |- || and A = 1/2 (the
setting in [17]), then one has s, = s* for all k € N because ||T|| = || |T||| for any
T € B(H).

Theorem 2.7. Suppose that B(H) is a Banach algebra with respect to the unitarily
invariant norm || - || and ||I|| = 1. Let T € B(H) be invertible and 0 < A < 1.
Then

lim [ AL(T) | = (D). (2.8)
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Proof. From (2.3) and Lemma 2.5, for each k € N, the sequence { || (T5,)* | /*}nen
is nonincreasing and converges to s := lim, . || Ty || - So for all n,k € N,

s < I(T)* 1.

Recall (2.7) s > r(T). Suppose r(T') < s, that is, r(T,,) < s (for all n). Then for a
fixed n € N and sufficiently large k, by Lemma 2.4, we would have

(T 1" <,
a contradiction. So 7(T') = s. O

We remark that (2.8) is not true if A =0 (since A{(T") =T for all n so that
ITAGT) = 1T |) or A =1 (since ||AT(T)|| = || T for all n). The condition
Il =1 is essential, for example, if || - || = «| - || where & > 1, then | I| = «
but (2.7) is not valid.

Corollary 2.8. Let T' € B(H) be invertible and 0 < A < 1. Then
lim [ A3(T)] = r(T).

Clearly (1.4)) follows from Corollary [2.8 by the continuity of spectral radius
and the continuity of Ay /5 [5, Theorem 3.6] in the finite dimensional case. However,
such continuity result is invalid for the infinite dimensional case [9, p.54]. Moreover
the group of invertible operators is not dense [9, p.70].

We surmise that Theorem 2.7/ is true for non-invertible T' € B(T') as well.

Remark 2.9. Of course the statement in Corollary 2.8 is valid for any T' € B(H)
when A = 1/2; i.e., (L.1). As pointed out in Remark 2.6, there is a gap in the
proof in [I7]. We now fill the gap. By Remark 2.6/ limp oo [|A7 o(T)[| = r(T)
is valid for non-quasinilpotent T' € B(H) as the proof of Theorem 2.7 works for
non-quasinilpotent 7' (because (2.3) is valid for any T' € B(H) and s = s* for non-
quasinilpotent by Remark 2.6)). If T' is quasinilpotent, then consider the orthogonal
sum T @ ¢l € B(H & H). We may consider T" # 0. Notice that T @ ¢I is non-
quasinilpotent if ¢ > 0. Since A}, (T @ cI) = AT o (T) ® A7 )5 (cl) = AT o (T) ® cl
and r(T @ cI) = r(cI) = ¢, by Remark 2.0,

max{[|AT), (T)[|, ¢} = [|AT)o(T) @ el || = [|AT)o(T @ cD)| = (T @ el) = ¢,
for any ¢ > 0, as n — oo. Letting ¢ — 0 to yield lim,_ HA?/Z(T)H = 0.

Acknowledgement: The author is thankful to Ilya Spitkovsky for some helpful
comments that lead to the improvement of the paper, in particular Remark [2.9.
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