λ-Aluthge iteration and spectral radius

Tin-Yau Tam

Abstract

Let $T \in B(H)$ be an invertible operator on the complex Hilbert space H. For $0<\lambda<1$, we extend Yamazaki's formula of the spectral radius in terms of the λ-Aluthge transform $\Delta_{\lambda}(T):=|T|^{\lambda} U|T|^{1-\lambda}$ where $T=U|T|$ is the polar decomposition of T. Namely, we prove that $\lim _{n \rightarrow \infty}\left\|\Delta_{\lambda}^{n}(T)\right\|=$ $r(T)$ where $r(T)$ is the spectral radius of T and $\|\cdot\|$ is a unitarily invariant norm such that $(B(H),\|\cdot\|)$ is a Banach algebra with $\|I\|=1$.

1. Introduction

Let H be a complex Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on H. For $0<\lambda<1$, the λ-Aluthge transform of T [2, 5, 11, 15] is

$$
\Delta_{\lambda}(T):=|T|{ }^{\lambda} U|T|^{1-\lambda}
$$

where $T=U|T|$ is the polar decomposition of T, that is, U is a partial isometry and $|T|=\left(T^{*} T\right)^{1 / 2}$. Set $\Delta_{\lambda}^{n}(T):=\Delta_{\lambda}\left(\Delta_{\lambda}^{n-1}(T)\right), n \geq 1$ and $\Delta_{\lambda}^{0}(T):=T$. When $\lambda=\frac{1}{2}$, it is called the Althuge transform [1] of T. See [3, 4, [7, 8, 11, 12, 13, 19]. Yamazaki [18] established the following interesting result

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Delta_{\frac{1}{2}}^{n}(T)\right\|=r(T) \tag{1.1}
\end{equation*}
$$

where $r(T)$ is the spectral radius of T and $\|T\|$ is the spectral norm of T. Wang [17] then gave an elegant simple proof of (1.1) but apparently there is a gap. See Remark 2.6 for details and Remark [2.9 for a fix. Clearly

$$
\begin{equation*}
\left\|\Delta_{\lambda}(T)\right\| \leq\|T\| \tag{1.2}
\end{equation*}
$$

and thus $\left\{\left\|\Delta_{\lambda}^{n}(T)\right\|\right\}_{n \in \mathbb{N}}$ is nonincreasing. Since the spectra of T and $\Delta_{\lambda}(T)$ are identical [11, 5],

$$
\begin{equation*}
r\left(\Delta_{\lambda}(T)\right)=r(T) \tag{1.3}
\end{equation*}
$$

[^0]Antezana, Massey and Stojanoff [5] proved that for any square matrix X,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Delta_{\lambda}^{n}(X)\right\|=r(X) \tag{1.4}
\end{equation*}
$$

When T is invertible, the polar decomposition $T=U|T|$ is unique [16, p.315] in which U is unitary and $|T|$ is invertible positive so that $\Delta_{\lambda}(T)$ is also invertible. Our goal is to show that (1.4) is true for invertible operator $T \in B(H)$ and unitarily invariant norm under which $B(H)$ is a Banach algebra with $\|I\|=1$ [16, p.227-228], by extending the ideas in [17.

2. Main results

The following inequalities are known as Heinz's inequalities [10, 14 .
Lemma 2.1. (Heinz) Let $\|\|\|$ be a unitarily invariant norm on $B(H)$. For positive $A, B \in B(H), X \in B(H)$ and $0 \leq \alpha \leq 1$,

$$
\begin{align*}
\left\|A^{\alpha} X B^{1-\alpha}\right\| & \leq\|A X\|^{\alpha}\|X B\|^{1-\alpha} \tag{2.1}\\
\left\|A^{\alpha} X B^{\alpha}\right\| & \leq\|A X B\|^{\alpha}\|X\|^{1-\alpha} . \tag{2.2}
\end{align*}
$$

Remark 2.2. In [17] inequality (2.2) and McIntosh inequality

$$
\left\|A^{*} X B\right\| \leq\left\|A A^{*} X\right\|^{1 / 2}\left\|X B B^{*}\right\|^{1 / 2}
$$

are used in the proof of (1.1). Yamazaki's proof [18] uses (2.2). We note that (2.2) and McIntosh's inequality follow from (2.1).

We simply write $T_{0}:=T$ and $T_{n}:=\Delta_{\lambda}^{n}(T), n \in \mathbb{N}$, once we fix $0 \leq \lambda \leq 1$.
Lemma 2.3. Let $T \in B(H)$ and $0 \leq \lambda \leq 1$. Let $\|\cdot\|$ be a unitarily invariant norm on $B(H)$. Then for $k, n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|\left(T_{n+1}\right)^{k}\right\| \leq\left\|\left(T_{n}\right)^{k}\right\| . \tag{2.3}
\end{equation*}
$$

So for each $k \in \mathbb{N}, \lim _{n \rightarrow \infty}\| \|\left(T_{n}\right)^{k} \|$ exists. Moreover if T is invertible, then

$$
\begin{align*}
& \left\|\left(T_{n+1}\right)^{k}\left|T_{n}\right|^{2 \lambda-1}\right\| \leq\left\|\left(T_{n}\right)^{k+1}\right\|^{\lambda}\left\|\left(T_{n}\right)^{k-1}\right\|^{1-\lambda}, \tag{2.4}\\
& \left\|\left|T_{n}\right|^{1-2 \lambda}\left(T_{n+1}\right)^{k}\right\| \leq\left\|\left(T_{n}\right)^{k+1}\right\|^{1-\lambda}\left\|\left(T_{n}\right)^{k-1}\right\|^{\lambda} . \tag{2.5}
\end{align*}
$$

Proof. Denote by $T_{n}=U_{n} T_{n}$ the polar decomposition of T_{n}. Since $T_{n+1}=$ $\left|T_{n}\right|^{\lambda} U_{n}\left|T_{n}\right|^{1-\lambda}$,

$$
\begin{equation*}
\left(T_{n+1}\right)^{k}=\left|T_{n}\right|^{\lambda}\left(T_{n}\right)^{k-1} U_{n}\left|T_{n}\right|^{1-\lambda} \tag{2.6}
\end{equation*}
$$

By (2.1)

$$
\left\|\left(T_{n+1}\right)^{k}\right\| \leq\left\|\left|T_{n}\right|\left(T_{n}\right)^{k-1} U_{n}\right\|^{\lambda}\left\|\left(T_{n}\right)^{k-1} U_{n}\left|T_{n}\right|\right\|^{1-\lambda}=\left\|\left(T_{n}\right)^{k}\right\|
$$

since $\|\cdot\|$ is unitarily invariant. So (2.3) is established.
Suppose that T is invertible so that $\left|T_{n}\right|^{2 \lambda-1}$ exists for $0 \leq \lambda \leq 1$. From (2.6)

$$
\left(T_{n+1}\right)^{k}\left|T_{n}\right|^{2 \lambda-1}=\left|T_{n}\right|^{\lambda}\left(T_{n}\right)^{k-1} U_{n}\left|T_{n}\right|^{\lambda} .
$$

Since $\left\|\left\|\|\right.\right.$ is unitarily invariant and U_{n} is unitary, by (2.2)

$$
\begin{aligned}
\left\|\left(T_{n+1}\right)^{k}\left|T_{n}\right|^{2 \lambda-1}\right\| & \leq\left\|\left|T_{n}\right|\left(T_{n}\right)^{k-1} U_{n}\left|T_{n}\right|\right\|^{\lambda}\left\|\left(T_{n}\right)^{k-1} U_{n}\right\|^{1-\lambda} \\
& =\left\|\left(T_{n}\right)^{k+1}\right\|^{\lambda}\left\|\left(T_{n}\right)^{k-1}\right\|^{1-\lambda} .
\end{aligned}
$$

Similarly (2.5) is established.
When $\lambda=1 / 2,\left|T_{n}\right|^{2 \lambda-1}=I$ for any $T \in B(H)$. But the above computation does not work without assuming that T is invertible since the polar decomposition of a general $T \in B(T)$ only yields $T=U|T|$ where U is only a partial isometry [16, p.316]. The spectral norm enjoys $\|T\|=\||T|\|$ which is not valid for general unitarily invariant norm $\|\cdot\|$.

Lemma 2.4. (Spectral radius formula) [16, p.235] Suppose that $B(H)$ is a Banach algebra with respect to the norm $\|\cdot\| \|$ (not necessarily unitarily invariant). For $T \in B(H)$,

$$
r(T)=\lim _{k \rightarrow \infty}\left\|T^{k}\right\|^{1 / k}=\inf _{k \in \mathbb{N}}\left\|T^{k}\right\|^{1 / k}
$$

In particular $\|T\| \geq r(T)$.
For $B(H)$ to be a Banach algebra with respect to $\|\cdot\| \|$, the norm in Lemma 2.4 has to be submultiplicative, i.e., $||S T\|\leq\|| S||||T||$ [16, p.227]. The unitarily invariant norm $\|\cdot\| \|$ in Lemma 2.3 need not be so. The condition $\|I\|=1$ is inessential for the formula $r(T)=\lim _{k \rightarrow \infty}\left\|T^{k}\right\|^{1 / k}$, i.e, it is still valid even $\|I\|>1$. The formula $r(T)=\inf _{k \in \mathbb{N}}\left\|T^{k}\right\|^{1 / k}$ is valid for any normed algebra [6, p.236]).

Lemma 2.5. Suppose that $B(H)$ is a Banach algebra with respect to the unitarily invariant norm $\|\cdot\|$ and $\|I\|=1$. Let $0<\lambda<1$. Let $s_{k}:=\lim _{n \rightarrow \infty}\left\|\left(T_{n}\right)^{k}\right\|$ and $s:=s_{1}$. If $T \in B(H)$ is non-quasinilpotent, then $s>0$. Moreover if $T \in B(H)$ is invertible, then $s_{k}=s^{k}$ for each $k \in \mathbb{N}$.

Proof. Let $T \in B(H)$. By (2.3), for each $k \in \mathbb{N}$, the sequence $\left\{\left\|\left(T_{n}\right)^{k}\right\|\right\}_{n \in \mathbb{N}}$ is nonincreasing so that $s_{k}:=\lim _{n \rightarrow \infty}\left\|\left(T_{n}\right)^{k}\right\|$ exists. By Lemma 2.4 and (1.3) $\left\|T_{n}\right\| \geq r\left(T_{n}\right)=r(T)$. The spectrum $\sigma(T)$ of T is a compact nonempty set. If T is non-quasinilpotent, i.e., $r(T)>0$ so that

$$
\begin{equation*}
s:=s_{1}=\lim _{n \rightarrow \infty}\left\|T_{n}\right\| \geq r(T)>0 . \tag{2.7}
\end{equation*}
$$

Now assume that T is invertible. We proceed by induction to show that $s_{k}=s^{k}$ for all $k \in \mathbb{N}$. When $k=1$, the statement is trivial. Suppose that the statement is true for $1 \leq k \leq m$.

Case 1: $0<\lambda \leq 1 / 2$. By (2.1) $\left(A=\left|T_{n}\right|, X=B=I\right)$ we have

$$
0<\left\|\left|T_{n}\right|^{1-2 \lambda}\right\| \leq\left\|\left|T_{n}\right|\right\|^{1-2 \lambda}
$$

since $\|I\|=1$ and $0 \leq 1-2 \lambda<1$. Since T is invertible, $\left|T_{n}\right|$ is also invertible and thus $\left|T_{n}\right|^{2 \lambda-1}$ exists. So

$$
\begin{aligned}
\frac{\left\|\left(T_{n+1}\right)^{m}\right\|}{\left\|\left|T_{n}\right|\right\|^{1-2 \lambda}} & \leq \frac{\left\|\left(T_{n+1}\right)^{m}\right\|}{\left\|\left|T_{n}\right|^{1-2 \lambda}\right\|} \\
& \leq\left\|\left(T_{n+1}\right)^{m}\left|T_{n}\right|^{2 \lambda-1}\right\| \quad \text { since }\|\cdot\| \text { is submultiplicative } \\
& \leq\left\|\left(T_{n}\right)^{m+1}\right\|^{\lambda}\left\|\left(T_{n}\right)^{m-1}\right\|^{1-\lambda} \quad \text { by }(\overline{2.4}) \\
& \leq\left\|\left(T_{n}\right)^{m}\right\|^{\lambda}\left\|T_{n}\right\|^{\lambda}\left\|\left(T_{n}\right)^{m-1}\right\|^{1-\lambda} .
\end{aligned}
$$

By the induction hypothesis, taking limits as $n \rightarrow \infty$ yields

$$
\frac{s^{m}}{s^{1-2 \lambda}} \leq s_{m+1}^{\lambda} s^{(m-1)(1-\lambda)} \leq s^{m \lambda} s^{\lambda} s^{(m-1)(1-\lambda)}
$$

where $s>0$ by (2.7). We have $s^{(m+1) \lambda} \leq s_{m+1}^{\lambda} \leq s^{(m+1) \lambda}$ and hence $s_{m+1}=s^{m+1}$.
Case 2. $1 / 2<\lambda<1$. Similar to Case 1, by (2.1) we have

$$
\left\|\left|T_{n}\right|^{2 \lambda-1}\right\| \leq \leq\left\|\left|T_{n}\right|\right\|^{2 \lambda-1}
$$

and

$$
\begin{aligned}
\frac{\left\|\left(T_{n+1}\right)^{m}\right\|}{\left\|\left|T_{n}\right|\right\|^{2 \lambda-1}} & \leq \frac{\left\|\left(T_{n+1}\right)^{m}\right\|}{\left\|\left|T_{n}\right|^{2 \lambda-1}\right\|} \\
& \leq\left\|\left|T_{n}\right|^{1-2 \lambda} T_{n+1}^{m}\right\| \\
& \leq\left\|\left(T_{n}\right)^{m+1}\right\|^{1-\lambda}\left\|\left(T_{n}\right)^{m-1}\right\|^{\lambda} \quad \text { by }(\overline{2.5}) \\
& \leq\left\|\left(T_{n}\right)^{m}\right\|^{1-\lambda}\left\|T_{n}\right\|^{1-\lambda}\left\|\left(T_{n}\right)^{m-1}\right\|^{\lambda} .
\end{aligned}
$$

So

$$
\frac{s^{m}}{s^{2 \lambda-1}} \leq s_{m+1}^{1-\lambda} s^{(m-1) \lambda} \leq s^{m(1-\lambda)} s^{(1-\lambda)} s^{(m-1) \lambda}
$$

which leads to $s_{m+1}=s^{m+1}$.
Remark 2.6. Suppose $\lambda=1 / 2$. In the proof of [17, Lemma 4], the possibility that $s=0$ is not considered (the spectral $\|\cdot\|$ is the norm under consideration). It amounts to $r(T)=0$, that is, T is quasinilpotent [9, p.50], [13, p.381]. In the above induction proof, if $\lambda=1 / 2$, one cannot deduce that $s_{m+1}=s^{m+1}$ for $\|\cdot\|$, granted that $s^{m} \leq s_{m+1}^{1 / 2} s^{(m-1) / 2} \leq s^{m}$ (that relies on (2.4) which is under the assumption that T is invertible) is valid. However if $\|\cdot\|\|=\| \cdot \|$ and $\lambda=1 / 2$ (the setting in [17), then one has $s_{k}=s^{k}$ for all $k \in \mathbb{N}$ because $\|T\|=\||T|\|$ for any $T \in B(H)$.

Theorem 2.7. Suppose that $B(H)$ is a Banach algebra with respect to the unitarily invariant norm $\|\cdot\|$ and $\|I\|=1$. Let $T \in B(H)$ be invertible and $0<\lambda<1$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Delta_{\lambda}^{n}(T)\right\| \|=r(T) \tag{2.8}
\end{equation*}
$$

Proof. From (2.3) and Lemma 2.5, for each $k \in \mathbb{N}$, the sequence $\left\{\left\|\left(T_{n}\right)^{k}\right\|^{1 / k}\right\}_{n \in \mathbb{N}}$ is nonincreasing and converges to $s:=\lim _{n \rightarrow \infty}\left\|T_{n}\right\|$. So for all $n, k \in \mathbb{N}$,

$$
s \leq\left\|\left(T_{n}\right)^{k}\right\|^{1 / k} .
$$

Recall (2.7) $s \geq r(T)$. Suppose $r(T)<s$, that is, $r\left(T_{n}\right)<s$ (for all n). Then for a fixed $n \in \mathbb{N}$ and sufficiently large k, by Lemma 2.4, we would have

$$
\left\|\left(T_{n}\right)^{k}\right\|^{1 / k}<s
$$

a contradiction. So $r(T)=s$.
We remark that (2.8) is not true if $\lambda=0$ (since $\Delta_{0}^{n}(T)=T$ for all n so that $\left.\left\|\Delta_{0}^{n}(T)\right\|\|=\| T \|\right)$ or $\lambda=1$ (since $\left\|\Delta_{1}^{n}(T)\right\|=\|T\|$ for all n). The condition $\|I\|=1$ is essential, for example, if $\|\cdot\|=\alpha\|\cdot\|$ where $\alpha>1$, then $\|I\|=\alpha$ but (2.7) is not valid.

Corollary 2.8. Let $T \in B(H)$ be invertible and $0<\lambda<1$. Then

$$
\lim _{n \rightarrow \infty}\left\|\Delta_{\lambda}^{n}(T)\right\|=r(T)
$$

Clearly (1.4) follows from Corollary 2.8 by the continuity of spectral radius and the continuity of $\Delta_{1 / 2}$ [5, Theorem 3.6] in the finite dimensional case. However, such continuity result is invalid for the infinite dimensional case [9, p.54]. Moreover the group of invertible operators is not dense [9, p.70].

We surmise that Theorem 2.7 is true for non-invertible $T \in B(T)$ as well.
Remark 2.9. Of course the statement in Corollary 2.8 is valid for any $T \in B(H)$ when $\lambda=1 / 2$, i.e., (1.1). As pointed out in Remark [2.6, there is a gap in the proof in [17]. We now fill the gap. By Remark 2.6 $\lim _{n \rightarrow \infty}\left\|\Delta_{1 / 2}^{n}(T)\right\|=r(T)$ is valid for non-quasinilpotent $T \in B(H)$ as the proof of Theorem 2.7 works for non-quasinilpotent T (because (2.3) is valid for any $T \in B(H)$ and $s_{k}=s^{k}$ for nonquasinilpotent by Remark (2.6). If T is quasinilpotent, then consider the orthogonal sum $T \oplus c I \in B(H \oplus H)$. We may consider $T \neq 0$. Notice that $T \oplus c I$ is nonquasinilpotent if $c>0$. Since $\Delta_{1 / 2}^{n}(T \oplus c I)=\Delta_{1 / 2}^{n}(T) \oplus \Delta_{1 / 2}^{n}(c I)=\Delta_{1 / 2}^{n}(T) \oplus c I$ and $r(T \oplus c I)=r(c I)=c$, by Remark 2.6,

$$
\max \left\{\left\|\Delta_{1 / 2}^{n}(T)\right\|, c\right\}=\left\|\Delta_{1 / 2}^{n}(T) \oplus c I\right\|=\left\|\Delta_{1 / 2}^{n}(T \oplus c I)\right\| \rightarrow r(T \oplus c I)=c
$$ for any $c>0$, as $n \rightarrow \infty$. Letting $c \rightarrow 0$ to yield $\lim _{n \rightarrow \infty}\left\|\Delta_{1 / 2}^{n}(T)\right\|=0$.

Acknowledgement: The author is thankful to Ilya Spitkovsky for some helpful comments that lead to the improvement of the paper, in particular Remark 2.9

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13 (1990), 307-315.
[2] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24 (1996), 497-501.
[3] T. Ando, Aluthge transforms and the convex hull of the eigenvalues of a matrix, Linear Multilinear Algebra 52 (2004), 281-292.
[4] T. Ando and T. Yamazaki, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Algebra Appl. 375 (2003), 299-309.
[5] J. Antezana, P. Massey and D. Stojanoff, λ-Aluthge transforms and Schatten ideas, Linear Algebra Appl. 405 (2005), 177-199.
[6] S.K. Berberian, Lectures in Functional Analysis and Operator Theory, SpringerVerlag, New York-Heidelberg, 1974
[7] M. Chō, I.B. Jung and W.Y. Lee, On Althuthge transform of p-hyponormal operators, Integral Equations Operator Theory 53 (2005), 321-329.
[8] C. Foiaş, I.B. Jung, E. Ko and C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transforms, Pacific J. Math. 209 (2003), 249-259.
[9] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1974.
[10] E. Heinz, Beitrag̈e zur Störungstheoric der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.
[11] I.B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory 37 (2000), 437-448.
[12] I.B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40 (2001), 52-60.
[13] I.B. Jung, E. Ko and C. Pearcy, The iterated Aluthge transform of an operator, Integral Equations Operator Theory 45 (2003), 375-387.
[14] H. Kosaki, Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal. 156 (1998), 429-451.
[15] K. Okubo, On weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl. 371 (2003), 369-375.
[16] W. Rudin, Functional Analysis, McGraw-Hill Inc, New York, 1991.
[17] D. Wang, Heinz and McIntosh inequalities, Aluthge transformation and the spectral radius, Math. Inequal. Appl. 6 (2003), 121-124.
[18] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc. 130 (2002), 1131-1137.
[19] T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl. 341 (2002), 111-117.

Tin-Yau Tam
Department of Mathematics and Statistics, Auburn University, AL 36849-5310, USA
e-mail: tamtiny@auburn.edu

[^0]: 2000 Mathematics Subject Classification. Primary 47A30, 47A63
 In memory of my brother-in-law, Johnny Kei-Sun Man, who passed away on January 16, 2008, at the age of fifty nine.

