

Oct 3, 2007

Jordan Normal Form Revisited

Speaker: Tin-Yau Tam

Graduate Student Seminar

Similarity
Jordan Form
Numerical.
Applications
Proofs
Basis change
A short proof

Page 1 of 19
Go Back

Let us start with some online conversations. conversation 1
conversation 2

Basis change
A short proof

Go Back

Full Screen

Close

1. Similarity

Given $A, B \in \mathbb{C}_{n \times n}$. A is said to be similar to B if there is a nonsingular matrix P such that $P^{-1} A P=B$, denoted by $B \sim A$.
Fact: Similarity is an equivalence relation

1. Reflexive $(A \sim A): A=I A I=I^{-1} A I$ for all $A \in \mathbb{C}_{n \times n}$.
2. Symmetric $(A \sim B$ implies $A \sim B)$: $P^{-1} A P=B$ implies $P B P^{-1}=$ A.
3. Transitive $(A \sim B$ and $B \sim C$ imply $C \sim A) P^{-1} A P=B$ and $Q^{-1} B Q=C$ imply $(P Q)^{-1} A(P Q)=C$.

As an equivalence relation, similarity partitions $\mathbb{C}_{n \times n}$ into equivalence classes \rightarrow representative (normal form, canonical form)

2. Jordan Normal Form

Each $A \in \mathbb{C}_{n \times n}$ is similar to a block diagonal matrix

$$
J=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{p}
\end{array}\right]
$$

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right] \in \mathbb{C}_{n_{i} \times n_{i}}
$$

Remarks: The eigenvalues λ_{i} and λ_{k} may not be distinct for $i \neq k$.

Similarity
Jordan Form
Numerical.
Applications
Proofs
Basis change
A short proof

Title Page

Asir

Page 4 of 19

Example:

$$
A=\left[\begin{array}{cccc}
5 & 4 & 2 & 1 \\
0 & 1 & -1 & -1 \\
-1 & -1 & 3 & 0 \\
1 & 1 & -1 & 2
\end{array}\right]
$$

Similarity

Jordan Form
Numerical...
Applications
Proofs
Basis change
A short proof

Home Page

$$
J=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 4
\end{array}\right], \quad P=\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Check: $A P=P J$.
$P^{-1} A P=J$ where

Title Page

Page 5 of 19

Go Back

Full Screen

A little History:

In 1870 the Jordan canonical form appeared in Treatise on substitutions and algebraic equations by Camille Jordan (1838-1922). It appears in the context of a canonical form for linear substitutions over the finite field of order a prime.

The Jordan of Gauss-Jordan elimination is Wilhelm Jordan (1842 to 1899).

Jordan algebras are called after the German physicist and mathematician Pascual Jordan (1902 to 1980).

3. Numerical unstable

Consider

$$
A=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 1
\end{array}\right]
$$

If $\epsilon=0$, then the Jordan normal form is simply $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. However, for $\epsilon \neq 0$, the Jordan normal form is

$$
\left[\begin{array}{cc}
1+\sqrt{\epsilon} & 0 \\
0 & 1-\sqrt{\epsilon}
\end{array}\right] .
$$

So it is hard to develop a robust numerical algorithm for the Jordan normal form. For this reason, the Jordan normal form is usually avoided in numerical analysis.
Matlab command [P, J] = jordan(A)

4. Applications

Remark: Jordan normal form may be useless for numerical linear algebra, it has a valid place in applied linear algebra.

For recent development, see
Stefano Serra-Capizzano, Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation, SIAM J. Matrix Anal. Appl. 27 (2005), 305-312.
(1) (a) Every $A \in \mathbb{C}_{n \times n}$ is similar to a complex symmetric matrix.
(b) Every $A \in \mathbb{C}_{n \times n}$ is a product of two complex symmetric matrices; one of which can be chosen nonsingular.
(2) $A^{m} \rightarrow 0$ if and only if the eigenvalue moduli of A are less than 1.

Reason: It suffices to consider $J=\left[\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & \ddots & 1 \\ & & & \lambda\end{array}\right]=\lambda I+N \in \mathbb{C}_{k \times k}$.
Since $N^{m}=0$ for all $m \geq k$, we have

$$
J^{m}=(\lambda I+N)^{m}=\sum_{i=0}^{m}\binom{m}{i} \lambda^{i} N^{m-i}=\sum_{i=m-k+1}^{m}\binom{m}{i} \lambda^{i} N^{m-i}
$$

(a) Since the diagonal entries of J^{m} are λ^{m}, if $J^{m} \rightarrow 0$, then $\lambda^{m} \rightarrow 0$, i.e., $|\lambda|<1$.
(b) Conversely, if $|\lambda|<1$, then
$\left|\binom{m}{m-j} \lambda^{m-j}\right|=\left|\frac{m(m-1)(m-2) \cdots(m-j+1) \lambda^{m}}{j!\lambda^{j}}\right| \leq\left|\frac{m^{j} \lambda^{m}}{j!\lambda^{j}}\right| \rightarrow 0$
as $m \rightarrow \infty$ by l'Hopital's rule.
It finds application in population growth.
(3) A is similar to its transpose A^{T} :

By Jordan normal form $A=P J P^{-1}$. So $A \sim A^{T}$ amounts to $J \sim J^{T}$. Now

$$
\left[\begin{array}{llll}
\lambda & & & \\
1 & \ddots & & \\
& & 1 & \lambda
\end{array}\right]=\left[\begin{array}{lll}
& & 1 \\
& & . \\
1 & &
\end{array}\right]\left[\begin{array}{ccc}
\lambda & 1 & \\
& \ddots & \\
& &
\end{array}\right]\left[\begin{array}{lll}
& & \\
& & \\
& & . \\
1 & &
\end{array}\right]
$$

(4) Solution to the a linear system of ODE:

$$
\begin{gathered}
x^{\prime}(t)=A x(t), \quad x(0)=x_{0} \\
x(t)=P e^{t J} P^{-1} x_{0}=P\left[\begin{array}{ccc}
e^{t J_{1}} & & \\
& \ddots & \\
& & e^{t J_{p}}
\end{array}\right] P^{-1} x_{0}
\end{gathered}
$$

where

$$
e^{t J_{i}}=e^{t \lambda_{i}}\left[\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2} & \cdots & \frac{t^{n-1}}{(n-1)!} \\
& 1 & t & \cdots & \frac{t^{n-2}}{(n-2)!} \\
& & \ddots & \\
& & & & 1
\end{array}\right]
$$

5. Proofs

1. Brualdi, Richard A., The Jordan canonical form: an old proof. Amer. Math. Monthly 94 (1987), no. 3, 257-267.
2. Cater, S., An elementary development of the Jordan canonical form. Amer. Math. Monthly 69 (1962), no. 5, 391-393.
3. Filippov, A. F., A short proof of the theorem on reduction of a matrix to Jordan form. Moscow Univ. Bul., 261971 no. 2, 18-19.
4. Fletcher, R.; Sorensen, D. C., An algorithmic derivation of the Jordan canonical form. Amer. Math. Monthly 90 (1983), no. 1, 12-16.
5. Galperin, A.; Waksman, Z., An elementary approach to Jordan theory. Amer. Math. Monthly 87 (1980), no. 9, 728-732.
6. Gohberg, Israel; Goldberg, Seymour, A simple proof of the Jordan decomposition theorem for matrices. Amer. Math. Monthly 103 (1996), no. 2, 157-159.
7. Väliaho, H., An elementary approach to the Jordan form of a matrix. Amer. Math. Monthly 93 (1986), no. 9, 711-714.
8. \qquad

6. Basis change

We switch to the lower triangular version of Jordan normal form: Each $A \in$ $\mathbb{C}_{n \times n}$ is similar to a block diagonal matrix, i.e., for some nonsingular P

$$
P^{-1} A P=J=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{p}
\end{array}\right]
$$

where each block J_{i} is a square matrix of the form (Jordan block)

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & & & \\
1 & \lambda_{i} & & \\
& \ddots & \ddots & \\
& & 1 & \lambda_{i}
\end{array}\right] \in \mathbb{C}_{n_{i} \times n_{i}}
$$

Title Page

Page 12 of 19

Go Back

Full Screen

An interpretation: $P^{-1} A P$ is the matrix representation with respect to a new basis given by the columns of P, since $P^{-1}(\cdot) P$ means a change of basis.

Partition $P=\left[P_{1}|\cdots| P_{p}\right]$ accordingly. Let $P_{i}=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n_{i}}\right] \in \mathbb{C}_{n \times n_{i}}$. Jordan form amounts to

$$
A P_{i}=P_{i} J_{i}=P_{i}\left(\lambda_{i} I+N_{i}\right), \quad N_{i}=\left[\begin{array}{llll}
0 & & & \\
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right]
$$

From $A P_{i}=P_{i}\left(\lambda_{i} I+N_{i}\right)$ we have

$$
\left[A v_{1}\left|A v_{2}\right| \cdots \mid A v_{n_{i}}\right]=\lambda_{i}\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n_{i}}\right]+\left[v_{2}\left|v_{3}\right| \cdots v_{n_{i}} \mid 0\right],
$$

i.e.

$$
\left[\left(A-\lambda_{i} I\right) v_{1}\left|\left(A-\lambda_{i} I\right) v_{2}\right| \cdots \mid\left(A-\lambda_{i} I\right) v_{n_{i}}\right]=\left[v_{2}\left|v_{3}\right| \cdots\left|v_{n_{i}}\right| 0\right] .
$$

In other words, $v_{1}, v_{2}, \ldots, v_{n_{i}}$ are related: set $v:=v_{1}, m:=n_{i}, \lambda:=\lambda_{i}$,

$$
v_{1}=v, v_{2}=(A-\lambda I) v, \ldots, \ldots, v_{m}=(A-\lambda I)^{m-1} v \quad \text { (chain) }
$$

7. A Short proof

Roitman, Moshe, A short proof of the Jordan decomposition theorem. Linear and Multilinear Algebra 46 (1999), no. 3, 245-247.

In terms of the language of linear operator:
Theorem 7.1. Let $T: V \rightarrow V$ be a linear operator acting on a finite dimensional space over \mathbb{C}. Then V has a T-Jordan basis, that is, an ordered basis which consists of Jordan sequences: a (T, λ)-Jordan sequences, where λ is a scalar, is a sequence of vectors of the form

$$
v,(T-\lambda I) v, \ldots,(T-\lambda I)^{m-1} v
$$

for $v \in V$ and $m \geq 1$ such that $(T-\lambda I)^{m} v=0$.

Home Page

Title Page
\square

We will use contradiction:
(1) Assuming that the theorem is false, let $T: V \rightarrow V$ be a counterexample with $\operatorname{dim} V \geq 2$ minimal, thus $V \neq 0$.
(2) T has an eigenvalue μ in \mathbb{C}. Replacing T by $T-\mu I$ we may assume that $\mu=0$. Thus

$$
\operatorname{dim} T(V)<\operatorname{dim} V
$$

(3) By the minimality of $\operatorname{dim} V, T(V)$ has a T_{0}-Jordan basis, where T_{0} is the restriction of T to $T(V)$, i.e.,

$$
T_{0}=\left.T\right|_{T(V)}: T(V) \rightarrow T(V), \quad T_{0}(w)=T(w)
$$

(4) Let V^{\prime} be a subspace of maximal dimension among all subspaces of V
(a) invariant under T, and
(b) with a Jordan basis, B, containing a basis of $T(V)$.

Clearly $T(V) \subset V^{\prime} \subset V$.

(5) Claim: $T(V)=T\left(V^{\prime}\right)$. Clearly $T\left(V^{\prime}\right) \subset T(V)$ since $V^{\prime} \subset V$.

To prove $T(V) \subset T\left(V^{\prime}\right)$ we will show $B \cap T(V) \subset T\left(V^{\prime}\right)$.
Indeed if $w \in B \cap T(V)$, then w belongs to a (T, λ)-Jordan sequence

$$
u,(T-\lambda I) u, \ldots,(T-\lambda I)^{m-1} u \quad \in B \subset V^{\prime}
$$

Case 1: $\lambda=0$. If $w \neq u$ (not the first one), then $w=T^{k} u \in T\left(V^{\prime}\right)$, $1 \leq k \leq m$. If $w=u$, pick any $w^{\prime} \in V$ such that $T\left(w^{\prime}\right)=w$ since $w \in$ $B \cap T(V) \subset T(V)$. If $w^{\prime} \notin V^{\prime}$, then we may add w^{\prime} to the above sequences thus extending B to a Jordan basis of a subspace properly containing V^{\prime}, a contradiction. Hence $w^{\prime} \in V^{\prime}$, i.e., $w \in T\left(V^{\prime}\right)$.
Case 2: $\lambda \neq 0$. Observation: for $v \in V^{\prime}$

$$
v \in T\left(V^{\prime}\right) \quad \Leftrightarrow \quad(T-\lambda I) v=T v-\lambda v \in T\left(V^{\prime}\right)
$$

Since $w \in B \subset V^{\prime}$ and $(T-\lambda I)^{m} w=0 \in T\left(V^{\prime}\right)$ we see that

$$
(T-\lambda I)^{m-1} w \in T\left(V^{\prime}\right), \quad(T-\lambda I)^{m-2} w \in T\left(V^{\prime}\right), \quad \cdots, w \in T\left(V^{\prime}\right)
$$

Since B contains a basis of $T(V)$, we have $T(V)=T\left(V^{\prime}\right)$.

Next let $v \in V$. Thus for some $v^{\prime} \in V^{\prime}$,

$$
T v=T v^{\prime}
$$

so that $v-v^{\prime} \in \operatorname{ker} T$.

We have ker $T \subset V^{\prime}$, otherwise we may add to B a nonzero vector in $\operatorname{ker} T$, to obtain a Jordan basis of a subspace properly containing V^{\prime}.

Thus $v \in V^{\prime}$ so that $V^{\prime}=V$, a contradiction.

Remarks: (1) The proof works for any algebraically closed field.
(2) The above proof leads to the construction of a Jordan basis:

Example: T is nilpotent of index m, i.e., $T^{m}=0$ and $T^{m-1} \neq 0$.
(1) Start with a basis of $T^{m-1}(V)$.
(2) For each chosen element v we pick an element v^{\prime} in $T^{m-2}(V)$ such that $T\left(v^{\prime}\right)=v$.
(3) By adding elements in ker $T \cap T^{m-2}(V)$ (thus start a new Jordan sequence) we obtain a Jordan basis of $T^{m-2}(V)$, etc.

$\mathcal{T H} A \mathcal{K} \mathcal{Y O U} \mathcal{F O R}$ YOUR $\mathcal{A T} \mathcal{T E N T I O N}$

Title Page	
$\mathbf{4 4}$	\gg
$\mathbf{4}$	\rangle

Page 19 of 19

Go Back

