

Mathematics & Statistics Auburn University, Alabama, USA

Oct 3, 2007

Jordan Normal Form Revisited

Speaker: Tin-Yau Tam

Graduate Student Seminar

tamtiny@auburn.edu

Home Page	
Title Page	
••	••
-	•
Page	1 of 19
Page : Go I	1 of 19 Back
Page : Go I Full S	1 of 19 Back Screen

Jordan Form Numerical... Applications Proofs Basis change A short proof

Similarity

Let us start with some online conversations. conversation 1 conversation 2

Similarity Jordan Form Numerical

Applications

Basis change

A short proof

Home Page

Title Page

Page 3 of 19

Go Back

Full Screen

Close

Quit

Proofs

1. Similarity

Given $A, B \in \mathbb{C}_{n \times n}$. A is said to be similar to B if there is a nonsingular matrix P such that $P^{-1}AP = B$, denoted by $B \sim A$. Fact: Similarity is an equivalence relation

- 1. Reflexive $(A \sim A)$: $A = IAI = I^{-1}AI$ for all $A \in \mathbb{C}_{n \times n}$.
- 2. Symmetric $(A \sim B \text{ implies } A \sim B)$: $P^{-1}AP = B$ implies $PBP^{-1} = A$.
- 3. Transitive $(A \sim B \text{ and } B \sim C \text{ imply } C \sim A) P^{-1}AP = B$ and $Q^{-1}BQ = C \text{ imply } (PQ)^{-1}A(PQ) = C.$

As an equivalence relation, similarity partitions $\mathbb{C}_{n \times n}$ into equivalence classes \rightarrow representative (normal form, canonical form)

2. Jordan Normal Form

Each $A \in \mathbb{C}_{n \times n}$ is similar to a block diagonal matrix

$$J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_l \end{bmatrix}$$

where each block J_i is a square matrix of the form (Jordan block)

$$J_{i} = \begin{bmatrix} \lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i} \end{bmatrix} \in \mathbb{C}_{n_{i} \times n_{i}}.$$

Remarks: The eigenvalues λ_i and λ_k may not be distinct for $i \neq k$.

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title Page	
•• ••	
• •	
Page 4 of 19	
Go Back	
Full Screen	
Close	
Quit	

$A = \begin{bmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{bmatrix}.$

 $P^{-1}AP = J$ where

Example:

$$J = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \qquad P = \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

Check: AP = PJ.

Similarity Jordan Form Numerical... Applications Proofs Basis change A short proof

Home Page	
T (1) D	
Title Page	
••	••
•	•
Page <mark>5</mark> of 19	
Go Back	
Full Screen	
Close	

Similarity

Jordan Form Numerical...

A little History:

In 1870 the Jordan canonical form appeared in Treatise on substitutions and algebraic equations by Camille Jordan (1838-1922). It appears in the context of a canonical form for linear substitutions over the finite field of order a prime.

The Jordan of Gauss-Jordan elimination is Wilhelm Jordan (1842 to 1899).

Jordan algebras are called after the German physicist and mathematician Pascual Jordan (1902 to 1980).

Applications
Proofs
Basis change
A short proof
Home Page
-
Title Dege
nile Page
1

Page 6 of 19

Go Back

Full Screen

Close

Similarity Jordan Form

Numerical...

Applications Proofs

Basis change

A short proof

Home Page

Title Page

Page 7 of 19

Go Back

Full Screen

Close

Quit

3. Numerical unstable

Consider

If $\epsilon = 0$, then the Jordan normal form is simply $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. However, for $\epsilon \neq 0$, the Jordan normal form is

 $\begin{vmatrix} 1+\sqrt{\epsilon} & 0\\ 0 & 1-\sqrt{\epsilon} \end{vmatrix}.$

 $A = \begin{vmatrix} 1 & 1 \\ \epsilon & 1 \end{vmatrix}.$

So it is hard to develop a robust numerical algorithm for the Jordan normal form. For this reason, the Jordan normal form is usually avoided in numerical analysis.

Matlab command [P, J] = jordan (A)

4. Applications

Remark: Jordan normal form may be useless for **numerical** linear algebra, it has a valid place in **applied** linear algebra.

For recent development, see Stefano Serra-Capizzano, Jordan canonical form of the Google matrix: a potential contribution to the PageRank computation, SIAM J. Matrix Anal. Appl. 27 (2005), 305–312.

(1) (a) Every $A \in \mathbb{C}_{n \times n}$ is similar to a complex symmetric matrix.

(b) Every $A \in \mathbb{C}_{n \times n}$ is a product of two complex symmetric matrices; one of which can be chosen nonsingular.

Similarity
Jordan Form
Numerical
Applications
Proofs
Proofs Basis change
Proofs Basis change A short proof

(2) $A^m \to 0$ if and only if the eigenvalue moduli of A are less than 1.

Reason: It suffices to consider J =

$$\begin{vmatrix} \lambda & \ddots \\ & \ddots & 1 \\ & & \lambda \end{vmatrix} = \lambda I + N \in \mathbb{C}_{k \times k}.$$

Since $N^m = 0$ for all $m \ge k$, we have

$$J^{m} = (\lambda I + N)^{m} = \sum_{i=0}^{m} \binom{m}{i} \lambda^{i} N^{m-i} = \sum_{i=m-k+1}^{m} \binom{m}{i} \lambda^{i} N^{m-i}$$

 λ 1

(a) Since the diagonal entries of J^m are λ^m , if $J^m \to 0$, then $\lambda^m \to 0$, i.e., $|\lambda| < 1$.

(b) Conversely, if $|\lambda| < 1$, then

$$\left| \binom{m}{m-j} \lambda^{m-j} \right| = \left| \frac{m(m-1)(m-2)\cdots(m-j+1)\lambda^m}{j!\lambda^j} \right| \le \left| \frac{m^j \lambda^m}{j!\lambda^j} \right| \to 0$$

as $m \to \infty$ by l'Hopital's rule.

It finds application in population growth.

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title Page	
44	••
4	
•	
Page 9 of 19	
Go Back	
Full Screen	
Close	

(3) A is similar to its transpose A^T :

By Jordan normal form $A = PJP^{-1}$. So $A \sim A^T$ amounts to $J \sim J^T$. Now

$$\begin{bmatrix} \lambda \\ 1 & \ddots \\ & 1 & \lambda \end{bmatrix} = \begin{bmatrix} & 1 \\ & \ddots \\ 1 & \end{bmatrix} \begin{bmatrix} \lambda & 1 & \\ & \ddots & 1 \\ & & \lambda \end{bmatrix} \begin{bmatrix} & 1 \\ & \ddots \\ 1 & \end{bmatrix}$$

(4) Solution to the a linear system of ODE:

$$x'(t) = Ax(t), \quad x(0) = x_0$$

$$x(t) = Pe^{tJ}P^{-1}x_0 = P\begin{bmatrix} e^{tJ_1} & & \\ & \ddots & \\ & & e^{tJ_p} \end{bmatrix} P^{-1}x_0,$$

where

$$e^{tJ_i} = e^{t\lambda_i} \begin{bmatrix} 1 & t & \frac{t^2}{2} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ 1 & t & \cdots & \frac{t^{n-2}}{(n-2)!} \\ & \ddots & \\ & & 1 \end{bmatrix}$$

L

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title Page	
44 >>	
• •	
Page 10 of 19	
Go Back	
Full Screen	
Close	
Quit	

5. Proofs

- 1. Brualdi, Richard A., The Jordan canonical form: an old proof. Amer. Math. Monthly 94 (1987), no. 3, 257–267.
- Cater, S., An elementary development of the Jordan canonical form. Amer. Math. Monthly 69 (1962), no. 5, 391–393.
- 3. Filippov, A. F., A short proof of the theorem on reduction of a matrix to Jordan form. Moscow Univ. Bul., 26 1971 no. 2, 18–19.
- 4. Fletcher, R.; Sorensen, D. C., An algorithmic derivation of the Jordan canonical form. Amer. Math. Monthly 90 (1983), no. 1, 12–16.
- Galperin, A.; Waksman, Z., An elementary approach to Jordan theory. Amer. Math. Monthly 87 (1980), no. 9, 728–732.
- Gohberg, Israel; Goldberg, Seymour, A simple proof of the Jordan decomposition theorem for matrices. Amer. Math. Monthly 103 (1996), no. 2, 157–159.
- Väliaho, H., An elementary approach to the Jordan form of a matrix. Amer. Math. Monthly 93 (1986), no. 9, 711–714.

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title Page	
••	••
◀	►
Page 11 of 19	
Go Back	
Full Screen	

Close

6. Basis change

We switch to the lower triangular version of Jordan normal form: Each $A \in \mathbb{C}_{n \times n}$ is similar to a block diagonal matrix, i.e., for some nonsingular P

$$P^{-1}AP = J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_p \end{bmatrix}$$

where each block J_i is a square matrix of the form (Jordan block)

$$J_{i} = \begin{bmatrix} \lambda_{i} \\ 1 & \lambda_{i} \\ & \ddots & \ddots \\ & & 1 & \lambda_{i} \end{bmatrix} \in \mathbb{C}_{n_{i} \times n_{i}}.$$

An interpretation: $P^{-1}AP$ is the matrix representation with respect to a new basis given by the columns of P, since $P^{-1}(\cdot)P$ means a change of basis.

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

nome Page		
Title Page		
44	••	
◀		
Page 12 of 19		
Go Back		
Full Screen		
Close		
Quit		

Similarity Jordan Form Numerical... Applications Proofs Basis change A short proof

Home Page	
Title Page	
•• ••	
Page 13 of 19	
Go Back	
Close	
Quit	

Partition $P = [P_1 | \cdots | P_p]$ accordingly. Let $P_i = [v_1 | v_2 | \cdots | v_{n_i}] \in \mathbb{C}_{n \times n_i}$. Jordan form amounts to

$$AP_{i} = P_{i}J_{i} = P_{i}(\lambda_{i}I + N_{i}), \qquad N_{i} = \begin{bmatrix} 0 & & \\ 1 & 0 & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix}$$

Γ.

From $AP_i = P_i(\lambda_i I + N_i)$ we have

$$[Av_1 | Av_2 | \cdots | Av_{n_i}] = \lambda_i [v_1 | v_2 | \cdots | v_{n_i}] + [v_2 | v_3 | \cdots v_{n_i} | 0],$$

i.e.

$$[(A - \lambda_i I)v_1 | (A - \lambda_i I)v_2 | \cdots | (A - \lambda_i I)v_{n_i}] = [v_2 | v_3 | \cdots | v_{n_i} | 0]$$

In other words, $v_1, v_2, \ldots, v_{n_i}$ are related: set $v := v_1, m := n_i, \lambda := \lambda_i$,

$$v_1 = v, v_2 = (A - \lambda I)v, \dots, v_m = (A - \lambda I)^{m-1}v \qquad (chain)$$

Similarity Jordan Form Numerical....

Applications

Basis change A short proof

Proofs

7. A Short proof

Roitman, Moshe, A short proof of the Jordan decomposition theorem. Linear and Multilinear Algebra 46 (1999), no. 3, 245–247.

In terms of the language of linear operator:

Theorem 7.1. Let $T: V \to V$ be a linear operator acting on a finite dimensional space over \mathbb{C} . Then V has a T-Jordan basis, that is, an ordered basis which consists of Jordan sequences: a (T, λ) -Jordan sequences, where λ is a scalar, is a sequence of vectors of the form

 $v, (T - \lambda I)v, \dots, (T - \lambda I)^{m-1}v$

for $v \in V$ and $m \ge 1$ such that $(T - \lambda I)^m v = 0$.

Home Page
Title Page
•• ••
• •
Page 14 of 19
Go Back
Full Screen
Close

We will use contradiction:

(1) Assuming that the theorem is false, let T : V → V be a counterexample with dim V ≥ 2 minimal, thus V ≠ 0.
(2) T has an eigenvalue µ in C. Replacing T by T – µI we may assume that µ = 0. Thus

 $\dim T(V) < \dim V.$

(3) By the minimality of dim V, T(V) has a T_0 -Jordan basis, where T_0 is the restriction of T to T(V), i.e.,

 $T_0 = T|_{T(V)} : T(V) \to T(V), \quad T_0(w) = T(w)$

(4) Let V' be a subspace of maximal dimension among all subspaces of V
(a) invariant under T, and
(b) with a Jordan basis, B, containing a basis of T(V).
Clearly T(V) ⊂ V' ⊂ V.

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title Page	
•• ••	
• •	
Page 15 of 19	
Go Back	
Full Screen	
Close	
Quit	

(5) Claim: T(V) = T(V'). Clearly $T(V') \subset T(V)$ since $V' \subset V$. To prove $T(V) \subset T(V')$ we will show $B \cap T(V) \subset T(V')$. Indeed if $w \in B \cap T(V)$, then w belongs to a (T, λ) -Jordan sequence

$$u, (T - \lambda I)u, \dots, (T - \lambda I)^{m-1}u \in B \subset V'.$$

Case 1: $\lambda = 0$. If $w \neq u$ (not the first one), then $w = T^k u \in T(V')$, $1 \leq k \leq m$. If w = u, pick any $w' \in V$ such that T(w') = w since $w \in B \cap T(V) \subset T(V)$. If $w' \notin V'$, then we may add w' to the above sequences thus extending B to a Jordan basis of a subspace properly containing V', a contradiction. Hence $w' \in V'$, i.e., $w \in T(V')$. Case 2: $\lambda \neq 0$. Observation: for $v \in V'$

$$v \in T(V') \quad \Leftrightarrow \quad (T - \lambda I)v = Tv - \lambda v \in T(V').$$

Since $w \in B \subset V'$ and $(T - \lambda I)^m w = 0 \in T(V')$ we see that

$$(T - \lambda I)^{m-1} w \in T(V'), \quad (T - \lambda I)^{m-2} w \in T(V'), \quad \cdots, w \in T(V')$$

Since B contains a basis of T(V), we have T(V) = T(V').

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title Page	
••	••
•	►
Page 16 of 19	
Go E	Back
Full Screen	
Close	

Similarity Jordan Form Numerical... Applications Proofs Basis change A short proof

Home Page	
Title Page	
••	••
•	
Page 1	7 of 19
Go E	Back
Full S	creen
Cla	ose
Q	uit

Next let $v \in V$. Thus for some $v' \in V'$,

$$Tv = Tv'$$

so that $v - v' \in \ker T$.

We have ker $T \subset V'$, otherwise we may add to B a nonzero vector in ker T, to obtain a Jordan basis of a subspace properly containing V'.

Thus $v \in V'$ so that V' = V, a contradiction.

Remarks: (1) The proof works for any algebraically closed field.(2) The above proof leads to the construction of a Jordan basis:

- **Example:** T is nilpotent of index m, i.e., $T^m = 0$ and $T^{m-1} \neq 0$. (1) Start with a basis of $T^{m-1}(V)$.
- (2) For each chosen element v we pick an element v' in $T^{m-2}(V)$ such that T(v') = v.

(3) By adding elements in ker $T \cap T^{m-2}(V)$ (thus start a new Jordan sequence) we obtain a Jordan basis of $T^{m-2}(V)$, etc.

Similarity Jordan Form Numerical... Applications Proofs Basis change A short proof

Home Page

Title Page

Page 18 of 19

Go Back

Full Screen

Close

Quit

••

THANK YOU FOR YOUR ATTENTION

Similarity
Jordan Form
Numerical
Applications
Proofs
Basis change
A short proof

Home Page	
Title	Page
	1
••	
•	
Page 1	9 of 19

Go Back

Full Screen

Close