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Abstract. A generalization of a result of Berezin and Gel’fand in the context of Eaton triples
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1. Introduction. Let us recall a result of Berezin and Gel’fand [3].
Theorem 1.1. (Berezin-Gel’fand [3]) Let G be a semisimple Lie group with

finite center, whose Lie algebra g has Cartan decomposition g = k + p, where the
analytic group of k is K ⊂ G. For x ∈ p, let a+(x) denote the unique element of
the singleton set Ad (K)x∩ a+, where a+ is a closed fundamental Weyl chamber. For
y, z ∈ p, a+(z +y)−a+(z) ∈ convWa+(y), where conv denotes the convex hull of the
underlying set and W denotes the Weyl group of (g, a).

The result of Berezin-Gel’fand had been known to Lidskii who [24] gave an ele-
mentary proof of a special case of Berezin-Gel’fand’s theorem, namely, G = SL(n,R),
though [24] appeared earlier than [3]. The sketch of the proof of Berezin-Gel’fand’s
result in [3] is Lie theoretic and a detailed proof, to our best knowledge, is found
nowhere. Lidskii’s proof is not Lie theoretic but still employs some analytic tech-
nique. Wielandt did not fully understand Lidskii’s proof and this led him [36] to
provide another proof by using minimax property. The result of Lidskii is stated in
the following

Theorem 1.2. (Lidskii [24], Wielandt [36]) Let A and B be real symmetric
(Hermitian, quaternionic Hermitian) matrices. Denote by λ(A) = (λ1(A), . . . , λn(A))
the vector of eigenvalues of A with λ1(A) ≥ · · · ≥ λn(A). Then

λ(A + B)− λ(B) ∈ convSn λ(A),

where Sn is the symmetric group. In terms of inequalities, it is equivalent to

max
1≤j1<···<jk≤n

k
∑

i=1

[λji(A + B)− λji(B)] ≤
k

∑

i=1

λi(A), k = 1, . . . , n− 1,

n
∑

i=1

[λi(A + B)− λi(B)] =
n

∑

i=1

λi(A),
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and the equality is merely the trace condition.
Later Markus [26] gave another proof of Lidskii’s theorem by using an idea of

Wielandt [36] but not the minimax property. See three proofs and some historical
remarks in [4, 35]. Very recently, Lewis [23] provided a new proof of Lidskii’s result
via nonsmooth analysis. Though it is not the simplest one, it provides a totally new
look to Lidskii’s theorem. Inspired by Lewis’ approach a generalization of Berezin-
Gel’fand’s result is given via nonsmooth analysis in Section 4. In order to carry out
the approach, the derivatives of some orbital functions are studied and a number of
results in [21] are generalized in Section 3. Then we determine the distance between
a G-orbit or its convex hull and a given point as applications in Section 5.

The following is a framework for the extension which only requires basic knowl-
edge of linear algebra. Let G be a closed subgroup of the orthogonal group on a finite
dimensional real inner product space V . The triple (V,G, F ) is an Eaton triple if
F ⊂ V is a nonempty closed convex cone such that

(A1) Gx ∩ F is nonempty for each x ∈ V .
(A2) maxg∈G(x, gy) = (x, y) for all x, y ∈ F .

The Eaton triple (W,H, F ) is called a reduced triple of the Eaton triple (V, G, F ) if it
is an Eaton triple and W := span F and H := {g|W : g ∈ G, gW = W} ⊂ O(W ), the
orthogonal group of W [33]. For x ∈ V , let F (x) denote the unique element of the
singleton set Gx ∩ F . The function (abuse of notation) F : V → F is idempotent. It
is known that H is a finite reflection group [27].

Let us recall some rudiments of finite reflection groups [15]. Let V be a finite
dimensional real inner product space. A reflection sα on V is an element of O(V ),
which sends some nonzero vector α to its negative and fixes pointwise the hyperplane
Hα orthogonal to α, that is, sαλ := λ − 2(λ, α)/(α, α) α, λ ∈ V . A finite group G
generated by reflections is called a finite reflection group. A root system of G is a
finite set of nonzero vectors in V , denoted by Φ, such that {sα : α ∈ Φ} generates G,
and satisfies

(R1) Φ ∩ Rα = {±α} for all α ∈ Φ.
(R2) sαΦ = Φ for all α ∈ Φ.

The elements of Φ are called roots. We do not require that the roots are of equal
length. A root system Φ is crystallographic if it satisfies the additional requirement:

(R3) 2 (α,β)
(β,β) ∈ Z for all α, β ∈ Φ,

and the group G is known as the Weyl group of Φ.
A (open) chamber C is a connected component of V \∪α∈ΦHα. Given a total order

< in V [15, p.7], λ ∈ V is said to be positive if 0 < λ. Certainly, there is a total order
in V : Choose an arbitrary ordered basis {v1, . . . , vm} of V and say µ > ν if the first
nonzero number of the sequence (λ, v1), . . . , (λ, vm) is positive, where λ = µ−ν. Now
Φ+ ⊂ Φ is called a positive system if it consists of all those roots which are positive
relative to a given total order. Of course, Φ = Φ+ ∪Φ−, where Φ− = −Φ+. Now Φ+

contains [15, p.8] a unique simple system ∆, that is, ∆ is a basis for V1 := span Φ ⊂ V ,
and each α ∈ Φ is a linear combination of ∆ with coefficients all of the same sign
(all nonnegative or all nonpositive). The vectors in ∆ are called simple roots and the
corresponding reflections are called simple reflections. The finite reflection group G is
generated by the simple reflections. Denote by Φ+(C) the positive system obtained by
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the total order induced by an ordered basis {v1, . . . , vm} ⊂ C of V as described above.
Indeed Φ+(C) = {α ∈ Φ : (λ, α) > 0 for all λ ∈ C}. The correspondence C 7→ Φ+(C)
is a bijection of the set of all chambers onto the set of all positive systems. The
group G acts simply transitively on the sets of positive systems, simple systems and
chambers. The closed convex cone F := {λ ∈ V : (λ, α) ≥ 0, for all α ∈ ∆}, that
is, F := C− is the closure of the chamber C which defines Φ+ and ∆, is called a
(closed) fundamental domain for the action of G on V associated with ∆. Since G
acts transitively on the chambers, given x ∈ V , the set Gx∩F is a singleton set and its
element is denoted by F (x). It is known that (V, G, F ) is an Eaton triple (see [27]). Let
V0 := {x ∈ V : gx = x for all g ∈ G} be the set of fixed points in V under the action
of G. Let ∆ = {α1, . . . , αn}, that is, dim V1 = n, where V1 = V ⊥

0 . If {λ1, . . . , λn}
denotes the basis of V1 dual to the basis {βi := 2αi/(αi, αi) : i = 1, . . . , n}, that is,
(λi, βj) = δij , then F = {

∑n
i=1 ciλi : ci ≥ 0} ⊕ V0. Thus the interior Int F = C of F

is the nonempty set {
∑n

i=1 ciλi : ci > 0} ⊕ V0. The dual cone of F in V1 is the cone

dual V1F := {x ∈ V1 : (x, u) ≥ 0, for all u ∈ F}

induced by F . Notice that dual V1F = {
∑n

i=1 ciαi, ci ≥ 0, i = 1, . . . , n}. There is a
unique element ω ∈ G sending Φ+ to Φ− and thus sending F to −F . Moreover, the
length [15, p.12] of ω is the longest one [15, p.15-16] and thus we call it the longest
element.

We will present two examples requiring some basic knowledge of Lie theory [18].
Let g = k + p be a Cartan decomposition of the Lie algebra g of a semisimple Lie
group G with finite center. Denote the Killing form of g by B(·, ·). The Killing form
is positive definite on p but negative definite on k. Let K be an analytic subgroup of
k in the analytic group G of g. Now Ad (K) is a subgroup of the orthogonal group
on p with respect to the restriction of the Killing form on p since the Killing form is
invariant under Ad (K). Among the abelian subalgebras of g that are contained in
p, choose a maximal one a (maximal abelian subalgebra in p). For α ∈ a∗ (the dual
space of a), set gα = {x ∈ g : [h, x] = α(h)x for all h ∈ a}. If 0 6= α ∈ a∗ and gα 6= 0,
then α is called a (restricted) root [18, p.313] of the pair (g, a). The set of roots
will be denoted Σ. We have the orthogonal direct sum g = g0 +

∑

α∈Σ gα known
as restricted-root space decomposition [18, p.313]. We view a as a Euclidean space
by taking the inner product to be the restriction of B to a. The map a∗ → a that
assigns to each λ ∈ a∗ the unique element xλ of a satisfying λ(x) = B(x, xλ) for all
x ∈ a is a vector space isomorphism. We use this isomorphism to identify a∗ with a,
allowing us, in particular, to view Σ as a subset of a. The set Φ = {α ∈ Σ : 1

2α /∈ Σ}
generates a finite reflection group W , that is, W is generated by the reflections sα

(α ∈ Σ), which is called the Weyl group of (g, a), and is a root system of W . It is
called the reduced root system of the pair (g, a). Now fix a simple system ∆ for the
root system Φ. Then ∆ determines a fundamental domain a+ for the action of W
on a. We now describe another way to view the Weyl group W . Use juxtaposition
to represent the adjoint action of G on g, that is, gx = Ad (g)x, g ∈ G, x ∈ g. Set
NK(a) = {k ∈ K : ka ⊂ a} (the normalizer of a in K) and ZK(a) = {k ∈ K : kx =
x for all x ∈ a} (the centralizer of a in K). Then the action of K on g induces an
action of the group NK(a)/ZK(a) on a, that is, [k]x = kx for [k] ∈ NK(a)/ZK(a).
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There exists an isomorphism ψ : W → NK(a)/ZK(a) that is, compatible with the
two actions on a, or more precisely, for which wx = ψ(w)x, w ∈ W , x ∈ a [18, p.325,
p.394]. We use the isomorphism ψ to identify these two groups (in the literature,
the Weyl group is usually defined to be NK(a)/ZK(a)). Note in particular that,
given x ∈ a, we have Wx = NK(a)x ⊂ Kx. Since Ad (k) is an automorphism of g,
NK(a) = {k ∈ K : ka = a}. Thus W = {Ad (k)|a : k ∈ K, ka = a}. Obviously
a = span a+. A theorem of Cartan asserts that Ad (K)x ∩ a 6= φ [18, p.320] for any
x ∈ p, that is, (A1) is satisfied for (p, Ad (K), a+). Indeed |Ad (K)x ∩ a+| = 1. For
verification of (A2), see [23].

Example 1.3. (real semisimple Lie algebras) (p, Ad (K), a+) is an Eaton triple
with a reduced triple (a,W, a+). It is similar for real reductive Lie algebras [11].

Example 1.4. (compact connected Lie groups) Let G be a (real) compact con-
nected Lie group and let (·, ·) be a bi-invariant inner product on g. Now Ad (G) is a
subgroup of the orthogonal group on g [18, p.196]. Let t+ be a fixed (closed) funda-
mental chamber of the Lie algebra t of a maximal torus T of G. Now (g, Ad (G), t+) is
an Eaton triple with reduced triple (t,W, t+), where the Weyl group W of G is often
defined as N(T )/T , where N(T ) is the normalizer of T in G [18, p.201].

2. Some basics of nonsmooth analysis. Let Y be a subset of V which is
a finite dimensional real inner product space. A function f : Y → R is said to be
Lipschitz [6, p.25] on Y with Lipschitz constant K if for some K ≥ 0,

|f(y)− f(y′)| ≤ K‖y − y′‖, y, y′ ∈ Y,(1)

where the norm is induced by the inner product. We say that f is Lipschitz near x if
for some ε > 0, f satisfies the Lipschitz condition (1) on the set x + εB, where B is
the open unit ball.

Let f be Lipschitz near a given x ∈ V and let 0 6= v ∈ V . The Clarke directional
derivative [6, p.25] of f at x in the direction v is defined as

fo(x; v) = lim sup
y→x t↓0

f(y + tv)− f(y)
t

,(2)

where y ∈ V and t > 0. The Clarke generalized gradient of f at x, denoted by ∂f(x),
is defined as

∂f(x) := {ξ ∈ V : fo(x; v) ≥ (ξ, v) for all v ∈ V }.(3)

We remark that the definition of ∂f(x) in [6, p.27] is given as a subset of V ∗, the
dual space of V . By Riesz’s representation theorem for V , linear functionals on V
are uniquely represented by vectors in V . It is known that ∂f(x) is the convex hull
of the set of cluster points of gradients of f at points near x in a set of full Lebesque
measure [6, Theorem 2.5.1], that is,

∂f(x) = conv { lim
n→∞

∇f(xn) : xn → x, xn 6∈ S ∪ Ωf},(4)

where S is any fixed set of Lebesque measure 0 in V , Ωf denotes the set of points at
which f fails to be differentiable, and ‘conv ’ denotes the convex hull of the underlying
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set. By Rademacher’s theorem [6, p.63] Ωf is of measure zero if f is local Lipschitz.
When f is smooth, then ∂f(x) coincides with the usual gradient ∇f(x), that is,
∂f(x) = {∇f(x)}. Thus the following is a generalization of the classical mean value
theorem [6, Theorem 2.3.7].

Theorem 2.1. (Lebourg mean value theorem) Let x, y ∈ V and suppose that f is
Lipschitz on an open set containing the closed line segment {tx+(1− t)y : 0 ≤ t ≤ 1}.
Then there exists u in the open line segment {tx + (1− t)y : 0 < t < 1} such that

f(y)− f(x) ∈ (∂f(u), y − x).(5)

Suppose that ϕ : V → R is a convex function. A vector x∗ is said to be a
subgradient of ϕ at a point x if

ϕ(z) ≥ ϕ(x) + (x∗, z − x), for all z ∈ V.

The set of subgradients of ϕ at x is called the subdifferential of ϕ at x and is denoted
by ∂sϕ(x). It turns out that [29, Theorem 25.1] ϕ is differentiable at x if and only if
∂sϕ(x) is a singleton set. In this event ∂sϕ(x) = {∇ϕ(x)}.

3. Derivatives of orbital functions. Throughout this section (V, G, F ) is an
Eaton triple with reduced triple (W,H,F ). By [27, Theorem 3.2], H is a finite
reflection group and F is one of the (closed) chambers. Let W0 := {x ∈ W : hx =
x for all h ∈ H} be the set of fixed points in W under the action of H and let
W1 := W⊥

0 . Let ∆ := {α1, . . . , αn} be a simple system of H such that F = {x ∈
W : (x, αi) ≥ 0, i = 1, . . . , n}. Let {λ1, . . . , λn} be the basis of W1 dual to {βi :=
2αi/(αi, αi) : i = 1, . . . , n}. Thus F = {

∑n
i=1 ciλi : ci ≥ 0} ⊕W0.

The map F : V → F such that x 7→ F (x) is positively homogeneous, that is,
F (rv) = rF (v) for r ≥ 0 by using (A1) and (A2). But generally F (rv) 6= rF (v) for
r < 0.

A subset U ∈ W is said to be H-invariant if hU ⊂ U for all h ∈ H. A function
f on U is said to be H-invariant if f(hx) = f(x) for all h ∈ H whenever x ∈ U .
Similarly we can define G-invariant sets and functions. In other words, a H-invariant
(G-invariant) function is constant on each orbit Hz (Gz) of z ∈ W (z ∈ V ). Thus we
call it an orbital function.

The results in this section generalize the corresponding indicated results in [21,
28].

Lemma 3.1. (Compare [28, Lemma 3.2]) Given αm ∈ ∆. If µ ∈ F such that
(µ, αm) 6= 0, then

max{(µ, x) : x ∈ convHλm} = (µ, λm)

and

arg max{(µ, x) : x ∈ convHλm} = {λm}.
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Proof. Notice that max{(µ, x) : x ∈ conv Hλm} = max{(µ, x) : x ∈ Hλm} =
(µ, λm) by (A2) since µ, λm ∈ F . By the definition of F , (µ, αm) > 0 since (µ, αm) 6=
0, µ ∈ F , and αm ∈ ∆. It is clear that λm ∈ arg max{(µ, u) : u ∈ conv Hλm}. Let
x ∈ arg max{(µ, u) : u ∈ conv Hλm} ⊂ W . Rewrite

x =
n

∑

i=1

2(x, λi)
(αi, αi)

αi + π0(x), µ =
n

∑

i=1

2(µ, αi)
(αi, αi)

λi + π0(µ),

where π0 : W → W0 is the orthogonal projection. So

(µ, x) =
n

∑

i=1

4(µ, αi)
(αi, αi)2

(x, λi) + (π0(µ), π0(x)),

and similarly

(µ, λm) =
n

∑

i=1

4(µ, αi)
(αi, αi)2

(λm, λi) + (π0(µ), π0(λm)).

Notice that for any y ∈ conv Hz, π0(y) = π0(z) if y, z ∈ W (the same conclusion
holds for y, z ∈ V and y ∈ conv Gz). It is because if z = z1 + π0(z), where z1 ∈
W1 and y =

∑

h∈H ahhz, where ah ≥ 0, for all h ∈ H and
∑

h∈H ah = 1, then
y =

∑

h∈H ahhz1 + π0(z) and
∑

h∈H ahhz1 ∈ W1. Hence π0(z) = π0(y). So π0(x) =
π0(λm) and thus (µ, x) = (µ, λm) implies

n
∑

i=1

(µ, αi)(x, λi) =
n

∑

i=1

(µ, αi)(λm, λi).

By (A2) again, since λi ∈ F , i = 1, . . . , n, and x ∈ conv Hλm, we have (x, λi) ≤
(λm, λi), i = 1, . . . , n, since (µ, αi) ≥ 0 as µ ∈ F for all i. Thus (µ, αi) 6= 0 implies

(x, λm) = (λm, λm).

Write x =
∑k

i=1 aihiλm, where
∑k

i=1 ai = 1, ai > 0, and hi ∈ H for all i = 1, . . . , k.
Thus by (A2)

(λm, λm) = (x, λm) =
k

∑

i=1

ai(hiλm, λm) ≤
k

∑

i=1

ai(λm, λm) = (λm, λm).

So (hiλm, λm) = (λm, λm) for all i = 1, . . . , k. Since ‖hiλm‖ = ‖λm‖, it follows that
hiλm = λm for all i = 1, . . . , k by the equality case of Cauchy-Schwarz’s inequality
(hiλm, λm) ≤ ‖hiλm‖‖λm‖ = (λm, λ) and that hi is orthogonal. Hence we have the
desired x = λm.

Theorem 3.2. (Compare [21, Theorem 2.1]; also see [28, Lemma 3.3], [13,
Corollary 3.10] and [20])) Let λ ∈ F . The function fλ : V → R defined by fλ(z) =
(λ, F (z)) is positively homogeneous and convex. Let µ ∈ F such that (µ, αm) 6= 0
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for some αm ∈ ∆, then fλm is differentiable at µ and dfλm |µ = (λm, ·), that is,
∇fλm(µ) = λm.

Proof. By (A2), if λ ∈ F ,

fλ(z) = max{(λ, gz) : g ∈ G} = max{(gλ, z) : g ∈ G} = max{(ξ, z) : ξ ∈ conv Gλ}.

In other words, fλ is the support function for the compact convex set conv Gλ and is
therefore positively homogeneous and convex [29, Theorem 13.2]. The subdifferential
of the support function fλ at the point z, denoted by ∂sfλ(z), consists of the elements
of conv Gλ attaining the maximum fλ(z) = (λ, F (z)) [29, Corollary 23.5.3], that is,

∂sfλ(z) = arg max{(ξ, F (z)) : ξ ∈ conv Gλ}.

Certainly λ ∈ conv Gλ and (λ, µ) = fλ(µ) for any µ ∈ F and thus λ ∈ ∂sfλ(µ).
Suppose that µ ∈ F such that (µ, αm) 6= 0 for some αm ∈ ∆. Let z ∈ ∂sfλm(µ) =

arg max{(ξ, µ) : ξ ∈ conv Gλm}, that is, (z, µ) = (λm, µ) and z ∈ conv Gλm. Now if
π : V → W is the orthogonal projection,

(π(z), µ) = (z, µ) = (λm, µ),

and by [27, Theorem 3.2], π(z) ∈ conv Hλm. By Lemma 3.1, we have π(z) = λm so
that z = λm + y where y ∈ W⊥. So

‖z‖2 = ‖λm‖2 + ‖y‖2.

On the other hand, z ∈ conv Gλm means z =
∑k

i=1 aigiλm, where
∑k

i=1 ai = 1,
ai > 0, and gi ∈ G, for all i = 1, . . . , k, which implies that

‖z‖ = ‖
k

∑

i=1

aigiλm‖ ≤
k

∑

i=1

ai‖giλm‖ = ‖λm‖.

Thus y = 0 and z = λm. Hence ∂sfλm(µ) = {λm} and by [29, Theorem 25.1], the
desired result follows.

Example 3.3. The general linear group GLn(F) is consists of n×n matrices with
nonzero determinant. The Lie algebra is gln(F), that is, n×n matrices with elements
in F, which is reductive. The Cartan decomposition of gln(F) is gln(F) = k+p where p
is the space of real symmetric, Hermitian and quaternionic Hermitian matrices (that
is, A = A∗ where A∗ = A

T
and a1 + ia2 + ja3 + ka4 = a1 − ia2 − ja3 − ka4) when

F = R, C and H respectively. The group K is Un(F) and k is the algebra of real skew
symmetric, skew Hermitian and quaternionic skew Hermitian matrices accordingly;
a ⊂ p is the subset of real diagonal matrices which will be identified with Rn; a+ ⊂
a can be chosen as the subset of real diagonal matrices with decreasing diagonal
entries. Then F (x) = a+(x) is indeed the vector of eigenvalues of the matrix x ∈ p
in descending order. So (V, G, F ) = (p,Ad (U(n)), a+) and (W,H, F ) = (a, Sn, a+)
where Sn is the symmetric group of degree n, known as the Weyl group of An−1 type.
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Notice that a0, the set of fixed points in a is the span of e where e = (1, 1, . . . , 1).
The simple roots [15, p.41] of a1 := a⊥0 are

αi = ei − ei+1, i = 1, . . . , n− 1,

where {ei} is the standard basis of Rn. The corresponding λi are

λi =
i

∑

k=1

ek, i = 1, . . . , n− 1.

Thus fλm(z) is the sum of the largest m eigenvalues of the matrix z ∈ p. So the later
part of Theorem 3.2 asserts that if µ1 ≥ · · · ≥ µn with µm > µm+1 (1 ≤ m < n),
Then fλm is differentiable at µ and dfλm(µ) = (λm, ·) = (

∑m
i=1 ei, ·) which is exactly

the statement of [21, Theorem 2.1].
Example 3.4. Let us consider the a real form of the simple complex Lie algebra

sln(C), namely, sup,q (p + q = n), which corresponds to the case of p × q complex
matrices. It is known that

sup,q = {
(

X1 Y
Y ∗ X2

)

: X∗
1 = −X1, X∗

2 = −X2, tr X1 = tr X2 = 0, Y ∈ Cp×q},

K = SU(p, q) = {
(

U 0
0 V

)

: U ∈ U(p), V ∈ U(q), detU det V = 1},

k = sup,q, i.e., Y = 0,

p = {
(

0 Y
Y ∗ 0

)

: Y ∈ Cp×q},

a = ⊕1≤j≤pR(Ej,p+j + Ep+j,j),
a+ = {⊕1≤j≤paj(Ej,p+j + Ep+j,j) : a1 ≥ · · · ≥ ap ≥ 0}.

Now the orbit of an element in p under the adjoint action of K is

{
(

U 0
0 V

)(

0 A
A∗ 0

)(

U 0
0 V

)∗

: U ∈ U(p), V ∈ U(q), det U det V = 1}

= {
(

0 UAV ∗

V A∗U∗ 0

)

: U ∈ U(p), V ∈ U(q), det U det V = 1}

= {
(

0 UAV
(UAV )∗ 0

)

: U ∈ U(p), V ∈ U(q)}.

The eigenvalues of the matrix
(

0 A
A∗ 0

)

(6)

are α1 ≥ α2 ≥ · · · ≥ αmin{p,q} ≥ 0 ≥ · · · ≥ 0 ≥ −αmin{p,q} ≥ · · · ≥ −α2 ≥ −α1

where α’s are the singular values of A and there are p+q−2min{p, q} zeros. We may
identify p with the space of p×q complex matrices and a with Rr where r = min{p, q}.
Now we consider the special case p = q. The simple roots [15, p.42] are

αi = ei − ei+1, i = 1, . . . , p− 1, αp = ep,
8



and the corresponding λi are

λi =
i

∑

k=1

ek, i = 1, . . . , p− 1. λp =
1
2

p
∑

k=1

ek.

Thus fλm(z) is the sum of the largest m singular values of the p× p complex matrix
z, that is, Ky Fan’s m-norm [4] when 1 ≤ m ≤ p − 1 and fλp is just one half of Ky
Fan’s p-norm. So the later part of Theorem 3.2 asserts that if

1. m = 1, . . . , p − 1 and if µ1 ≥ · · · ≥ µp ≥ 0 with µm > µm+1, then fλm is
differentiable at µ and dfλm(µ) = (λm, ·) = (

∑m
k=1 ek, ·);

2. m = p and µp > 0, then fλp is differentiable at µ and dfλp(µ) = (λp, ·) =
(1/2

∑p
k=1 ek, ·).

Given two vectors β and µ ∈ W , we say that µ refines β if (α, β) = 0 whenever
(α, µ) = 0, α ∈ ∆, or equivalently, sαβ = β whenever sαµ = µ.

Lemma 3.5. (Compare [21, Lemma 2.2]) If µ ∈ F refines β ∈ W , then the
function fβ : V → R defined by fβ(z) = (β, F (z)) is differentiable at µ with

dfβ |µ = (β, ·),

that is, ∇fβ(µ) = β.
Proof. Rewrite F (z) =

∑n
i=1 2(λi, F (z))/(αi, αi) αi + π0(z) since π(F (z)) = π(z)

and β =
∑n

i=1 2(αi, β)/(αi, αi)λi + π0(β), where π0 : V → V0 is the orthogonal
projection. So

fβ(z) = (β, F (z)) =
n

∑

i=1

2(αi, β)
(αi, αi)

(λi, F (z)) + (π0(β), π0(z))

=
n

∑

i=1

2(αi, β)
(αi, αi)

(λi, F (z)) + (π0(β), z).

Then

dfβ |µ =
n

∑

i=1

2(αi, β)
(αi, αi)

dfλi |F (µ) + (π0(β), ·)

=
n

∑

i=1

2(αi, β)
(αi, αi)

dfλi |µ + (π0(β), ·) since µ ∈ F

=
n

∑

i=1

2(αi, β)
(αi, αi)

(λi, ·) + (π0(β), ·) by Theorem 3.2 and since µ refines β

= (β, ·).

Lemma 3.6. (Compare [21, Lemma 2.3]) Let U ⊂ W be open and H-invariant.
Suppose that the function f : U → R is H-invariant and differentiable at µ ∈ F . Then
µ refines ∇f(µ) and thus the function df |µ◦F is differentiable at µ with d(df |µ◦F )|µ =
(∇f(µ), ·), that is, ∇(df |µ ◦ F )(µ) = ∇f(µ).
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Proof. Let α ∈ ∆ such that (α, µ) = 0, that is, sαµ = µ. Notice that f(z) =
f(sαz) for all z ∈ W since f is H-invariant. Apply chain rule at z = µ to have

df |µ = df |sαµ ◦ dsα|µ = df |µ ◦ sα,

since sα is linear. So ∇f(µ) = sα∇f(µ), that is, µ refines ∇f(µ). Since df |µ ◦ F =
(∇f(µ), F (·)) and ∇f(µ) ∈ W , by Lemma 3.5, the function df |µ ◦ F is differentiable
at µ and d(df |µ ◦ F )|µ = (∇f(µ), ·).

Lemma 3.7. (Compare [21, Theorem 2.4]) Let U ⊂ W be open and H-invariant.
Suppose that the function f : U → R is H-invariant and differentiable at µ ∈ F , then
f ◦ F : V → R is differentiable and

d(f ◦ F )|µ = (∇f(µ), ·),

that is, ∇(f ◦ F )(µ) = ∇f(µ).
Proof. Given any ε > 0, since f is differentiable at µ ∈ F ,

|f(γ)− f(µ)− df |µ(γ − µ)‖ ≤ ε‖γ − µ‖,

whenever γ ∈ W is close to µ (the norm is induced by the inner product). It is not
hard to see that F is Lipschitz on V with Lipschitz constant 1 because of (A2). Thus
for small y ∈ V ,

|f(F (y + µ))− f(µ)− df |µ(F (y + µ)− µ)| ≤ ε‖F (y + µ)− F (µ)‖ ≤ ε‖y‖.

By Lemma 3.6, for small y ∈ V ,

|df |µ ◦ F (y + µ)− df |µ(µ)− (∇f(µ), y)|
= |df |µ ◦ F (y + µ)− df |µ ◦ F (µ)− d(f ◦ F )|µ(y)| ≤ ε‖y‖.

Adding the two previous inequalities and using triangle inequality, we have

|f ◦ F (y + µ)− f(µ)− (∇f(µ), y)| ≤ 2ε‖y‖

for small y and thus the desired result.
Theorem 3.8. (Compare [21, Theorem 1.1]) Let U ⊂ W be open and H-

invariant. Suppose that the function f : U → R is H-invariant. Then the function
f ◦F : V → R is differentiable at x ∈ V if and only if f is differentiable at F (x) ∈ U .
In this case

d(f ◦ F )|x = (g−1∇f(F (x)), ·),

for any g ∈ G satisfying gx = F (x), that is, ∇(f ◦ F )(x) = g−1∇f(F (x)).
Proof. It is easy to see that f must be differentiable at F (x) whenever f ◦ F is

differentiable at x, since we can write f(y) = (f ◦F )(g−1y) with gx = F (x) and apply
chain rule at y = F (x), that is,

df |F (x) = d(f ◦ F )|x ◦ dg−1|F (x) = d(f ◦ F )|x ◦ g−1.
10



On the other hand, suppose that f is differentiable at F (x), and let g ∈ G such
that gx = F (x). Now for all z ∈ V , since F is G-invariant,

(f ◦ F )(z) = (f ◦ F )(gz).

Applying chain rule at z = x and Lemma 3.7 yields

d(f ◦F )|x = d(f ◦F )|gx ◦g = d(f ◦F )|F (x) ◦g = (∇f(F (x)), g(·)) = (g−1∇f(F (x)), ·),

that is, ∇(f ◦ F )|x = g−1∇f(F (x)).
The following is an extension of Lemma 3.7.
Theorem 3.9. (Compare [21, Corollary 2.5]) Let U ⊂ W be open and H-

invariant. Suppose that the function f : U → R is H-invariant and differentiable at
µ ∈ U ⊂ W . Then f ◦ F : V → R is differentiable and

d(f ◦ F )|µ = (∇f(µ), ·),

that is, ∇(f ◦ F )(µ) = ∇f(µ).
Proof. Let µ ∈ W and let h ∈ H such that hµ = F (µ). Since f is H-invariant,

f(hξ) = f(ξ), ξ ∈ U . Applying chain rule at ξ = µ gives df |µ = df |F (µ) ◦ h, that is,

∇f(µ) = h−1∇f(F (µ)).

By Theorem 3.8

d(f ◦ F )|µ = (h−1∇f(F (µ)), ·) = (∇f(µ), ·).

Given γ ∈ V , the stablizer of γ in G is the subgroup Gγ = {k ∈ G : kγ = γ} ⊂ G.

Theorem 3.10. (Compare [21, Theorem 3.3]) Let U ⊂ W be open and H-
invariant. Suppose that the function f : U → R is H-invariant and locally Lipschitz
around µ ∈ F . Then

(f ◦ F )o(µ; z) = max{fo(µ; π(kz)) : k ∈ Gµ}.(7)

Proof. Since V is finite dimensional, we have [6, p.64]

(f ◦ F )o(µ; z) = lim supy→µ{(∇(f ◦ F )(y), z) : y 6∈ S ∪ Ωf◦F },

where S ⊂ V is any given set of measure zero and Ωf◦F is the set of points at which
f ◦F is not differentiable. So there exists a sequence {xn} in V \ (S∪Ωf◦F ) such that
{xn} → µ (and F (xn) → µ since v 7→ F (v) is Lipschitz and thus continuous) with

(∇(f ◦ F )(xn), z) → (f ◦ F )o(µ, z).
11



Choose a gn ∈ G such that gnxn = F (xn) for each n = 1, 2, . . .. Since G is compact,
there is a subsequence {gnr} for which gnr → g0 ∈ G as r →∞. Now

g−1
0 µ = lim

r→∞
g−1

nr
F (xnr ) = lim

r→∞
xnr = µ,

so that g0 ∈ Gµ. Hence

(f ◦ F )o(µ; z) = lim
n→∞

(∇(f ◦ F )(xn), z)

= lim
n→∞

(g−1
n ∇f(F (xn)), z) by Theorem 3.8

= lim
r→∞

(∇f(F (xnr )), gnrz)

= lim
r→∞

(∇f(F (xnr )), π(gnrz)) since ∇f(F (xnr )) ∈ W

≤ lim sup
γ→µ

(∇f(γ)), π(g0z))

= fo(µ; π(g0z)),

where π : V → W denotes the orthogonal projection. Thus we establish ‘≤’ in (7).
On the other hand, we have [6, p.64] a sequence {µn} ⊂ W such that µn → µ

and for all k ∈ Gµ,

fo(µ;π(kz)) = lim
n→∞

(∇f(µn), π(kz))

= lim
n→∞

(∇f(µn), kz) since ∇f(µn) ∈ W

= lim
n→∞

(∇(f ◦ F )(µn), kz) by Theorem 3.9

≤ lim sup
γ→µ

(∇(f ◦ F )(γ), kz)

= (f ◦ F )o(µ; kz).

Now for any g ∈ G,

(f ◦ F )o(gµ; gz) = lim sup
w→gµ, t↓0

f(F (w + tgz))− f(F (w))
t

= lim sup
y→µ, t↓0

f(F (g(y + tz)))− f(F (gy))
t

= lim sup
y→µ, t↓0

f(F (y + tz))− f(F (y))
t

= (f ◦ F )o(µ; z).

Since k ∈ Gµ ⊂ G,

(f ◦ F )o(µ; kz) = (f ◦ F )o(k−1µ; z) = (f ◦ F )o(µ; z).

Hence fo(µ; π(kz)) ≤ (f ◦ F )o(µ; z) for all k ∈ Gµ. Thus the desired result follows.
Lemma 3.11. (Compare [21, Corollary 3.6]) Let U ⊂ W be open and H-invariant.

Suppose that the function f : U → R is H-invariant and locally Lipschitz around
µ ∈ F . Then

∂(f ◦ F )(µ) = conv {kγ : k ∈ Gµ, γ ∈ ∂f(µ)}.
12



Proof. By (3) or (4) ∂f(µ) is a compact set in W . Since Gµ ⊂ G is a closed
subgroup and thus compact, and since the map (γ, k) 7→ kγ is continuous, the set

D := {kγ : k ∈ Gµ, γ ∈ ∂f(µ)}

is compact. So conv D is a compact convex set. It suffices to show that the support
functions of conv D and of the compact convex set ∂(f ◦ F )(µ) are identical. The
support function of conv D, evaluated at the z ∈ V , is

max{(z, y) : y ∈ conv D}
= max{(z, y) : y ∈ D}
= max{(z, kγ) : k ∈ Gµ, γ ∈ ∂f(µ)}
= max{(kz, γ) : k ∈ Gµ, γ ∈ ∂f(µ)} since Gµ is a group
= max{(π(kz), γ) : k ∈ Gµ, γ ∈ ∂f(µ)} by ∂f(µ) ⊂ W
= max{max{(π(kz), γ) : γ ∈ ∂f(µ)} : k ∈ Gµ},

where π : V → W is the orthogonal projection. By (3) the support function of
∂(f ◦ F )(µ), evaluated at z ∈ V is the Clarke directional derivative (f ◦ F )o(µ; z), by
Theorem 3.10

(f ◦ F )o(µ; z) = max{fo(µ; π(kz)) : k ∈ Gµ}.

Clearly fo(µ; π(kz)) is the support function of ∂f , evaluated at π(kz), which is
max{(π(kz), γ) : γ ∈ ∂f(µ)}.

Remark 3.12. In [21, Theorem 3.12] the set D := {kγ : k ∈ Gµ, γ ∈ ∂f(µ)}
is proved to be convex for the reductive Lie algebras, gln(R) and gln(C) by some
argument involving doubly stochastic matrices. Using the fact that D is convex for
those two cases, [21, Theorem 1.4] is deduced and is used in [23] to give a new proof
of Liskii’s theorem which is a special case of Berezin-Gel’fand’s theorem. However we
are able to bypass that in order to extend Berezin-Gel’fand’s theorem, as we will see
in the next section. Nevertheless we do not know whether D is convex or not.

4. An extension of Berezin-Gel’fand’s theorem. In this section (V, G, F )
is an Eaton triple with reduced triple (W,H, F ). We will use the notations that we
mentioned in Section 1. The following lemma is a slight extension of [33, Theorem
10] (also see [30])). Since the proof is the same, it is omitted.

Lemma 4.1. Let (V, G, F ) be an Eaton triple with a reduced triple (W,H, F ). For
any x1, . . . , xk ∈ V , F (

∑k
i=1 xi) ∈ convH(

∑k
i=1 F (xi)).

Theorem 4.2. Let (V, G, F ) be an Eaton triple with a reduced triple (W,H, F ).
For any y, z ∈ V ,

F (y + z)− F (z) ∈ convH(F (y)).

In terms of inequalities, it amounts to

max
h∈H

(h(F (y + z)− F (z)), λi) ≤ (F (y), λi) for all i = 1, . . . , n.
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Proof. Let fw : W → R be defined by fw(u) = (F (u), w), where w ∈ W . It is
(globally) Lipschitz on W with Lipschitz constant ‖w‖ since for any y, y′ ∈ W ,

|fw(y)− fw(y′)| = |(w, F (y)− F (y′)| ≤ ‖w‖ ‖F (y)− F (y′)‖ ≤ ‖w‖‖y − y′‖,

where the norm is induced by the inner product. Similarly the function (fw ◦ F ) :
V → R is (globally) Lipschitz on V with Lipschitz constant ‖w‖. We claim that

∂fw(u) ⊂ convHw, u ∈ W.(8)

The function fw is differentiable on each (open) chamber. Indeed it is linear on
each (open) chamber: Suppose u ∈ C ⊂ W where C is an (open) chamber, that is,
α(u) 6= 0 for all α ∈ ∆. Then there exists a unique hu ∈ H such that hux = F (x)
for all x ∈ C because of the simply transitive action of H on the open chambers [15,
p.23]. So

fw(x) = (F (x), w) = (hux, w) = (x, h−1
u w)

for all x ∈ C. Thus fw behaves linearly in C and clearly ∂fw(u) = {∇fw(u)} =
{h−1

u w} ⊂ conv Hw.
On the other hand if u ∈ W is not regular, that is, u lies in some hyperplane Hα,

α ∈ ∆, then fw is not differentiable at u and Ωfw = ∪α∈∆Hα and we choose S = Ωfw

in (4). By (4), ∂fw(u) = convH−1
u w, where Hu = {h ∈ H : hu = F (u)} ⊂ H is the

isotropy group of u in H. So (8) is now established.
Let x ∈ V and let g ∈ G such that g−1x = F (x). Given w ∈ W , we consider the

composite function (fw ◦ F ) ◦ g : V → R of fw ◦ F : V → R and g : V → V . The
function fw ◦ F is Lipschitz with Lipschitz constant ‖w‖ on V and g is an orthongal
map. Apply chain rule [6, Theorem 2.3.10] on the composite function at the point
g−1x to get

∂(fw ◦ F ◦ g)(g−1x) = D∗
sg(g−1x)∂(fw ◦ F )(x),

where D∗
sg(g−1x) is the adjoint of the strict derivative [6, p.30] of g at g−1x. Since g

is orthogonal, D∗
sg(g−1x) is simply g−1. Hence

∂(fw ◦ F ◦ g)(g−1x) = g−1∂(fw ◦ F )(x)

or equivalently,

∂(fw ◦ F )(x) = g ∂(fw ◦ F ◦ g)(g−1x)
= g ∂(fw ◦ F )(g−1x) since F ◦ g = F
= g ∂(fw ◦ F )(F (x))
= g conv {kγ : k ∈ GF (x), γ ∈ ∂fw(F (x))} by Lemma 3.11.

By (8) we have

∂(fw ◦ F )(x) ⊂ g conv {kγ : k ∈ GF (x), γ ∈ conv Hw}, w ∈ W.(9)
14



By Lebourg mean value theorem, if y, z ∈ V , there exist x ∈ [z, y + z] and v ∈
∂(fw ◦ F )(x) such that

(F (y + z)− F (z), w) = fw ◦ F (y + z)− fw ◦ F (z) = (y, v) ≤ (F (y), F (v)),(10)

for all w ∈ W , where the last inequality follows from (A2). By (9), v ∈ ∂(fw ◦ F )(x)
implies that

v = g
∑

k∈GF (x)

bkk (
∑

h∈H

ak
hhw) =

∑

k∈GF (x), h∈H

bkak
hkhw,(11)

where ak
h ≥ 0,

∑

h∈H ak
h = 1 for all k ∈ GF (x), bk ≥ 0,

∑

k∈GF (x)
bk = 1. Since

F (au) = aF (u) for all a ≥ 0, u ∈ V , by Lemma 4.1 and (11),

F (v) ∈ convH(
∑

k∈GF (x), h∈H

bkak
hF (khw)) = conv H(F (w)),

that is, F (v) ∈ conv H(F (w)). Now [33, Lemma 5(2)] states that

if x, y ∈ F, then x ∈ conv Hy if and only if y − x ∈ dual W F,(12)

where dual W F = {u ∈ W : (u, x) ≥ 0, for all x ∈ F}. So F (w) − F (v) ∈ dual W F .
In particular (F (y), F (v)) ≤ (F (y), F (w)) and thus by (10) we arrive at (F (y + z)−
F (z), w) ≤ (F (y), F (w)) for all w ∈ W . This implies

(h(F (y + z)− F (z)), x) = (F (y + z)− F (z), h−1x) ≤ (F (y), x),

for all h ∈ H and x ∈ F . So we conclude

F (y)− h(F (y + z)− F (z)) ∈ dual W F, for all h ∈ H.

Thus by [33, Lemma 5(1)] F (y + z)− F (z) ∈ conv H(F (y)).
Now F (y + z) − F (z) ∈ conv H(F (y)) amounts to F (y) − h(F (y + z) − F (z)) ∈

dual W F , for all h ∈ H by [33, Lemma 5(1)] again, that is,

max
h∈H

(h(F (y + z)− F (z)), λi) ≤ (F (y), λi), for all i = 1, . . . , n.

Remark 4.3. Lemma 4.1 (when k = 2) is now a corollary of Theorem 4.2: by
[33, Lemma 5(1)],

F (y + z)− F (z) ∈ conv HF (y) ⇔ (F (y + z)− F (z), h−1w) ≤ (F (y), w),

for all w ∈ F, h ∈ H. So

(F (y + z), h−1w) ≤ (F (y), w) + (F (z), h−1w)
≤ (F (y), w) + (F (z), w) by (A2)
= (F (y) + F (z), w),
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for all w ∈ F and h ∈ H. Thus by [33, Lemma 5(1)]

F (y + z) ∈ conv H(F (y) + F (z)).(13)

We also remark that (13) is symmetric with respect to y and z but Theorem 4.2 is
not.

Corollary 4.4. (Wielandt [36], Markus [26]) Let A and B be n × n complex
matrices. Denote by s(A) = (s1(A), · · · , sn(A)) the vector of singular values of A with
s1(A) ≥ · · · ≥ sn(A) ≥ 0. Then

s(A + B)− s(B) ∈ conv (Sn × (Z/2Z)n)s(A).

In terms of inequalities

max
1≤j1<···<jk≤n

k
∑

i=1

|sji(A + B)− sji(B)| ≤
k

∑

i=1

si(A), k = 1, . . . , n.

Proof. Just notice that a+(A) = (s1(A), . . . , sn(A)) under the natural identifica-
tion where s1(A) ≥ · · · ≥ sn(A) ≥ 0 are the singular values of A and Sn × (Z/2Z)n

[15, p.42] is the Weyl group for the Example 3.4.
Let In,n = (−In) ⊕ In. The group G = SO(n, n) is the group of matrices in

SL(2n,R) which leaves invariant the quadratic form −x2
1−· · ·−x2

n +x2
n+1 + · · ·+x2

2n.
In other words, SO(n, n) = {A ∈ SL2n(R) : AT In,nA = In,n}. It is well known that
[18]

son,n = {
(

X1 Y
Y T X2

)

: XT
1 = −X1, XT

2 = −X2, Y ∈ Rn×n},

K = SO(n)× SO(n),

k = so(n)⊕ so(n), i.e., Y = 0,

p = {
(

0 Y
Y T 0

)

: Y ∈ Rn×n},

a = ⊕1≤j≤nR(Ej,n+j + En+j,j),

where Ei,j is the 2n× 2n matrix and 1 at the (i, j) position is the only nonzero entry.
The Killing form is

B(
(

0 X
XT 0

)

,
(

0 Y
Y T 0

)

) = 4(n− 1)tr XY T .

Now the adjoint action of K on p is given by
(

U 0
0 V

)T (

0 S
ST 0

)(

U 0
0 V

)

=
(

0 UT SV
V T ST U 0

)

,

where U, V ∈ SO(n). We will identify p with Rn×n and thus a will then be identified
with real diagonal matrices. We may choose a+ = {diag(a1, . . . , an) : a1 ≥ · · · ≥
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an−1 ≥ |an|}. The action of K on p is then orthogonal equivalence, that is, H 7→
UHV , where U, V ∈ SO(n) and a+(H) = (s1(H), . . . , sn−1(H), [sign (det H)] sn(H)),
where s1(H) ≥ · · · ≥ sn(H) are the singular values of H. The action of the Weyl
group W on a is given by

diag(d1, . . . , dn) 7→ diag(±dσ(1), . . . ,±dσ(n)),

where diag(d1, . . . , dn) ∈ a, σ ∈ Sn (the symmetric group) and the number of negative
signs is even. The simple roots may be taken as αi = ei − ei+1, i = 1, . . . , n − 1
and αn = en−1 + en [15, p.42] and λi = e1 + . . . + ei, i = 1, . . . , n − 2, λn−1 =
1/2(e1 + . . . + en−1 − en). λn = 1/2(e1 + . . . + en−1 + en). The longest element ω
sends diag(a1, . . . , an) ∈ a+ to

ωa =
{

diag(−a1, . . . ,−an−1, an) if n is odd
diag(−a1, . . . ,−an) if n is even.

Applying Theorem 4.2 on the simple Lie algebra son,n, we have the following result.
Also see [25, 31].

Corollary 4.5. Let A and B be n × n real matrices. Denote by s(A) =
(s1(A), · · · , sn(A)) the vector of singular values of A with s1(A) ≥ · · · ≥ sn(A) ≥ 0.
If

s′(A) = (s′1(A), · · · , s′n(A)) := (s1(A), . . . , sn−1(A), [sign det A] sn(A)),

then

s′(A + B)− s′(B) ∈ conv (Sn × (Z/2Z)n−1)s′(A).

In terms of inequalities, if #(A,B) denotes the number of negative components among
s′(A + B)− s′(A) (zero component may be counted either way), then

max
1≤j1<···<jk≤n

k
∑

i=1

|s′ji
(A + B)− s′ji

(B)| ≤
k

∑

i=1

si(A), k = 1, . . . , n− 2,(14)

max
1≤j1<···<jn−1≤n

n−1
∑

i=1

|s′ji
(A + B)− s′ji

(B)| − (−1)#(A,B) min
1≤r≤n

|s′r(A + B)− s′r(B)|

≤
n−1
∑

i=1

si(A)− [sign detA] sn(A),(15)

and

max
1≤j1<···<jn−1≤n

n−1
∑

i=1

|s′ji
(A + B)− s′ji

(B)|+ (−1)#(A,B) min
1≤r≤n

|s′r(A + B)− s′r(B)|

≤
n−1
∑

i=1

si(A) + [sign detA] sn(A).(16)
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Proof. Notice a+ = {diag(a1, . . . , an) : a1 ≥ · · · ≥ an−1 ≥ |an| ≥ 0}. Any real
n × n matrix A is special orthogonally similar to diag(a1, . . . , an−1, [sign (det A)]an)
in a+, where a1 ≥ · · · ≥ an ≥ 0 are the singular values of A. The Weyl group is Sn ×
(Z/2Z)n−1 [15, p.42]. In terms of inequalities By Theorem 4.2 with λi = e1 + . . .+ ei,
i = 1, . . . , n − 2, λn−1 = 1/2(e1 + . . . + en−1 − en). λn = 1/2(e1 + . . . + en−1 + en),
we have the inequalities.

Remark 4.6. We also have

max
1≤j1<···<jk≤n

k
∑

i=1

|si(A + B)− si(B)| ≤
k

∑

i=1

si(A), k = 1, . . . , n− 1, n,(17)

either by using Corollary 4.4 or by using (15) and (16). That is, adding (15) and (16),
we get the second last inequality of (17). Now

∑n
i=1 |si(A + B)− si(B)| is less than

or equal to the maximum of the left sides of (15) and (16) and hence not greater than
the maximum of the right sides of (15) and (16) which is merely

∑n
i=1 si(A).

We conclude this section with the following
Remark 4.7. The characterization of the sum of eigenvalues of two Hermitian

matrices as well as two real symmetric matrices has been obtained very recently
[1, 16, 17, 9, 10, 37] and thus the conjecture of Horn [14] is settled. Namely the
complete characterization of three sets of real numbers α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn,
γ1 ≥ · · · ≥ γn which are the eigenvalues of Hermitian (or real symmetric) A, B and
C = A + B are obtained. It would be interesting to see how the results are extended
to other simple Lie algebras. In our setting of Eaton triple with reduced triple, the
even harder question is: what is the necessary and sufficient conditions on α, β and
γ ∈ F such that F (x) = α, F (y) = β and F (x + y) = γ for some x, y ∈ V ?

A possible generalization of Lidskii’s result is asked in [2] associated with hyper-
bolic polynomials.

5. Distance in terms of G-invariant norm. A norm ‖ · ‖ : V → R is said to
be G-invariant if ‖gx‖ = ‖x‖ for all g ∈ G, x ∈ V . We have the following application
which extends [32, Theorem 2.1].

Theorem 5.1. Let (V, G, F ) be an Eaton triple with a reduced triple (W,H, F ).
Let ‖ · ‖ : V → R be a G-invariant norm. Let ω ∈ H be the longest element. If
x, y ∈ V , then

min
g∈G

‖x− gy‖ = ‖F (x)− F (y)‖,

max
g∈G

‖x− gy‖ = ‖F (x)− ω(F (y))‖ = ‖F (x) + F (−F (y))‖.

Proof. Since ‖ · ‖ is G-invariant,

min
g∈G

‖x− gy‖ ≤ ‖F (x)− F (y)‖,

max
g∈G

‖x− gy‖ ≥ ‖F (x)− ω(F (y))‖.
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It is left to prove the reverse inequalities. The dual norm ‖ · ‖D : V → R is defined by

‖x‖D = max
‖y‖≤1

(x, y),

that is, the dual norm of x is simply the norm of the linear functional induced by x.
Let C = {F (y) : ‖y‖D ≤ 1, y ∈ V } ⊂ F , a compact set. Then by [34, Theorem 2], for
any x ∈ V ,

‖x‖ = max
α∈C

(F (x), α).

For the minimum, by Theorem 4.2, F (x) − F (gy) ∈ convH(F (x − gy)) so that for
any g ∈ G,

‖x− gy‖ = max
α∈C

(F (x− gy), α)

≥ max
α∈C

(F (x)− F (gy), α) by (12)

= max
α∈C

(F (x)− F (y), α)

= ‖F (x)− F (y)‖.

For the maximum, we may assume that x, y ∈ W or even in F since ‖·‖ is G-invariant.
By Lemma 4.1,

‖x− gy‖ = max
α∈C

(F (x− gy), α)

≤ max
α∈C

(F (x) + F (−gy), α) by (12) and Lemma 4.1

= max
α∈C

(F (x) + F (−y), α)

= max
α∈C

(F (x)− ωF (y), α)

= ‖F (x)− ω(F (y))‖,

where the second last equality follows from F (−y) = −ωF (y). Finally −ωF (y) =
F (−F (−y)) by [11, Lemma 2.12].

Corollary 5.2. Let g be a real semisimple Lie algebra with Cartan decomposi-
tion g = k+p, where the analytic group of k is K ⊂ G. For x ∈ p, let a+(x) denote the
unique element of the singleton set Ad (K)x ∩ a+, where a+ is a closed fundamental
Weyl chamber. Given x, y ∈ p, if z ∈ Ad (K)y, then

min
k∈K

‖x− Ad (k)y‖ = ‖a+(x)− a+(y)‖
max
k∈K

‖x− Ad (k)y‖ = ‖a+(x)− ωa+(y)‖ = ‖a+(x) + a+(−a+(y))‖,

where ‖ ·‖ is a Ad (K)-invariant norm and ω is the longest element of the Weyl group
of (g, a).

The following result provides the distance between a point and the convex hull
of a G-orbit. The proof is similiar to that in [11] and is omitted.

Theorem 5.3. Let (V, G, F ) be an Eaton triple with a reduced triple (W,H, F ).
Let ‖ · ‖ : V → R be a G-invariant norm. Let ω ∈ H be the longest element. If
x, y ∈ V , then

min
z∈convGy

‖x− z‖ = ‖F (x)− F (y)F (x)‖,
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max
z∈convGy

‖x− z‖ = ‖F (x)− ω(F (y))‖ = ‖F (x) + F (−(F (y)))‖,

where F (y)F (x) = F (x)− (F (x)− F (y))+ and (F (x)− F (y))+ is given by Algorithm
2.4 in [11].

Acknowledgement: During the 1998 matrix workshop held in the University of
Hong Kong in honor of the retirement of Prof. Y.H. Au-Yeung, Dr. C.M. Cheng
has mentioned to the first author the problem of determining the distance between a
point and a Ad (SO(n)×SO(n))-orbit for the simple Lie algebra son,n. The question
provoked the study in this paper. The first author also learned from Prof. A.S.
Lewis that he and one of his students have given a proof, via nonsmooth analysis, of
Corollary 4.4 which can also be derived by Liskii’s result by considering the so called
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