SOME INEQUALITIES FOR THE EXPONENTIALS

TIN-YAU TAM

ABSTRACT. Let $||| \cdot |||$ be any give unitarily invariant norm. We generalize, in the context of semisimple Lie group, the inequalities (1) $|||e^A||| \le |||e^{\operatorname{Re} A}|||$ for all complex matrices A, where $\operatorname{Re} A$ denotes the Hermitian part of A, and (2) $|||e^{A+B}||| \le |||e^Ae^B|||$ where A and B are $n \times n$ Hermitian matrices. The inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thompson, Cohen, and So-Thompson are recovered from the main results. Araki's relation on $(e^{A/2}e^Be^{A/2})^r$ and $e^{rA/2}e^{rB}e^{rA/2}$, where A, B are Hermitian and $r \in R$, is generalized.

1. INTRODUCTION

It is known [3, Theorem IX.3.1, Theorem IX.3.7] that for any unitarily invariant norm $\||\cdot\|| : \mathbb{C}_{n \times n} \to \mathbb{R}$,

(1.1)
$$|||e^A||| \le |||e^{\operatorname{Re} A}|||, \quad A \in \mathbb{C}_{n \times n},$$

(1.2)
$$|||e^{A+B}||| \le |||e^A e^B|||, \quad A, B \in \mathbb{C}_{n \times n} \text{ are Hermitian},$$

where Re A denotes the Hermitian part of $A \in \mathbb{C}_{n \times n}$. Another result in Bhatia's Matrix Analysis [3, Theorem IX.3.5] implies that for any irreducible representation π of the general linear group $GL(n, \mathbb{C})$ (indeed it is sufficient to consider the semisimple $SL(n, \mathbb{C})$ with an appropriate scaling),

(1.3)
$$|\pi(e^{A+B})| \le |\pi(e^{\operatorname{Re} A}e^{\operatorname{Re} B})|, \quad A, B \in \mathbb{C}_{n \times n},$$

where |X| denotes the spectral radius (the maximum modulus of the eigenvalues) of the linear map X. In particular, when A, B are Hermitian, by considering the representation tr : $GL(n, \mathbb{C}) \to \mathbb{C}$, we have the famous Golden-Thompson inequality [6, 16]

(1.4)
$$\operatorname{tr} e^{A+B} \leq \operatorname{tr} (e^A e^B), \quad A, B \text{ Hermitian},$$

since the eigenvalues $e^A e^B$ are those of $e^{A/2} e^B e^{A/2}$ which is positive definite and thus are positive. See [14, 17, 1, 2] for some generalizations of Golden-Thompson's inequality. Indeed, Bhatia [3, p.259] defines a class of functions, called the class \mathcal{T} , and the notion comes out from a result of Thompson [17, Lemma 6].

Definition 1.1. A continuous function $f : \mathbb{C}_{n \times n} \to \mathbb{C}$ is said to be in the class \mathcal{T} if it satisfies

(1) f(XY) = f(YX) for all $X, Y \in \mathbb{C}_{n \times n}$, (2) $|f(X^{2m})| \leq f((XX^*)^m)$ for all $X \in \mathbb{C}_{n \times n}$, $m = 1, 2, \ldots$

2000 Mathematics Subject Classification. Primary 15A45, 22E46; Secondary 15A42

©0000 (copyright holder)

Theorem 1.2. ([3, Theorem IX.3.5]) If $f \in \mathcal{T}$, then for all $A, B \in \mathbb{C}_{n \times n}$,

$$|f(e^{A+B})| \le f(e^{\operatorname{Re} A}e^{\operatorname{Re} B}).$$

Since XY and YX have the same eigenvalues, counting multiplicities, and the spectral radius of X is less than or equal to the operator norm of X, the spectral radius is an element of \mathcal{T} . Thus (1.3) follows from Theorem 1.2. However unitarily invariant norms generally fail to be in class \mathcal{T} . A quick example: consider the operator norm $\|\cdot\|$ which is clearly unitarily invariant and

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Certainly the first criterion of \mathcal{T} is not satisfied for $\|\cdot\|$.

Though the appearance of (1.3) differs from that of (1.1) and (1.2), they can be derived from a pre-order order of Kostant seminal paper [13].

After the preliminary materials are introduced in Section 2, we extend in Section 3 the inequalities (1.1), (1.2) and (1.3) in the context of semisimple Lie group. In a sequence of remarks, we show how to derive from Theorem 3.1 the inequalities of

- (1) Weyl [3] (the moduli of the eigenvalues of A are log majorized by the singular values of $A \in \mathbb{C}_{n \times n}$),
- (2) Ky Fan [3] (the real parts of the eigenvalues of A are majorized by the real singular values of $A \in \mathbb{C}_{n \times n}$),
- (3) Lenard-Thompson [14, 17] ($|||e^{A+B}||| \le |||e^{A/2}e^Be^{A/2}|||, A, B \in \mathbb{C}_{n \times n}$ Hermitian),
- (4) Cohen [4] (the eigenvalues of the positive definite part of e^X (with respect to polar decomposition) are log majorized by the eigenvalues of $e^{\operatorname{Re} A}$, where $A \in \mathbb{C}_{n \times n}$),
- (5) So-Thompson [15] (the singular values of e^A are weakly log majorized by the exponentials of the singular values of $A \in \mathbb{C}_{n \times n}$).

In Section 4 we extend, in the context of Lie group, Araki's result [1] on the relation of the two matrices $(e^{A/2}e^Be^{A/2})^r$ and $e^{rA/2}e^{rB}e^{rA/2}$ where $A, B \in \mathbb{C}_{n \times n}$ are Hermitian, $r \geq 0$. In the last section, the notion of class \mathcal{T} functions is extended on the group level (will be called Thompson functions) and related inequalities are obtained.

2. Preliminaries

We recall some basic notions and results in [13]. Let \mathfrak{g} be a real semisimple Lie algebra. Let G be any Lie group having \mathfrak{g} as its Lie algebra. An element $X \in \mathfrak{g}$ is called real semisimple (nilpotent) if ad X is diagonalizable over \mathbb{R} (ad Xis nilpotent, respectively). An element $g \in G$ is called hyperbolic (unipotent) if $g = \exp(X)$ where $X \in \mathfrak{g}$ is real semisimple (nilpotent respectively). An element $g \in G$ is elliptic if Adg is diagonalizable over \mathbb{C} with eigenvalues of modulus 1. The complete multiplicative Jordan decomposition [13, Proposition 2.1] for G asserts that each $g \in \mathfrak{g}$ can be uniquely written as

$$g = ehu,$$

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h, u commute. We write g = e(g)h(g)u(g).

Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be a fixed Cartan decomposition of \mathfrak{g} . Let $K \subset G$ be the analytic group of \mathfrak{k} so that $\operatorname{Ad}(K)$ is a maximal compact subgroup of $\operatorname{Ad}(G)$. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal Abelian subalgebra of \mathfrak{g} in \mathfrak{p} . Then $A := \exp \mathfrak{a}$ is the analytic subgroup of \mathfrak{a} . Let W be the Weyl group of $(\mathfrak{a}, \mathfrak{g})$ which may be defined as the quotient of the normalizer of A in K modulo the centralizer of A in K. The Weyl group operates naturally in \mathfrak{a} and A and the isomorphism $\exp : \mathfrak{a} \to A$ is a W-isomorphism.

For each real semisimple $X \in \mathfrak{g}$ (hyperbolic $h \in G$) let

$$c(X) = \operatorname{Ad}(G)X \cap \mathfrak{a}, \quad C(h) = \{ghg^{-1} : g \in G\} \cap A$$

denote the set of all elements in $\mathfrak{a}(A)$ which are conjugate to X (h, respectively). It turns out that $X \in \mathfrak{g}$ ($h \in G, e \in G$) is real semisimple (hyperbolic, elliptic) if and only if it is conjugate to an element in $\mathfrak{a}(A, K, \text{respectively})$ [13, Proposition 2.3 and 2.4]. Thus c(X) and C(h) are single W-orbits in \mathfrak{a} and A respectively. Moreover

$$C(\exp(X)) = \exp(c(X)).$$

Denote by conv W(X) the convex hull of the Weyl group orbit $c(X) \subset \mathfrak{a}$.

When $g \in G$ is arbitrary, define

$$C(g) := C(h(g)),$$

where h(g) is the hyperbolic component of g and

 $\mathcal{A}(g) := \exp(\operatorname{conv} W(\log h(g))).$

(For a hyperbolic $g \in G$, the real semisimple X such that $e^X = g$ is unique, and we write $\log g = X$, since $\operatorname{Ad}(e^X) = e^{\operatorname{ad} X}$ and the restriction of the usual matrix exponential map $e^A = \sum_{n=1}^{\infty} \frac{A^n}{n!}$ on the set of diagonalizable matrices over \mathbb{R} is one-to-one). So $\mathcal{A}(g) \subset A$ and is invariant under the Weyl group. It is the "convex hull" of C(g) in the multiplicative sense. Given $f, g \in G$, we say that $f \prec g$ if

$$\mathcal{A}(f) \subset \mathcal{A}(g),$$

or equivalently

$$C(f) \subset \mathcal{A}(g).$$

Notice that \prec is a pre-order on G and $\mathcal{A}(\ell g \ell^{-1}) = \mathcal{A}(g)$ since $h(\ell g \ell^{-1}) = \ell h(g) \ell^{-1}$ for all $\ell \in G$, and is a partial order on the equivalence classes of hyperbolic elements under the conjugation of G. The order \prec is different from Thompson's pre-order [17] on $SL(n, \mathbb{C})$ which simplifies the one made by Lenard [14] (The orders of Lenard and Thompson agree on the space of positive definite matrices).

Example 2.1. Let $G = SL(n, \mathbb{R})$ with K = SO(n) and $A \subset SL(n, \mathbb{R})$ consists of positive diagonal matrices. Viewing $g \in SL(n, \mathbb{R})$ as an element in $\mathfrak{gl}(n, \mathbb{R})$, the additive Jordan decomposition [11, p.153] for $\mathfrak{gl}(n, \mathbb{R})$ yields

$$g = s + n_1$$

 $(s \in SL(n, \mathbb{R})$ semisimple, that is, diagonalizable over \mathbb{C} , $n_1 \in \mathfrak{sl}(n, \mathbb{R})$ nilpotent and $sn_1 = n_1s$. Moreover these conditions determine s and n_1 completely [10, Proposition 4.2]. Put $u = 1 + s^{-1}n_1 \in SL(n, \mathbb{R})$ and we have the multiplicative Jordan decomposition

$$g = su$$
,

where s is semisimple, u is unipotent, and su = us. By the uniqueness of the additive Jordan decomposition, s and u are also completely determined. Since s is diagonalizable,

$$s = eh$$
,

where e is elliptic, h is hyperbolic, eh = he, and these conditions completely determine e and h. The decomposition can be obtained by observing that there is $k \in SL(n, \mathbb{C})$ such that

$$k^{-1}sk = s_1I_{r_1} \oplus \cdots \oplus s_mI_{r_m},$$

where $s_1 = e^{i\xi_1} |s_1|, \ldots, s_m = e^{i\xi_m} |s_m|$ are the distinct eigenvalues of s with multiplicities r_1, \ldots, r_m respectively. Set

$$e := k(e^{i\xi_1}I_{r_1} \oplus \dots \oplus e^{i\xi_m}I_{r_m})k^{-1}, \quad h := k(|s_1|I_{r_1} \oplus \dots \oplus |s_m|I_{r_m})k^{-1}.$$

If s = e'h' with e'h' = h'e', e' elliptic and h' hyperbolic, then s, e' and h' are simultaneously diagonalizable over \mathbb{C} and hence for some $k' \in SL(n, \mathbb{C})$, $k'^{-1}sk' = s_1 I_{r_1} \oplus \cdots \oplus s_m I_{r_m}$,

$$e' = k'(e^{i\xi_1}I_{r_1} \oplus \dots \oplus e^{i\xi_m}I_{r_m})k'^{-1}, \quad h' = k'(|s_1|I_{r_1} \oplus \dots \oplus |s_m|I_{r_m})k'^{-1}.$$

Thus the first r_1 columns of k' form a basis for the eigenspace of s associated with the eigenvalue s_1, \ldots, s_n and the last r_m columns of k' form a basis for the eigenspace of s associated with the eigenvalue s_m . So k' = kB where $B \in \mathbb{C}_{r_1 \times r_1} \oplus \cdots \oplus \mathbb{C}_{r_m \times r_m}$ and thus e' = e and h = h. Since

$$ehu = g = ugu^{-1} = ueu^{-1}uhu^{-1}u,$$

the uniqueness of s, u, e and h implies e, u and h commute. Since g is fixed under complex conjugation, the uniqueness of e, h and u imply $e, h, u \in SL(n, \mathbb{R})$ [7, p.431]. Thus g = ehu is the complete multiplicative Jordan decomposition for $SL(n, \mathbb{R})$. The eigenvalues of h are simply the moduli of the eigenvalues of s and thus of g. We have similar decomposition for $SL(n, \mathbb{C})$.

Let $\mathfrak{sl}(n, \mathbb{R}) = \mathfrak{so}(n) + \mathfrak{p}$ be the fixed Cartan decomposition of $\mathfrak{sl}(n, \mathbb{R})$, that is, $\mathfrak{k} = \mathfrak{so}(n)$ and \mathfrak{p} is the space of traceless real symmetric matrices. So K = SO(n). Let $\mathfrak{a} \subset \mathfrak{p}$ be the maximal Abelian subalgebra of $\mathfrak{sl}(n, \mathbb{R})$ in \mathfrak{p} containing the diagonal matrices. So the analytic group A of \mathfrak{a} is the group of positive diagonal matrices of determinant 1. The Weyl group W of $(\mathfrak{a}, \mathfrak{g})$ is the full symmetric group S_n [12] which acts on A and \mathfrak{a} by permuting the diagonal entries of the matrices in A and \mathfrak{a} . Now

$$C(f) = \{ \operatorname{diag}(|\alpha_{\sigma(1)}|, \cdots, |\alpha_{\sigma(n)}|) : \sigma \in S_n \},\$$

where $\alpha_1, \ldots, \alpha_n$ denote the eigenvalues of $f \in SL(n, \mathbb{C})$. So

$$c(\log h(f)) = \{ \operatorname{diag} \left(\log |\alpha_{\sigma(1)}|, \cdots, \log |\alpha_{\sigma(n)}| \right) : \sigma \in S_n \}.$$

We will arrange them in such a way that $|\alpha_1| \ge |\alpha_2| \ge \cdots \ge |\alpha_n|$. So $f \prec g$, $f, g \in SL(n, \mathbb{R})$ means that the $\log h(f)$ is an element of the convex hull of the single *W*-orbit $c(\log h(g))$. Thus $\log |\alpha|$ is majorized by $\log |\beta|$ [3, p.33], denoted by $|\alpha| \prec_{\log} |\beta|$ which is called log majorization in [2], where β 's are the eigenvalues of g. In other words, $|\alpha_1| \ge |\alpha_2| \ge \cdots \ge |\alpha_n|$, are multiplicatively majorized by

 $|\beta_1| \ge |\beta_2| \ge \cdots \ge |\beta_n|$, that is,

$$\prod_{i=1}^{k} |\alpha_i| \leq \prod_{i=1}^{k} |\beta_i|, \quad k = 1, \dots, n-1,$$

$$\prod_{i=1}^{n} |\alpha_i| = \prod_{i=1}^{n} |\beta_i|.$$

On the other hand, one may deduce the above inequalities as necessary conditions for $f \prec g$ via Theorem 2.3 by considering the natural representation of $SL(n,\mathbb{R})$ on $V_{\lambda} = \mathbb{R}^n$ and the *k*th exterior powers $\wedge^k f$, $k = 1, \ldots, n$. These would yield $\prod_{i=1}^k |\alpha_i| \leq \prod_{i=1}^k |\beta_i|, k = 1, \ldots, n$. Then consider the representation $A \mapsto (\det A)^{-1}$ to have the equality. Same results hold for $SL(n,\mathbb{C})$.

Remark 2.2. In the above example, the pre-order \prec in $SL(n, \mathbb{R}) \subset SL(n, \mathbb{C})$ coincides with that in $SL(n, \mathbb{C})$ since the Weyl groups are identical. But it is pointed out in [13, Remark 3.1.1] that the pre-order \prec is not necessarily the same as the pre-order on the semisimple G that would be induced by a possible embedding of G in $SL(n, \mathbb{C})$ for some n.

We denote by \hat{G} the index set of the irreducible representations of G, π_{λ} : $G \to \operatorname{Aut}(V_{\lambda})$ a fixed representation in the class corresponding to $\lambda \in \hat{G}$, $|\pi_{\lambda}(g)|$ the spectral radius of the automorphism $\pi_{\lambda}(g) : V_{\lambda} \to V_{\lambda}$ where $g \in G$, that is, the maximum modulus of the eigenvalues of $\pi_{\lambda}(g)$, and χ_{λ} the character of π_{λ} . The following nice result of Kostant describes the pre-order \prec via the irreducible representations of G and plays an important role in the coming sections.

Theorem 2.3. (Kostant [13, Theorem 3.1]) Let $f, g \in G$. Then $f \prec g$ if and only if $|\pi_{\lambda}(f)| \leq |\pi_{\lambda}(g)|$ for all $\lambda \in \hat{G}$, where $|\cdot|$ denotes the spectral radius.

3. The Main Results

Fix a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$. For each $X \in \mathfrak{g}$, write $X = X_{\mathfrak{k}} + X_{\mathfrak{p}}$ where $X_{\mathfrak{k}} \in \mathfrak{k}$ and $X_{\mathfrak{p}} \in \mathfrak{p}$.

Theorem 3.1. Let \mathfrak{g} be a real semisimple Lie algebra. Let $X, Y \in \mathfrak{g}$ and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be a fixed Cartan decomposition of \mathfrak{g} . Then for any $n \geq 1$ and $g \in G$,

$$g^{2n} \prec (g^*)^n g^n \prec (g^*g)^n,$$

and

$$e^{X+Y} \prec e^{-\theta(X+Y)/2} e^{(X+Y)/2} \prec e^{X\mathfrak{p}} e^{Y\mathfrak{p}},$$

where θ is the Cartan involution of \mathfrak{g} with respect to the given Cartan decomposition.

By setting Y = X, we have

Corollary 3.2. Let $X \in \mathfrak{g}$. Then $e^X \prec e^{-\theta X/2} e^{X/2} \prec e^{X\mathfrak{p}}$.

Proof. of Theorem 3.1 Let $\theta \in \text{Aut}(\mathfrak{g})$ be the Cartan involution of \mathfrak{g} , that is, θ is 1 on \mathfrak{k} and -1 on \mathfrak{p} . Set $P = e^{\mathfrak{p}}$. We have the (global) Cartan decomposition

$$G = KP$$

Then θ induces an automorphism Θ of G such that the differential of Θ at the identity is θ [12, p.387]. Explicitly

$$\Theta(kp) = kp^{-1}, \quad k \in K, \ p \in P.$$

For any $g \in G$ let

$$g^* := \Theta(g^{-1}).$$

If g = kp, the polar decomposition of $g \in G$, then

$$g^* = \Theta(p^{-1}k^{-1}) = \Theta(p^{-1})k^{-1} = pk^{-1},$$

and hence $g^*g = p^2 \in P$, since the centralizer $G^{\Theta} = \{g \in G : \Theta(g) = g\}$ coincides with K [12, p.305]. So

$$g^* := \Theta(g^{-1}) = (\Theta(g))^{-1}, \quad (g^*)^* = g, \quad (fg)^* = g^* f^*, \quad (g^*)^n = (g^n)^*,$$

for all $f, g \in G$, n positive integer. Since θ is the differential of Θ at the identity, we have [7, 110]

$$\Theta(e^A) = e^{\theta A},$$

for all $A \in \mathfrak{g}$. So

(3.1)
$$(e^A)^* = \Theta(e^{-A}) = e^{-\theta A}.$$

We now claim for any $g \in G$, and any natural number n,

(3.2)
$$g^{2n} \prec (g^*)^n g^n \prec (g^*g)^n.$$

The relation $g^{2n} \prec (g^*g)^n$ is known in [13, p.448] and we use similar idea (indeed the original idea can be found in [17] when $G = SL(n, \mathbb{C})$) to establish (3.2). We denote by $\Pi_{\lambda} : \mathfrak{g} \to \operatorname{End}(V_{\lambda})$ the differential at the identity of the representation $\pi_{\lambda} : G \to \operatorname{Aut}(V_{\lambda})$. So [7, p.110]

$$(3.3) \qquad \qquad \exp \circ \Pi_{\lambda} = \pi_{\lambda} \circ \exp,$$

where the exponential function on the left is $\exp : \operatorname{End}(V_{\lambda}) \to \operatorname{Aut}(V_{\lambda})$ and the one on the right side is $\exp : \mathfrak{g} \to G$. Now $\mathfrak{u} = \mathfrak{k} + i\mathfrak{p}$ (direct sum) is a compact real form of $\mathfrak{g}_{\mathbb{C}}$ (the complexification of \mathfrak{g}). The representation $\Pi_{\lambda} : \mathfrak{g} \to \operatorname{End}(V_{\lambda})$ naturally defines a representation $\mathfrak{u} \to \operatorname{End}(V_{\lambda})$ of \mathfrak{u} , also denoted by Π_{λ} and vice versa. Let U be a simply connected Lie group of U [19, p.101] so that it is compact [5, Corollary 3.6.3]. There is a unique homomorphism $\hat{\pi}_{\lambda} : U \to \operatorname{Aut}(V_{\lambda})$ such that the differential of $\hat{\pi}_{\lambda}$ at the identity is Π_{λ} [19, Theorem 3.27]. Thus there exists an inner product (we will assume that V_{λ} is endowed with this structure from now on) $\langle \cdot, \cdot \rangle$ on V_{λ} such that $\hat{\pi}_{\lambda}(u)$ is orthogonal for all $u \in U$. Differentiate the identity

$$(\hat{\pi}_{\lambda}(e^{tZ})X, \hat{\pi}_{\lambda}(e^{tZ})Y) = (X, Y),$$

for all $X, Y \in V_{\lambda}$ at t = 0 we have

$$(\Pi_{\lambda}(Z)X,Y) = -(X,\Pi_{\lambda}(Z)Y)$$

by (3.3). Thus $\Pi_{\lambda}(Z)$ is skew Hermitian for all $Z \in \mathfrak{u}$ [12, Proposition 4.6], [13, p.435]. Then $\Pi_{\lambda}(Z)$ is skew Hermitian if $Z \in \mathfrak{k}$ and is Hermitian if $Z \in \mathfrak{p}$. So $\pi_{\lambda}(z)$ is unitary if $z \in K$ and is positive definite if $z \in P$ by (3.3). Since each g can be written as g = kp, $k \in K$ and $p \in P$,

$$\begin{aligned} \langle u, \pi_{\lambda}(g^{*})v \rangle &= \langle u, \pi_{\lambda}(pk^{-1})v \rangle \\ &= \langle u, \pi_{\lambda}(p)\pi_{\lambda}(k^{-1})v \rangle \\ &= \langle \pi_{\lambda}(k)\pi_{\lambda}(p)u, v \rangle \\ &= \langle \pi_{\lambda}(g)u, v \rangle, \end{aligned}$$

for all $u, v \in V_{\lambda}$. Thus

(3.4)
$$\pi_{\lambda}(g)^* = \pi_{\lambda}(g^*),$$

6

where $\pi_{\lambda}(g)^*$ denotes the Hermitian adjoint of $\pi_{\lambda}(g)$. Thus $\pi_{\lambda}(g^*g) = \pi_{\lambda}(g)^*\pi_{\lambda}(g) \in$ Aut (V_{λ}) is a positive definite operator for all $g \in G$. Denote by $\|\pi_{\lambda}(g)\|, g \in G$, the operator norm of $\pi_{\lambda}(g)$. Thus

$$|\pi_{\lambda}(p)| = ||\pi_{\lambda}(p)||, \text{ for all } p \in P.$$

Because of Theorem 2.3, to arrive at the claim (3.2) it suffices to show

$$|\pi_{\lambda}(g^{2n})| \le |\pi_{\lambda}((g^*)^n g^n)| \le |\pi_{\lambda}((g^*g)^n)|, \quad \text{for all } \lambda \in \hat{G}.$$

Now

$$\begin{aligned} |\pi_{\lambda}((g^{*})^{n}g^{n})| &= |\pi_{\lambda}((g^{n})^{*}g^{n})| \\ &= \|\pi_{\lambda}((g^{n})^{*}g^{n})\| \quad (\pi_{\lambda}((g^{n})^{*}g^{n}) \in \operatorname{Aut}(V_{\lambda}) \text{ is positive definite}) \\ &= \|\pi_{\lambda}(g^{n})^{*}\pi_{\lambda}(g^{n})\| \quad \text{by } (3.4) \\ &= \|\pi_{\lambda}(g^{n})\|^{2} \quad (\|T\|^{2} = \|T^{*}T\|). \end{aligned}$$

On the other hand,

$$\begin{aligned} |\pi_{\lambda}((g^{*}g)^{n})| &= |\pi_{\lambda}(g^{*}g)|^{n} \\ &= ||\pi_{\lambda}(g^{*}g)||^{n} \quad (\pi_{\lambda}((g^{*}g) \in \operatorname{Aut}(V_{\lambda}) \text{ is positive definite}) \\ &= ||\pi_{\lambda}(g)^{*}\pi_{\lambda}(g)||^{n} \\ &= ||\pi_{\lambda}(g)||^{2n} \quad (||T||^{2} = ||T^{*}T||) \\ &\geq ||\pi_{\lambda}(g^{n})||^{2} \quad (||T^{n}|| \leq ||T||^{n}), \end{aligned}$$

where the inequality is due to the well known fact that the spectral radius is no greater than the operator norm. So we have $(g^*)^n g^n \prec (g^*g)^n$. Now

$$|\pi_{\lambda}((g^{*})^{n})g^{n})| = |\pi_{\lambda}((g^{n})^{*})\pi_{\lambda}(g^{n})| = ||\pi_{\lambda}(g^{n})||^{2} \ge |\pi_{\lambda}(g^{n})|^{2} = |\pi_{\lambda}(g^{2n})|.$$

Hence $g^{2n} \prec (g^*)^n g^n$ and we just proved the claim.

By the first relation in (3.2), if g = xy where $x, y \in G$, we have for any natural number m,

$$(xy)^{2^{m+1}} \prec (y^*x^*)^{2^m} (xy)^{2^m}.$$

Set $x = e^{X/2^m}, y = e^{Y/2^m}$, where $X, Y \in \mathfrak{g}$. We get
 $((e^{X/2^m}e^{Y/2^m})^{2^m})^2 \prec ((e^{Y/2^m})^*(e^{X/2^m})^*)^{2^m} (e^{X/2^m}e^{Y/2^m})^{2^m}$
 $= (e^{-\theta Y/2^m}e^{-\theta X/2^m})^{2^m} (e^{X/2^m}e^{Y/2^m})^{2^m}$

by (3.1). Since $\lim_{t\to\infty} (e^{X/t}e^{Y/t})^t = e^{X+Y}$ [7, p.115], and the relation \prec remains valid as we take limits on both sides because the spectral radius is a continuous function on Aut (V_{λ}) , we have $e^{2(X+Y)} \prec e^{-\theta(X+Y)}e^{(X+Y)}$. As a result

$$e^{X+Y} \prec e^{-\frac{1}{2}\theta(X+Y)}e^{\frac{1}{2}(X+Y)},$$

and we just established the first part of Theorem 3.1.

Let $g = e^{(X+Y)/n}$, $X, Y \in \mathfrak{g}$. By the second relation of (3.2),

$$(e^{-\theta(X+Y)/n})^n (e^{(X+Y)/n})^n \prec ((e^{-\theta(X+Y)/n}e^{(X+Y)/n}))^n.$$

So

$$e^{-\theta(X+Y)}e^{X+Y} \prec e^{2(X+Y)\mathfrak{p}} = e^{2X\mathfrak{p}+2Y\mathfrak{p}} \prec e^{2X\mathfrak{p}}e^{2Y\mathfrak{p}}$$

where the last relation is established in [13, Theorem 6.3].

Remark 3.3. Certainly, the statement $e^{X+Y} \prec e^{X}\mathfrak{k} e^{Y}\mathfrak{k}$ is not true by simply considering $G = SL(n, \mathbb{C})$ in which K = SU(n) and $\mathfrak{k} = \mathfrak{su}(n)$. There $e^{X}\mathfrak{k} e^{Y}\mathfrak{k} \in$ SU(n) and we may pick $X, Y \in \mathfrak{sl}(n, \mathbb{C})$ such that X + Y is nonzero Hermitian matrix with a positive eigenvalue. Viewing each $g \in SL(n, \mathbb{C})$ as a linear operator on $V_{\lambda} = \mathbb{C}^{n}$ (the natural representation of $SL(n, \mathbb{C})$), the spectral radius $|e^{X}\mathfrak{k} e^{Y}\mathfrak{k}| = 1$ but $|e^{X+Y}| > 1$.

Remark 3.4. (Cohen's result) When $G = GL(n, \mathbb{C})$, the relation $g^{*n}g^n \prec (g^*g)^n$ was established in [4] and $g^{2n} \prec (g^*g)^n$ was obtained in [17]. Kostant [13, Proof of Theorem 6.3] also proved $g^{2n} \prec (g^*g)^n$ and $e^{A+B} \prec e^A e^B$, $A, B \in \mathfrak{p}$, for general G. The relation in Theorem 3.1

$${g^*}^n g^n \prec (g^* g)^n$$

is equivalent to

$$p(g^n) \prec (p(g))^n$$

where g = k(g)p(g) is the polar decomposition of $g \in G$. If we set $g = e^{X/n}$, then we have

$$p(e^X) \prec [p(e^{X/n})]^n, \qquad n = 1, 2, \dots$$

Now $p(e^{X/n}) = ((e^{X/n})^* e^{X/n})^{1/2} = (e^{-\theta X/n} e^{X/n})^{1/2}.$ So

$$\lim_{n \to \infty} [p(e^{X/n})]^n = \lim_{n \to \infty} [(e^{-\theta X/n} e^{X/n})^{1/2}]^n = e^{X\mathfrak{p}},$$

and thus

$$p(e^X) \prec e^{X \mathfrak{p}}$$

which is Cohen's result [4] when $G = SL(n, \mathbb{C})$ with appropriate scaling.

Remark 3.5. (Ky Fan's inequality and inequality (1.1))

Continuing with Example 2.1, for $A \in \mathfrak{sl}(n, \mathbb{C})$, the moduli of the eigenvalues of e^A are the exponentials of the real parts of the eigenvalues of A, counting multiplicities. The matrix $e^{\operatorname{Re} A}$ is positive definite. So the eigenvalues of $e^{\operatorname{Re} A}$ are indeed the singular values, and are the exponentials of the eigenvalues of $\operatorname{Re} A$. The eigenvalues of $\operatorname{Re} A$ are known as the real singular values of A, denoted by $\beta_1 \geq \cdots \geq \beta_n$. Denote the real parts of the eigenvalues of A by $\alpha_1 \geq \cdots \geq \alpha_n$. By Corollary 3.2 $e^A \prec e^{\operatorname{Re} A}$ which amounts to

$$\prod_{i=1}^{k} e^{\alpha_i} \leq \prod_{i=1}^{k} e^{\beta_i}, \quad i = 1, \dots, n-1,$$
$$\prod_{i=1}^{n} e^{\alpha_i} = \prod_{i=1}^{n} e^{\beta_i},$$

that is $e^{\alpha} \prec_{\log} e^{\beta}$. Thus, by taking log on the above relation, the relation $e^A \prec e^{\operatorname{Re} A}$ amounts to the usual majorization relation $\alpha \in \operatorname{conv} S_n\beta$, a well known result of Ky Fan [3, Proposition III.5.3]. From the second relation of Corollary 3.2, $e^A e^{A^*} \prec e^{A+A^*}$ which amounts to the fact that the singular values of e^A (that is, the square roots of the eigenvalues of $e^A e^{A^*}$) are multiplicatively majorized, and hence weakly majorized [3, p.42], [2], by the singular values (also the eigenvalues) of the positive definite $e^{\operatorname{Re} A}$. Thus

$$||e^A|| \le ||e^{\operatorname{Re} A}||,$$

for all unitarily invariant norms $\||\cdot\||$ [3, Theorem IX.3.1] by Ky Fan Dominance Theorem [3, Theorem IV.2.2]. Thus we have (1.1).

Remark 3.6. (So-Thompson's inequality)

From $e^A e^{A^*} \prec e^{A+A^*}$, $A \in \mathbb{C}_{n \times n}$, So-Thompson inequalities [15, Theorem 2.1] asserts that

$$\prod_{i=1}^{k} s_i(e^A) \le \prod_{i=1}^{k} e^{s_i(A)}, \quad k = 1, \dots, n$$

can be derived via Fan-Hoffman inequalities [3, proposition III.5.1]

$$\lambda_i(\operatorname{Re} A) \le s_i(A), \quad i = 1, \dots, n,$$

where $s_1(A) \ge \cdots \ge s_n(A)$ denote the singular values of $A \in \mathbb{C}_{n \times n}$.

Remark 3.7. (Weyl's inequality and inequalities (1.2) and (1.3))

Let $A \in SL(n, \mathbb{C})$. By (3.4) $A^2 \prec A^*A$. By Example 2.1, $|\lambda^2(A)| \prec_{\log} |\lambda(A^*A)| = |s(A^*A)|$, that is,

$$|\lambda(A)| \prec_{\log} s(A).$$

By scaling and continuity argument, the log majorization remains valid for $A \in \mathbb{C}_{n \times n}$, that is, Weyl's inequality [3, p.43]. In the literature, Weyl's inequality is often proved via the *k*th exterior power once $|\lambda_1(A)| \leq s_1(A)$ is established, for example [3, p.42-43]. Such an approach shares some favor of Theorem 2.3.

If $A, B \in C_{n \times n}$ are Hermitian, then e^A , e^B and e^{A+B} are positive definite. Though $e^A e^B$ is not positive definite in general, its eigenvalues, denoted by $\delta_1 \geq \cdots \geq \delta_n$, are positive since $e^A e^B$ and the positive definite $e^{A/2} e^B e^{A/2}$ share the same eigenvalues. Denote the eigenvalues of e^{A+B} by $\gamma_1 \geq \cdots \geq \gamma_n$. Thus γ is multiplicatively majorized by δ because of $e^{A+B} \prec e^A e^B$ (Theorem 3.1). Notice that δ is also multiplicatively majorized by the singular values $s_1 \geq \cdots \geq s_n$ of $e^A e^B$, by Weyl's inequality. Hence we have the weak majorization relation $\gamma \prec_w s$ [3, p.42] so that (1.2) follows. Finally (1.3) follows from Theorem 3.1 and Theorem 2.3.

Remark 3.8. (Lenard-Thompson's inequality) Lenard's result [14] together with [17, Theorem 2] imply that

(3.5)
$$|||e^{A+B}|||| \le |||e^{A/2}e^Be^{A/2}|||, A, B \in \mathbb{C}_{n \times n}$$
 Hermitian,

from which Golden-Thompson's result follows. It is because e^{A+B} and $e^{A/2}e^Be^{A/2}$ are positive definite and their traces are indeed the Ky Fan *n*-norm, that is, sum of singular values which is unitarily invariant. Indeed Lenard's result just asserts that any arbitrary neigborhood of e^{A+B} contains X such that $X \prec e^{A/2}e^Be^{A/2}$ [14, p.458] (It is weaker than (3.6)). By a limit argument and Thompson's argument, (3.5) follows. But the more basic question is whether (3.6) is true. Indeed

$$e^{A+B} \prec e^A e^B, \quad A, B \in \mathfrak{g}$$

(Theorem 3.1) is a unified generalization of Golden-Thompson's inequality and (1.2) and (3.5) in the context of Lie group since

(3.6)
$$e^{A+B} \prec e^{A/2} e^B e^{A/2}, \quad A, B \in \mathfrak{p}.$$

Now (3.6) is true simply because $\pi_{\lambda}(e^A e^B)$ and $\pi_{\lambda}(e^{A/2}e^B e^{A/2})$ have the same spectrum (by the fact that XY and YX have the same spectrum and π_{λ} is a representation) and thus have the same spectral radius. Then apply Theorem 2.3.

4. EXTENSION OF ARAKI'S RESULT

Araki's result [1] (actually it appears in the proof of the main Theorem [1, p.168-169]. Also see [9] for a short proof) asserts that if $A, B \in \mathbb{C}_{n \times n}$ Hermitian, then

(4.1)
$$(e^{A/2}e^Be^{A/2})^r \prec e^{rA/2}e^{rB}e^{rA/2}, \quad r > 1,$$

that amounts to

$$s((e^{A/2}e^Be^{A/2})^r)\prec_{\log} s(e^{rA/2}e^{rB}e^{rA/2}), \qquad r>1,$$

or equivalently

$$s((e^{qA/2}e^{qB}e^{qA/2})^{1/q}) \prec_{\log} s((e^{pA/2}e^{pB}e^{pA/2})^{1/p}), \qquad 0 < q \le p$$

Together with Lie-Trotter formula

$$e^{A+B} = \lim_{r \to 0} (e^{rA/2} e^{rB} e^{rA/2})^{1/r},$$

Golden-Thompson's result is strenghtened [2]:

$$|||e^{pA/2}e^{pB}e^{pB/2}|||$$

decreases down to $|||e^{A+B}|||$ as $p \downarrow 0$ for any unitarily invariant norm $||| \cdot |||$ on $\mathbb{C}_{n \times n}$ and in particular

tr
$$e^{A+B} \le \text{tr} [e^{pA/2}e^{pB}e^{pB/2}]^{1/p}, \quad p > 0.$$

Araki's result also implies a result of Wang and Gong [18] (also see [3, Theorem IX.2.9]).

In order to extend (4.1) for general G, we need a result of Heinz [8] conerning two positive semidefinite operators. Indeed the orginal proof of Araki's result [1] also makes use of Heinz's result. Give two positive semidefinite operators A, B, the spectrum (counting multiplicities) $\lambda(AB) = \lambda(A^{1/2}BA^{1/2})$ and thus all eigenvalues of AB are positive. So the largest eigenvalue of $AB, \lambda_1(AB)$, is the spectral radius of AB. The first part of the following theorem is due to Heinz [8] (see [p.255-256] for two nice proofs of Heinz's result). The second part is proved via the Heinz's result in [3, Theorem IX.2.6] in a somewhat lengthly way.

Theorem 4.1. The following two statements are equivalent and valid.

- (1) (Heinz) For any two positive semidefinite operators $A, B, ||A^sB^s|| \le ||AB||^s, 0 \le s \le 1.$
- (2) For any two positive semidefinite operators A, B, $\lambda_1(A^sB^s) \leq \lambda_1^s(AB)$, $0 \leq s \leq 1$.

Proof. We just establish the equivalence of the two statements. Since $||T|| = ||T^*T||^2$,

$$\|A^{s}B^{s}\| = \|(A^{s}B^{s})A^{s}B^{s}\|^{1/2} = \|B^{s}A^{2s}B^{s}\|^{1/2} = \lambda_{1}^{1/2}(B^{s}A^{2s}B^{s}) = \lambda_{1}^{1/2}(A^{2s}B^{2s}),$$

and
$$\|AB\|^{s} = \|AB\|^{s} = \|ABB\|^{s/2} = \lambda_{1}^{s/2}(AB^{2}A) = \lambda_{1}^{s/2}(A^{2}B^{2s}),$$

$$\|AB\|^{s} = \|ABBA\|^{s/2} = \lambda_{1}^{s/2}(AB^{2}A) = \lambda_{1}^{s/2}(A^{2}B^{2}).$$

Remark 4.2. An equivalent statement to Heniz's result is: for any positive operators A, B, $||A^tB^t|| \ge ||AB||^t$ if $t \ge 1$, or equivalently $\lambda_1(A^tB^t) \ge \lambda_1^t(AB)$ [3, p.256-257].

For general G, the map $\exp: \mathfrak{p} \to P$ where $P := e^{\mathfrak{p}}$ is one-to-one since the map

$$(K, \mathfrak{p}) \to G, \quad (k, X) \mapsto ke^{\lambda}$$

is a diffeomorphism [12, p.305], and thus $(e^A)^r := e^{rA} \in P$ where $r \in \mathbb{R}$. So $f^r, g^r \in P, f^r g^r$ (hyperbolic, since $f^r g^r$ is conjugate to $f^{r/2} g^r f^{r/2}$), $r \in \mathbb{R}$, are well defined for $f, g \in P$. The following is an extension of Heinz's result on the group level.

Theorem 4.3. Let $f, g \in P$. Then

$$\begin{array}{rcl} (fg)^t & \prec & f^t g^t, & t \ge 1, \\ (fg)^s & \prec & f^s g^s, & 0 \le s \le 1. \end{array}$$

Proof. Since each element e^A in P $(A \in \mathfrak{p})$ is of the form $e^{-\theta A/2}e^{A/2} = (e^A)^*e^A$ $(A = -\theta A), \pi_\lambda(e^A)$ is positive definite. Thus $\pi_\lambda(f), \pi_\lambda(g) \in \operatorname{Aut}(V_\lambda)$ are positive definite if $f, g \in P$. Suppose $0 \le s \le 1$. Then

$$\begin{aligned} |\pi_{\lambda}((fg)^{s})| &= |\pi_{\lambda}(fg)|^{s} = |\pi_{\lambda}(f)\pi_{\lambda}(g)|^{s} &\geq |\pi_{\lambda}^{s}(f)\pi_{\lambda}^{s}(g)| \\ &= |(\pi_{\lambda}(f^{s})\pi_{\lambda}(g^{s})| = |(\pi_{\lambda}(f^{s}g^{s})|, \end{aligned}$$

by Theorem 4.1 (2). Applying Theorem 2.3 to have the desired result $(fg)^s \prec f^s g^s$, $0 \leq s \leq 1$. The other relation is by Remark 4.2.

When $A, B \in \mathfrak{p}$, the element $e^{A/2}e^Be^{A/2}$ is in P since it is of the form g^*g where $g = e^{B/2}e^{A/2}$. Thus $(e^{A/2}e^Be^{A/2})^r \in P$, $r \in \mathbb{R}$ is well defined.

Theorem 4.4. Let $A, B \in \mathfrak{p}$. Then

$$\begin{array}{ll} (e^{A/2}e^Be^{A/2})^r &\prec & e^{rA/2}e^{rB}e^{rA/2}, & \quad r>1, \\ e^{rA/2}e^{rB}e^{rA/2} &\prec & (e^{A/2}e^Be^{A/2})^r, & \quad 0\leq r\leq 1. \end{array}$$

Moreover, for all $\lambda \in \hat{G}$

$$\begin{aligned} \chi_{\lambda}((e^{A/2}e^{B}e^{A/2})^{r}) &\leq \chi_{\lambda}(e^{rA/2}e^{rB}e^{rA/2}), \qquad r > 1, \\ \chi_{\lambda}(e^{rA/2}e^{rB}e^{rA/2}) &\leq \chi_{\lambda}((e^{A/2}e^{B}e^{A/2})^{r}), \qquad 0 \leq r \leq 1. \end{aligned}$$

Proof. Notice that $\pi_{\lambda}(e^A)$ is positive definite and

$$\pi_{\lambda}((e^{A})^{r}) = (\pi_{\lambda}(e^{A}))^{r}, \qquad r \in \mathbb{R},$$

where $(\pi_{\lambda}(e^{A}))^{r}$ is the usual *r*th power of the positive definite operator $\pi_{\lambda}(e^{A}) \in$ Aut (V_{λ}) . In particular $|\pi_{\lambda}((e^{A})^{r})| = |\pi_{\lambda}(e^{A})|^{r}$. So for $r \in \mathbb{R}$,

$$\begin{aligned} |\pi_{\lambda}(e^{A/2}e^{B}e^{A/2})^{r}| &= |\pi_{\lambda}(e^{A/2}e^{B}e^{A/2})|^{r} & (e^{A/2}e^{B}e^{A/2} \in P) \\ &= |\pi_{\lambda}(e^{A}e^{B})|^{r} \\ &= |\pi_{\lambda}(e^{A})\pi_{\lambda}(e^{B})|^{r}, \end{aligned}$$

and

$$|\pi_{\lambda}(e^{rA/2}e^{rB}e^{rA/2})| = |\pi_{\lambda}(e^{rA}e^{rB})| = |(\pi_{\lambda}(e^{A}))^{r}(\pi_{\lambda}(e^{B}))^{r}|$$

Since the operators $\pi_{\lambda}(e^A)$ and $\pi_{\lambda}(e^B)$ are positive definite, by Theorem 4.1 (2) and Remark 4.2,

$$\begin{aligned} &|\pi_{\lambda}(e^{A/2}e^{B}e^{A/2})^{r}| &\leq |\pi_{\lambda}(e^{rA/2}e^{rB}e^{rA/2})|, \qquad r \geq 1, \\ &|\pi_{\lambda}(e^{A/2}e^{B}e^{A/2})^{r}| &\geq |\pi_{\lambda}(e^{rA/2}e^{rB}e^{rA/2})|, \qquad 0 \leq r \leq 1. \end{aligned}$$

By Theorem 2.3, the desired relations then follow.

Now $(e^{A/2}e^Be^{A/2})^r \in P$ since $e^{A/2}e^Be^{A/2} \in P$. Clearly $e^{rA/2}e^{rB}e^{rA/2} \in P$. Thus $(e^{A/2}e^Be^{A/2})^r$ and $e^{rA/2}e^{rB}e^{rA/2}$ in P and thus are hyperbolic [13, Proposition 6.2] and by [13, Theroem 6.1], the desired inequalities follow.

5. Thompson functions

Definition 5.1. [3, 14] A continuous function $\phi : G \to \mathbb{C}$ is a Thompson function if it satisfies

- (1) $\phi(fgf^{-1}) = \phi(g)$ for all $f, g \in G$, that is, ϕ is a class function with respect to conjugation.
- (2) $|\phi(g^{2m})| \le \phi((g^*g)^m)$ for all $g \in G, m = 1, 2, \dots$

Notice that we define Thompson functions on the group G instead of the Lie algebra \mathfrak{g} . In the case $G = GL(n, \mathbb{C})$ (reductive), class \mathcal{T} functions are defined on $\mathfrak{gl}(n, \mathbb{C})$ [3, 17] and $GL(n, \mathbb{C})$ just happens to be a subset of its Lie algebra $\mathfrak{gl}(n, \mathbb{C})$ but it is not necessarily true for general semi-simple or reductive Lie groups.

Theorem 5.2. Let $\phi : G \to \mathbb{C}$ be a Thompson function. Then

- (1) $\phi(e^A) \ge 0$ if $A \in \mathfrak{p}$, and
- (2) $|\phi(e^{A+B})| \le \phi(e^{A\mathfrak{p}}e^{B\mathfrak{p}})$ for all $A, B \in \mathfrak{g}$. Thus $|\phi(e^{A})| \le \phi(e^{A\mathfrak{p}})$ if $A \in \mathfrak{g}$, and $0 \le \phi(e^{A+B}) \le \phi(e^{A}e^{B})$ if $A, B \in \mathfrak{p}$.

Proof. (1) $\phi(e^A) = \phi(e^{A/2}e^{A/2}) = \phi(e^{A/2}e^{A^*/2})$ since $A \in \mathfrak{p}$. Then apply the second property of ϕ .

(2) The first condition of ϕ is equivalent to $\phi(fg) = \phi(gf)$, for all $f, g \in G$. We repeat the argument in Bhatia [3, p.260] word for word. For any positive integer m, by the properties of ϕ , we have for all $f, g \in G$,

$$|\phi((fg)^{2^m})| \le \phi(((fg)^*(fg))^{2^{m-1}}) = \phi((g^*f^*fg)^{2^{m-1}}) = \phi((f^*fgg^*)^{2^{m-1}}).$$

Repeat the argument to obtain

$$|\phi((fg)^{2^m})| \le \phi(((f^*f)^2(gg^*)^2)^{2^{m-2}}) \le \dots \le \phi((f^*f)^{2^{m-1}}(gg^*)^{2^{m-1}}).$$

Set $f = e^{A/2^m}$ and $g = e^{B/2^m}$. Thus

$$|\phi((e^{A/2^m}e^{B/2^m})^{2^m})| \le \phi((e^{A^*/2^m}e^{A/2^m})^{2^{m-1}}(e^{B^*/2^m}e^{B/2^m})^{2^{m-1}}).$$

Applying the Lie product formula we conclude

$$\phi(e^{A+B})| \le \phi(e^{A\mathfrak{p}}e^{B\mathfrak{p}}),$$

and the rest follow immediately.

See [3, Exercise IX.3.3] for some examples of Thompson functions on $SL(n, \mathbb{C})$ by switching $\mathbb{C}_{n \times n}$ to $SL(n, \mathbb{C})$. With some scaling, the particular case $\phi(g) := \operatorname{tr} g$, $g \in SL(n, \mathbb{C})$ yields Golden-Thompson inequality. For general G, the character $\chi_{\lambda} := \operatorname{tr} \pi_{\lambda} : G \to \mathbb{C}$ is a Thompson function since

$$|\operatorname{tr} \pi_{\lambda}(g^{2m})| = |\operatorname{tr} \pi_{\lambda}(g^{2})|^{m} \le \operatorname{tr} \pi_{\lambda}(g^{*}g)^{m} = \operatorname{tr} \pi_{\lambda}((g^{*}g)^{m}),$$

by Cauchy-Schwarz's inequality. Thus we have

Corollary 5.3. Given $\lambda \in \hat{G}$, the character $\chi_{\lambda} : G \to \mathbb{C}$ is a Thompson function. Hence

(1) $0 \leq \chi_{\lambda}(e^A), A \in \mathfrak{p}.$

12

(2) If $X, Y \in \mathfrak{g}$, then

$$|\chi_{\lambda}(e^{X+Y})| \le \chi_{\lambda}(e^{X\mathfrak{p}}e^{Y\mathfrak{p}}),$$

for all $\lambda \in \hat{G}$, where χ_{λ} denotes the character of π_{λ} . In addition if e^{X+Y} is hyperbolic, $0 \leq \chi_{\lambda}(e^{X+Y}) \leq \chi_{\lambda}(e^{X\mathfrak{p}}e^{Y\mathfrak{p}})$. Moreover (i) $|\phi(e^X)| \leq |\phi(e^{X\mathfrak{p}})|$, $X \in \mathfrak{p}$, and (ii) $|\chi_{\lambda}(e^{A+B})| \leq \chi_{\lambda}(e^{A}e^{A})$ if $A, B \in \mathfrak{p}$.

Corollary 5.3 (1) is trivial since $\pi_{\lambda}(e^A)$ is positive definite if $A \in \mathfrak{p}$. Corollary 5.3 (2)(ii) is contained in [13, Theorem 6.3].

When X + Y is real semisimple, that is, e^{X+Y} is hyperbolic and is conjugate to $e^Z \in e^{\mathfrak{p}}$, $Z \in \mathfrak{a} \subset \mathfrak{p}$. So $\pi_{\lambda}(e^{X+Y})$ is similar to the positive definite operator $\pi_{\lambda}(e^Z)$ and hence $|\chi_{\lambda}(e^{X+Y})| = \chi_{\lambda}(e^{X+Y})$. Then $0 < \chi_{\lambda}(e^{X+Y}) \le \chi_{\lambda}(e^{X\mathfrak{p}}e^{Y\mathfrak{p}})$.

Example 5.4. Let $G = SL(2, \mathbb{R})$. Let

$$A := \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \in \mathfrak{sl}(2,\mathbb{R})$$

which is real semisimple, that is, diagonalizable over \mathbb{R} . We can decompose A = X + Y, $X, Y \in \mathfrak{sl}(2, \mathbb{R})$, in various ways. For examples,

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \quad \operatorname{Re} X = X, \quad \operatorname{Re} Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

or

$$X = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \quad \operatorname{Re} X = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad \operatorname{Re} Y = Y.$$

The inequality $\chi_{\lambda}(e^{X+Y}) \leq \chi_{\lambda}(e^{\operatorname{Re} X}e^{\operatorname{Re} Y}), \lambda \in \hat{G}$, holds for all such decompositions.

Acknowledgment The author is thankful to an anonymous referee for bringing [1, 2] to his attention so that the paper is greatly improved.

References

- [1] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys., 19 (1990) 167-170.
- [2] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197/198 (1994) 113–131.
- [3] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- [4] J.E. Cohen, Spectral inequalities for matrix exponentials, Linear Algebra Appl., 111 (1988) 25–28.
- [5] J.J. Duistermaat and J.A.C. Kolk, Lie Groups, Springer, Berlin, 2000.
- [6] S. Golden, Lower bounds for the Helmholtz function, Phys. Rev., 137 (1965) B1127–B1128.
- [7] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
- [8] E. Heinz, Beitrage zur Störungstheoric der Spektralzerlegung, Math. Ann., 123 (1951), 415– 438.
- [9] F. Hiai, Trace norm convergence of exponential product formula, Lett. Math. Phys., 33 (1995), 147–158.
- [10] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.
- [11] R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge Univ. Press, 1991.
- [12] A.W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, 1996.
- B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973) 413–460.
- [14] A. Lenard, Generalization of the Golden-Thompson inequality $\text{Tr}(e^A e^B) \geq \text{Tr} e^{A+B}$, Indiana Univ. Math. J. **21** (1971/1972) 457–467.

T.Y. TAM

- [15] W. So and R.C. Thompson, Singular values of matrix exponentials, Linear and Multilinear Algebra, 47 (2000) 249–258.
- [16] C.J. Thompson, Inequality with applications in statistical mechanics, J. Mathematical Phys., 6 (1965) 1812–1813.
- [17] C. J. Thompson, Inequalities and partial orders on matrix spaces, Indiana Univ. Math. J., 21 (1971/72) 469–480.
- [18] B. Wang and M. Gong, Some eigenvalue inequalities for positive semidefinite matrix power products, Linear Algebra Appl. 184 (1993) 249–260.
- [19] F. Warmer, Foundation of Differentiable manifolds and Lie Groups, Scott Foresman and Company, 1971.

Department of Mathematics, Auburn University, AL 36849–5310, USA $E\text{-}mail\ address: \texttt{tamting@auburn.edu}$

14