SOME INEQUALITIES FOR THE EXPONENTIALS

TIN-YAU TAM

Abstract

Let $|||\cdot|||$ be any give unitarily invariant norm. We generalize, in the context of semisimple Lie group, the inequalities (1) \|| $e^{A}\left\|\left|\leq\left\|\mid e^{\operatorname{Re} A}\right\| \|\right.\right.$ for all complex matrices A, where $\operatorname{Re} A$ denotes the Hermitian part of A, and (2) $\left\|\left|e^{A+B}\| \| \leq\left\|\mid e^{A} e^{B}\right\| \|\right.\right.$ where A and B are $n \times n$ Hermitian matrices. The inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thompson, Cohen, and So-Thompson are recovered from the main results. Araki's relation on $\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}$ and $e^{r A / 2} e^{r B} e^{r A / 2}$, where A, B are Hermitian and $r \in R$, is generalized.

1. Introduction

It is known [3, Theorem IX.3.1, Theorem IX.3.7] that for any unitarily invariant norm $\left\|\|\cdot\| \mid: \mathbb{C}_{n \times n} \rightarrow \mathbb{R}\right.$,

$$
\begin{gather*}
\left\|\left|e ^ { A } \left\|\left|\leq\left\|\left|e^{\operatorname{Re} A} \|\right|, \quad A \in \mathbb{C}_{n \times n}\right.\right.\right.\right.\right. \tag{1.1}\\
\left\|\left|e ^ { A + B } \left\|\left|\leq\left\|\left|e^{A} e^{B} \|\right|, \quad A, B \in \mathbb{C}_{n \times n}\right. \text { are Hermitian, }\right.\right.\right.\right. \tag{1.2}
\end{gather*}
$$

where $\operatorname{Re} A$ denotes the Hermitian part of $A \in \mathbb{C}_{n \times n}$. Another result in Bhatia's Matrix Analysis [3, Theorem IX.3.5] implies that for any irreducible representation π of the general linear group $G L(n, \mathbb{C})$ (indeed it is sufficient to consider the semisimple $S L(n, \mathbb{C})$ with an appropriate scaling),

$$
\begin{equation*}
\left|\pi\left(e^{A+B}\right)\right| \leq\left|\pi\left(e^{\operatorname{Re} A} e^{\operatorname{Re} B}\right)\right|, \quad A, B \in \mathbb{C}_{n \times n} \tag{1.3}
\end{equation*}
$$

where $|X|$ denotes the spectral radius (the maximum modulus of the eigenvalues) of the linear map X. In particular, when A, B are Hermitian, by considering the representation $\operatorname{tr}: G L(n, \mathbb{C}) \rightarrow \mathbb{C}$, we have the famous Golden-Thompson inequality $[6,16]$

$$
\begin{equation*}
\operatorname{tr} e^{A+B} \leq \operatorname{tr}\left(e^{A} e^{B}\right), \quad A, B \text { Hermitian } \tag{1.4}
\end{equation*}
$$

since the eigenvalues $e^{A} e^{B}$ are those of $e^{A / 2} e^{B} e^{A / 2}$ which is positive definite and thus are positive. See $[14,17,1,2]$ for some generalizations of Golden-Thompson's inequality. Indeed, Bhatia [3, p.259] defines a class of functions, called the class \mathcal{T}, and the notion comes out from a result of Thompson [17, Lemma 6].
Definition 1.1. A continuous function $f: \mathbb{C}_{n \times n} \rightarrow \mathbb{C}$ is said to be in the class \mathcal{T} if it satisfies
(1) $f(X Y)=f(Y X)$ for all $X, Y \in \mathbb{C}_{n \times n}$,
(2) $\left|f\left(X^{2 m}\right)\right| \leq f\left(\left(X X^{*}\right)^{m}\right)$ for all $X \in \mathbb{C}_{n \times n}, m=1,2, \ldots$.

Theorem 1.2. ([3, Theorem IX.3.5]) If $f \in \mathcal{T}$, then for all $A, B \in \mathbb{C}_{n \times n}$,

$$
\left|f\left(e^{A+B}\right)\right| \leq f\left(e^{\operatorname{Re} A} e^{\operatorname{Re} B}\right)
$$

Since $X Y$ and $Y X$ have the same eigenvalues, counting multiplicities, and the spectral radius of X is less than or equal to the operator norm of X, the spectral radius is an element of \mathcal{T}. Thus (1.3) follows from Theorem 1.2. However unitarily invariant norms generally fail to be in class \mathcal{T}. A quick example: consider the operator norm $\|\cdot\|$ which is clearly unitarily invariant and

$$
X=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Certainly the first criterion of \mathcal{T} is not satisfied for $\|\cdot\|$.
Though the appearance of (1.3) differs from that of (1.1) and (1.2), they can be derived from a pre-order order of Kostant seminal paper [13].

After the preliminary materials are introduced in Section 2, we extend in Section 3 the inequalities (1.1), (1.2) and (1.3) in the context of semisimple Lie group. In a sequence of remarks, we show how to derive from Theorem 3.1 the inequalities of
(1) Weyl [3] (the moduli of the eigenvalues of A are \log majorized by the singular values of $A \in \mathbb{C}_{n \times n}$),
(2) Ky Fan [3] (the real parts of the eigenvalues of A are majorized by the real singular values of $A \in \mathbb{C}_{n \times n}$),
(3) Lenard-Thompson $[14,17]\left(\left\|\left|e^{A+B}\| \| \leq\left\|\left|e^{A / 2} e^{B} e^{A / 2} \|\right|, A, B \in \mathbb{C}_{n \times n}\right.\right.\right.\right.$ Hermitian),
(4) Cohen [4] (the eigenvalues of the positive definite part of e^{X} (with respect to polar decomposition) are \log majorized by the eigenvalues of $e^{\operatorname{Re} A}$, where $\left.A \in \mathbb{C}_{n \times n}\right)$,
(5) So-Thompson [15] (the singular values of e^{A} are weakly \log majorized by the exponentials of the singular values of $\left.A \in \mathbb{C}_{n \times n}\right)$.
In Section 4 we extend, in the context of Lie group, Araki's result [1] on the relation of the two matrices $\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}$ and $e^{r A / 2} e^{r B} e^{r A / 2}$ where $A, B \in \mathbb{C}_{n \times n}$ are Hermitian, $r \geq 0$. In the last section, the notion of class \mathcal{T} functions is extended on the group level (will be called Thompson functions) and related inequalities are obtained.

2. Preliminaries

We recall some basic notions and results in [13]. Let \mathfrak{g} be a real semisimple Lie algebra. Let G be any Lie group having \mathfrak{g} as its Lie algebra. An element $X \in \mathfrak{g}$ is called real semisimple (nilpotent) if ad X is diagonalizable over $\mathbb{R}(\operatorname{ad} X$ is nilpotent, respectively). An element $g \in G$ is called hyperbolic (unipotent) if $g=\exp (X)$ where $X \in \mathfrak{g}$ is real semisimple (nilpotent respectively). An element $g \in G$ is elliptic if $\operatorname{Ad} g$ is diagonalizable over \mathbb{C} with eigenvalues of modulus 1 . The complete multiplicative Jordan decomposition [13, Proposition 2.1] for G asserts that each $g \in \mathfrak{g}$ can be uniquely written as

$$
g=e h u
$$

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h, u commute. We write $g=e(g) h(g) u(g)$.

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a fixed Cartan decomposition of \mathfrak{g}. Let $K \subset G$ be the analytic group of \mathfrak{k} so that $\operatorname{Ad}(K)$ is a maximal compact subgroup of $\operatorname{Ad}(G)$. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal Abelian subalgebra of \mathfrak{g} in \mathfrak{p}. Then $A:=\exp \mathfrak{a}$ is the analytic subgroup of \mathfrak{a}. Let W be the Weyl group of $(\mathfrak{a}, \mathfrak{g})$ which may be defined as the quotient of the normalizer of A in K modulo the centralizer of A in K. The Weyl group operates naturally in \mathfrak{a} and A and the isomorphism $\exp : \mathfrak{a} \rightarrow A$ is a W-isomorphism.

For each real semisimple $X \in \mathfrak{g}$ (hyperbolic $h \in G$) let

$$
c(X)=\operatorname{Ad}(G) X \cap \mathfrak{a}, \quad C(h)=\left\{g h g^{-1}: g \in G\right\} \cap A
$$

denote the set of all elements in $\mathfrak{a}(A)$ which are conjugate to X (h, respectively). It turns out that $X \in \mathfrak{g}(h \in G, e \in G)$ is real semisimple (hyperbolic, elliptic) if and only if it is conjugate to an element in $\mathfrak{a}(A, K$, respectively) [13, Proposition 2.3 and 2.4]. Thus $c(X)$ and $C(h)$ are single W -orbits in \mathfrak{a} and A respectively. Moreover

$$
C(\exp (X))=\exp (c(X))
$$

Denote by conv $W(X)$ the convex hull of the Weyl group orbit $c(X) \subset \mathfrak{a}$.
When $g \in G$ is arbitrary, define

$$
C(g):=C(h(g)),
$$

where $h(g)$ is the hyperbolic component of g and

$$
\mathcal{A}(g):=\exp (\operatorname{conv} W(\log h(g)))
$$

(For a hyperbolic $g \in G$, the real semisimple X such that $e^{X}=g$ is unique, and we write $\log g=X$, since $\operatorname{Ad}\left(e^{X}\right)=e^{\text {ad } X}$ and the restriction of the usual matrix exponential map $e^{A}=\sum_{n=1}^{\infty} \frac{A^{n}}{n!}$ on the set of diagonalizable matrices over \mathbb{R} is one-to-one). So $\mathcal{A}(g) \subset A$ and is invariant under the Weyl group. It is the "convex hull" of $C(g)$ in the multiplicative sense. Given $f, g \in G$, we say that $f \prec g$ if

$$
\mathcal{A}(f) \subset \mathcal{A}(g)
$$

or equivalently

$$
C(f) \subset \mathcal{A}(g)
$$

Notice that \prec is a pre-order on G and $\mathcal{A}\left(\ell g \ell^{-1}\right)=\mathcal{A}(g)$ since $h\left(\ell g \ell^{-1}\right)=\ell h(g) \ell^{-1}$ for all $\ell \in G$, and is a partial order on the equivalence classes of hyperbolic elements under the conjugation of G. The order \prec is different from Thompson's pre-order [17] on $S L(n, \mathbb{C})$ which simplifies the one made by Lenard [14] (The orders of Lenard and Thompson agree on the space of positive definite matrices).

Example 2.1. Let $G=S L(n, \mathbb{R})$ with $K=S O(n)$ and $A \subset S L(n, \mathbb{R})$ consists of positive diagonal matrices. Viewing $g \in S L(n, \mathbb{R})$ as an element in $\mathfrak{g l}(n, \mathbb{R})$, the additive Jordan decomposition [11, p.153] for $\mathfrak{g l}(n, \mathbb{R})$ yields

$$
g=s+n_{1}
$$

$\left(s \in S L(n, \mathbb{R})\right.$ semisimple, that is, diagonalizable over \mathbb{C}, $n_{1} \in \mathfrak{s l}(n, \mathbb{R})$ nilpotent and $\left.s n_{1}=n_{1} s\right)$. Moreover these conditions determine s and n_{1} completely [10, Proposition 4.2]. Put $u=1+s^{-1} n_{1} \in S L(n, \mathbb{R})$ and we have the multiplicative Jordan decomposition

$$
g=s u
$$

where s is semisimple, u is unipotent, and $s u=u s$. By the uniqueness of the additive Jordan decomposition, s and u are also completely determined. Since s is diagonalizable,

$$
s=e h
$$

where e is elliptic, h is hyperbolic, $e h=h e$, and these conditions completely determine e and h. The decomposition can be obtained by observing that there is $k \in S L(n, \mathbb{C})$ such that

$$
k^{-1} s k=s_{1} I_{r_{1}} \oplus \cdots \oplus s_{m} I_{r_{m}}
$$

where $s_{1}=e^{i \xi_{1}}\left|s_{1}\right|, \ldots, s_{m}=e^{i \xi_{m}}\left|s_{m}\right|$ are the distinct eigenvalues of s with multiplicities r_{1}, \ldots, r_{m} respectively. Set

$$
e:=k\left(e^{i \xi_{1}} I_{r_{1}} \oplus \cdots \oplus e^{i \xi_{m}} I_{r_{m}}\right) k^{-1}, \quad h:=k\left(\left|s_{1}\right| I_{r_{1}} \oplus \cdots \oplus\left|s_{m}\right| I_{r_{m}}\right) k^{-1} .
$$

If $s=e^{\prime} h^{\prime}$ with $e^{\prime} h^{\prime}=h^{\prime} e^{\prime}, e^{\prime}$ elliptic and h^{\prime} hyperbolic, then s, e^{\prime} and h^{\prime} are simultaneously diagonalizable over \mathbb{C} and hence for some $k^{\prime} \in S L(n, \mathbb{C}), k^{\prime-1} s k^{\prime}=$ $s_{1} I_{r_{1}} \oplus \cdots \oplus s_{m} I_{r_{m}}$,

$$
e^{\prime}=k^{\prime}\left(e^{i \xi_{1}} I_{r_{1}} \oplus \cdots \oplus e^{i \xi_{m}} I_{r_{m}}\right) k^{\prime-1}, \quad h^{\prime}=k^{\prime}\left(\left|s_{1}\right| I_{r_{1}} \oplus \cdots \oplus\left|s_{m}\right| I_{r_{m}}\right) k^{\prime-1} .
$$

Thus the first r_{1} columns of k^{\prime} form a basis for the eigenspace of s associated with the eigenvalue $s_{1}, \ldots \ldots$, and the last r_{m} columns of k^{\prime} form a basis for the eigenspace of s associated with the eigenvalue s_{m}. So $k^{\prime}=k B$ where $B \in \mathbb{C}_{r_{1} \times r_{1}} \oplus$ $\cdots \oplus \mathbb{C}_{r_{m} \times r_{m}}$ and thus $e^{\prime}=e$ and $h=h$. Since

$$
e h u=g=u g u^{-1}=u e u^{-1} u h u^{-1} u,
$$

the uniqueness of s, u, e and h implies e, u and h commute. Since g is fixed under complex conjugation, the uniqueness of e, h and u imply $e, h, u \in S L(n, \mathbb{R})$ [7, p.431]. Thus $g=e h u$ is the complete multiplicative Jordan decomposition for $S L(n, \mathbb{R})$. The eigenvalues of h are simply the moduli of the eigenvalues of s and thus of g. We have similar decomposition for $S L(n, \mathbb{C})$.

Let $\mathfrak{s l}(n, \mathbb{R})=\mathfrak{s o}(n)+\mathfrak{p}$ be the fixed Cartan decomposition of $\mathfrak{s l}(n, \mathbb{R})$, that is, $\mathfrak{k}=\mathfrak{s o}(n)$ and \mathfrak{p} is the space of traceless real symmetric matrices. So $K=S O(n)$. Let $\mathfrak{a} \subset \mathfrak{p}$ be the maximal Abelian subalgebra of $\mathfrak{s l}(n, \mathbb{R})$ in \mathfrak{p} containing the diagonal matrices. So the analytic group A of \mathfrak{a} is the group of positive diagonal matrices of determinant 1. The Weyl group W of $(\mathfrak{a}, \mathfrak{g})$ is the full symmetric group S_{n} [12] which acts on A and \mathfrak{a} by permuting the diagonal entries of the matrices in A and a. Now

$$
C(f)=\left\{\operatorname{diag}\left(\left|\alpha_{\sigma(1)}\right|, \cdots,\left|\alpha_{\sigma(n)}\right|\right): \sigma \in S_{n}\right\}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ denote the eigenvalues of $f \in S L(n, \mathbb{C})$. So

$$
c(\log h(f))=\left\{\operatorname{diag}\left(\log \left|\alpha_{\sigma(1)}\right|, \cdots, \log \left|\alpha_{\sigma(n)}\right|\right): \sigma \in S_{n}\right\} .
$$

We will arrange them in such a way that $\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq \cdots \geq\left|\alpha_{n}\right|$. So $f \prec g$, $f, g \in S L(n, \mathbb{R})$ means that the $\log h(f))$ is an element of the convex hull of the single W-orbit $c(\log h(g))$. Thus $\log |\alpha|$ is majorized by $\log |\beta|[3$, p.33], denoted by $|\alpha| \prec_{\log }|\beta|$ which is called \log majorization in [2], where β 's are the eigenvalues of g. In other words, $\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq \cdots \geq\left|\alpha_{n}\right|$, are multiplicatively majorized by
$\left|\beta_{1}\right| \geq\left|\beta_{2}\right| \geq \cdots \geq\left|\beta_{n}\right|$, that is,

$$
\begin{aligned}
& \prod_{i=1}^{k}\left|\alpha_{i}\right| \leq \prod_{i=1}^{k}\left|\beta_{i}\right|, \quad k=1, \ldots, n-1 \\
& \prod_{i=1}^{n}\left|\alpha_{i}\right|=\prod_{i=1}^{n}\left|\beta_{i}\right|
\end{aligned}
$$

On the other hand, one may deduce the above inequalities as necessary conditions for $f \prec g$ via Theorem 2.3 by considering the natural representation of $S L(n, \mathbb{R})$ on $V_{\lambda}=\mathbb{R}^{n}$ and the k th exterior powers $\wedge^{k} f, k=1, \ldots, n$. These would yield $\prod_{i=1}^{k}\left|\alpha_{i}\right| \leq \prod_{i=1}^{k}\left|\beta_{i}\right|, k=1, \ldots, n$. Then consider the representation $A \mapsto(\operatorname{det} A)^{-1}$ to have the equality. Same results hold for $S L(n, \mathbb{C})$.

Remark 2.2. In the above example, the pre-order \prec in $S L(n, \mathbb{R}) \subset S L(n, \mathbb{C})$ coincides with that in $S L(n, \mathbb{C})$ since the Weyl groups are identical. But it is pointed out in [13, Remark 3.1.1] that the pre-order \prec is not necessarily the same as the pre-order on the semisimple G that would be induced by a possible embedding of G in $S L(n, \mathbb{C})$ for some n.

We denote by \hat{G} the index set of the irreducible representations of G, π_{λ} : $G \rightarrow \operatorname{Aut}\left(V_{\lambda}\right)$ a fixed representation in the class corresponding to $\lambda \in \hat{G},\left|\pi_{\lambda}(g)\right|$ the spectral radius of the automorphism $\pi_{\lambda}(g): V_{\lambda} \rightarrow V_{\lambda}$ where $g \in G$, that is, the maximum modulus of the eigenvalues of $\pi_{\lambda}(g)$, and χ_{λ} the character of π_{λ}. The following nice result of Kostant describes the pre-order \prec via the irreducible representations of G and plays an important role in the coming sections.

Theorem 2.3. (Kostant [13, Theorem 3.1]) Let $f, g \in G$. Then $f \prec g$ if and only if $\left|\pi_{\lambda}(f)\right| \leq\left|\pi_{\lambda}(g)\right|$ for all $\lambda \in \hat{G}$, where $|\cdot|$ denotes the spectral radius.

3. The Main results

Fix a Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$. For each $X \in \mathfrak{g}$, write $X=X_{\mathfrak{k}}+X_{\mathfrak{p}}$ where $X_{\mathfrak{k}} \in \mathfrak{k}$ and $X_{\mathfrak{p}} \in \mathfrak{p}$.

Theorem 3.1. Let \mathfrak{g} be a real semisimple Lie algebra. Let $X, Y \in \mathfrak{g}$ and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a fixed Cartan decomposition of \mathfrak{g}. Then for any $n \geq 1$ and $g \in G$,

$$
g^{2 n} \prec\left(g^{*}\right)^{n} g^{n} \prec\left(g^{*} g\right)^{n},
$$

and

$$
e^{X+Y} \prec e^{-\theta(X+Y) / 2} e^{(X+Y) / 2} \prec e^{X} \mathfrak{p} e^{Y \mathfrak{p}},
$$

where θ is the Cartan involution of \mathfrak{g} with respect to the given Cartan decomposition.
By setting $Y=X$, we have
Corollary 3.2. Let $X \in \mathfrak{g}$. Then $e^{X} \prec e^{-\theta X / 2} e^{X / 2} \prec e^{X_{\mathfrak{p}}}$.
Proof. of Theorem 3.1 Let $\theta \in$ Aut (\mathfrak{g}) be the Cartan involution of \mathfrak{g}, that is, θ is 1 on \mathfrak{k} and -1 on \mathfrak{p}. Set $P=e^{\mathfrak{p}}$. We have the (global) Cartan decomposition

$$
G=K P .
$$

Then θ induces an automorphism Θ of G such that the differential of Θ at the identity is θ [12, p.387]. Explicitly

$$
\Theta(k p)=k p^{-1}, \quad k \in K, p \in P
$$

For any $g \in G$ let

$$
g^{*}:=\Theta\left(g^{-1}\right)
$$

If $g=k p$, the polar decomposition of $g \in G$, then

$$
g^{*}=\Theta\left(p^{-1} k^{-1}\right)=\Theta\left(p^{-1}\right) k^{-1}=p k^{-1}
$$

and hence $g^{*} g=p^{2} \in P$, since the centralizer $G^{\Theta}=\{g \in G: \Theta(g)=g\}$ coincides with K [12, p.305]. So

$$
g^{*}:=\Theta\left(g^{-1}\right)=(\Theta(g))^{-1}, \quad\left(g^{*}\right)^{*}=g, \quad(f g)^{*}=g^{*} f^{*}, \quad\left(g^{*}\right)^{n}=\left(g^{n}\right)^{*}
$$

for all $f, g \in G, n$ positive integer. Since θ is the differential of Θ at the identity, we have $[7,110]$

$$
\Theta\left(e^{A}\right)=e^{\theta A}
$$

for all $A \in \mathfrak{g}$. So

$$
\begin{equation*}
\left(e^{A}\right)^{*}=\Theta\left(e^{-A}\right)=e^{-\theta A} \tag{3.1}
\end{equation*}
$$

We now claim for any $g \in G$, and any natural number n,

$$
\begin{equation*}
g^{2 n} \prec\left(g^{*}\right)^{n} g^{n} \prec\left(g^{*} g\right)^{n} . \tag{3.2}
\end{equation*}
$$

The relation $g^{2 n} \prec\left(g^{*} g\right)^{n}$ is known in [13, p.448] and we use similar idea (indeed the original idea can be found in $[17]$ when $G=S L(n, \mathbb{C})$) to establish (3.2). We denote by $\Pi_{\lambda}: \mathfrak{g} \rightarrow \operatorname{End}\left(V_{\lambda}\right)$ the differential at the identity of the representation $\pi_{\lambda}: G \rightarrow \operatorname{Aut}\left(V_{\lambda}\right)$. So [7, p.110]

$$
\begin{equation*}
\exp \circ \Pi_{\lambda}=\pi_{\lambda} \circ \exp \tag{3.3}
\end{equation*}
$$

where the exponential function on the left is $\exp : \operatorname{End}\left(V_{\lambda}\right) \rightarrow \operatorname{Aut}\left(V_{\lambda}\right)$ and the one on the right side is $\exp : \mathfrak{g} \rightarrow G$. Now $\mathfrak{u}=\mathfrak{k}+i \mathfrak{p}$ (direct sum) is a compact real form of $\mathfrak{g}_{\mathbb{C}}$ (the complexification of $\left.\mathfrak{g}\right)$. The representation $\Pi_{\lambda}: \mathfrak{g} \rightarrow \operatorname{End}\left(V_{\lambda}\right)$ naturally defines a representation $\mathfrak{u} \rightarrow \operatorname{End}\left(V_{\lambda}\right)$ of \mathfrak{u}, also denoted by Π_{λ} and vice versa. Let U be a simply connected Lie group of U [19, p.101] so that it is compact [5, Corollary 3.6.3]. There is a unique homomorphism $\hat{\pi}_{\lambda}: U \rightarrow \operatorname{Aut}\left(V_{\lambda}\right)$ such that the differential of $\hat{\pi}_{\lambda}$ at the identity is Π_{λ} [19, Theorem 3.27]. Thus there exists an inner product (we will assume that V_{λ} is endowed with this structure from now on) $\langle\cdot, \cdot\rangle$ on V_{λ} such that $\hat{\pi}_{\lambda}(u)$ is orthogonal for all $u \in U$. Differentiate the identity

$$
\left(\hat{\pi}_{\lambda}\left(e^{t Z}\right) X, \hat{\pi}_{\lambda}\left(e^{t Z}\right) Y\right)=(X, Y)
$$

for all $X, Y \in V_{\lambda}$ at $t=0$ we have

$$
\left(\Pi_{\lambda}(Z) X, Y\right)=-\left(X, \Pi_{\lambda}(Z) Y\right)
$$

by (3.3). Thus $\Pi_{\lambda}(Z)$ is skew Hermitian for all $Z \in \mathfrak{u}$ [12, Proposition 4.6], [13, p.435]. Then $\Pi_{\lambda}(Z)$ is skew Hermitian if $Z \in \mathfrak{k}$ and is Hermitian if $Z \in \mathfrak{p}$. So $\pi_{\lambda}(z)$ is unitary if $z \in K$ and is positive definite if $z \in P$ by (3.3). Since each g can be written as $g=k p, k \in K$ and $p \in P$,

$$
\begin{aligned}
\left\langle u, \pi_{\lambda}\left(g^{*}\right) v\right\rangle & =\left\langle u, \pi_{\lambda}\left(p k^{-1}\right) v\right\rangle \\
& =\left\langle u, \pi_{\lambda}(p) \pi_{\lambda}\left(k^{-1}\right) v\right\rangle \\
& =\left\langle\pi_{\lambda}(k) \pi_{\lambda}(p) u, v\right\rangle \\
& =\left\langle\pi_{\lambda}(g) u, v\right\rangle,
\end{aligned}
$$

for all $u, v \in V_{\lambda}$. Thus

$$
\begin{equation*}
\pi_{\lambda}(g)^{*}=\pi_{\lambda}\left(g^{*}\right) \tag{3.4}
\end{equation*}
$$

where $\pi_{\lambda}(g)^{*}$ denotes the Hermitian adjoint of $\pi_{\lambda}(g)$. Thus $\pi_{\lambda}\left(g^{*} g\right)=\pi_{\lambda}(g)^{*} \pi_{\lambda}(g) \in$ Aut $\left(V_{\lambda}\right)$ is a positive definite operator for all $g \in G$. Denote by $\left\|\pi_{\lambda}(g)\right\|, g \in G$, the operator norm of $\pi_{\lambda}(g)$. Thus

$$
\left|\pi_{\lambda}(p)\right|=\left\|\pi_{\lambda}(p)\right\|, \quad \text { for all } p \in P .
$$

Because of Theorem 2.3, to arrive at the claim (3.2) it suffices to show

$$
\left|\pi_{\lambda}\left(g^{2 n}\right)\right| \leq\left|\pi_{\lambda}\left(\left(g^{*}\right)^{n} g^{n}\right)\right| \leq\left|\pi_{\lambda}\left(\left(g^{*} g\right)^{n}\right)\right|, \quad \text { for all } \lambda \in \hat{G}
$$

Now

$$
\begin{aligned}
\left|\pi_{\lambda}\left(\left(g^{*}\right)^{n} g^{n}\right)\right| & =\left|\pi_{\lambda}\left(\left(g^{n}\right)^{*} g^{n}\right)\right| \\
& =\left\|\pi_{\lambda}\left(\left(g^{n}\right)^{*} g^{n}\right)\right\| \quad\left(\pi_{\lambda}\left(\left(g^{n}\right)^{*} g^{n}\right) \in \operatorname{Aut}\left(V_{\lambda}\right) \text { is positive definite }\right) \\
& =\left\|\pi_{\lambda}\left(g^{n}\right)^{*} \pi_{\lambda}\left(g^{n}\right)\right\| \quad \text { by }(3.4) \\
& =\left\|\pi_{\lambda}\left(g^{n}\right)\right\|^{2} \quad\left(\|T\|^{2}=\left\|T^{*} T\right\|\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|\pi_{\lambda}\left(\left(g^{*} g\right)^{n}\right)\right| & =\left|\pi_{\lambda}\left(g^{*} g\right)\right|^{n} \\
& =\left\|\pi_{\lambda}\left(g^{*} g\right)\right\|^{n} \quad\left(\pi_{\lambda}\left(\left(g^{*} g\right) \in \operatorname{Aut}\left(V_{\lambda}\right) \text { is positive definite }\right)\right. \\
& =\left\|\pi_{\lambda}(g)^{*} \pi_{\lambda}(g)\right\|^{n} \\
& =\left\|\pi_{\lambda}(g)\right\|^{2 n} \quad\left(\|T\|^{2}=\left\|T^{*} T\right\|\right) \\
& \geq\left\|\pi_{\lambda}\left(g^{n}\right)\right\|^{2} \quad\left(\left\|T^{n}\right\| \leq\|T\|^{n}\right),
\end{aligned}
$$

where the inequality is due to the well known fact that the spectral radius is no greater than the operator norm. So we have $\left(g^{*}\right)^{n} g^{n} \prec\left(g^{*} g\right)^{n}$. Now

$$
\left.\mid \pi_{\lambda}\left(\left(g^{*}\right)^{n}\right) g^{n}\right)\left|=\left|\pi_{\lambda}\left(\left(g^{n}\right)^{*}\right) \pi_{\lambda}\left(g^{n}\right)\right|=\left\|\pi_{\lambda}\left(g^{n}\right)\right\|^{2} \geq\left|\pi_{\lambda}\left(g^{n}\right)\right|^{2}=\left|\pi_{\lambda}\left(g^{2 n}\right)\right|\right.
$$

Hence $g^{2 n} \prec\left(g^{*}\right)^{n} g^{n}$ and we just proved the claim.
By the first relation in (3.2), if $g=x y$ where $x, y \in G$, we have for any natural number m,

$$
(x y)^{2^{m+1}} \prec\left(y^{*} x^{*}\right)^{2^{m}}(x y)^{2^{m}}
$$

Set $x=e^{X / 2^{m}}, y=e^{Y / 2^{m}}$, where $X, Y \in \mathfrak{g}$. We get

$$
\begin{aligned}
\left(\left(e^{X / 2^{m}} e^{Y / 2^{m}}\right)^{2^{m}}\right)^{2} & \prec\left(\left(e^{Y / 2^{m}}\right)^{*}\left(e^{X / 2^{m}}\right)^{*}\right)^{2^{m}}\left(e^{X / 2^{m}} e^{Y / 2^{m}}\right)^{2^{m}} \\
& =\left(e^{-\theta Y / 2^{m}} e^{-\theta X / 2^{m}}\right)^{2^{m}}\left(e^{X / 2^{m}} e^{Y / 2^{m}}\right)^{2^{m}}
\end{aligned}
$$

by (3.1). Since $\lim _{t \rightarrow \infty}\left(e^{X / t} e^{Y / t}\right)^{t}=e^{X+Y}[7, \mathrm{p} .115]$, and the relation \prec remains valid as we take limits on both sides because the spectral radius is a continuous function on Aut $\left(V_{\lambda}\right)$, we have $e^{2(X+Y)} \prec e^{-\theta(X+Y)} e^{(X+Y)}$. As a result

$$
e^{X+Y} \prec e^{-\frac{1}{2} \theta(X+Y)} e^{\frac{1}{2}(X+Y)},
$$

and we just established the first part of Theorem 3.1.
Let $g=e^{(X+Y) / n}, X, Y \in \mathfrak{g}$. By the second relation of (3.2),

$$
\left(e^{-\theta(X+Y) / n}\right)^{n}\left(e^{(X+Y) / n}\right)^{n} \prec\left(\left(e^{-\theta(X+Y) / n} e^{(X+Y) / n}\right)\right)^{n} .
$$

So

$$
e^{-\theta(X+Y)} e^{X+Y} \prec e^{2(X+Y) \mathfrak{p}}=e^{2 X_{\mathfrak{p}}+2 Y_{\mathfrak{p}}} \prec e^{2 X_{\mathfrak{p}}} e^{2 Y_{\mathfrak{p}}},
$$

where the last relation is established in [13, Theorem 6.3].

Remark 3.3. Certainly, the statement $e^{X+Y} \prec e^{X_{\mathfrak{k}}} e^{Y_{\mathfrak{k}}}$ is not true by simply considering $G=S L(n, \mathbb{C})$ in which $K=S U(n)$ and $\mathfrak{k}=\mathfrak{s u}(n)$. There $e^{X_{\mathfrak{k}}} e^{Y_{\mathfrak{k}}} \in$ $S U(n)$ and we may pick $X, Y \in \mathfrak{s l}(n, \mathbb{C})$ such that $X+Y$ is nonzero Hermitian matrix with a positive eigenvalue. Viewing each $g \in S L(n, \mathbb{C})$ as a linear operator on $V_{\lambda}=\mathbb{C}^{n}($ the natural representation of $S L(n, \mathbb{C}))$, the spectral radius $\left|e^{X_{\mathfrak{k}}} e^{Y_{\mathfrak{k}}}\right|=1$ but $\left|e^{X+Y}\right|>1$.

Remark 3.4. (Cohen's result) When $G=G L(n, \mathbb{C})$, the relation $g^{* n} g^{n} \prec\left(g^{*} g\right)^{n}$ was established in [4] and $g^{2 n} \prec\left(g^{*} g\right)^{n}$ was obtained in [17]. Kostant [13, Proof of Theorem 6.3] also proved $g^{2 n} \prec\left(g^{*} g\right)^{n}$ and $e^{A+B} \prec e^{A} e^{B}, A, B \in \mathfrak{p}$, for general G. The relation in Theorem 3.1

$$
g^{* n} g^{n} \prec\left(g^{*} g\right)^{n}
$$

is equivalent to

$$
p\left(g^{n}\right) \prec(p(g))^{n},
$$

where $g=k(g) p(g)$ is the polar decomposition of $g \in G$. If we set $g=e^{X / n}$, then we have

$$
p\left(e^{X}\right) \prec\left[p\left(e^{X / n}\right)\right]^{n}, \quad n=1,2, \ldots
$$

Now $p\left(e^{X / n}\right)=\left(\left(e^{X / n}\right)^{*} e^{X / n}\right)^{1 / 2}=\left(e^{-\theta X / n} e^{X / n}\right)^{1 / 2}$. So

$$
\lim _{n \rightarrow \infty}\left[p\left(e^{X / n}\right)\right]^{n}=\lim _{n \rightarrow \infty}\left[\left(e^{-\theta X / n} e^{X / n}\right)^{1 / 2}\right]^{n}=e^{X} \mathfrak{p}
$$

and thus

$$
p\left(e^{X}\right) \prec e^{X_{\mathfrak{p}}}
$$

which is Cohen's result [4] when $G=S L(n, \mathbb{C})$ with appropriate scaling.
Remark 3.5. (Ky Fan's inequality and inequality (1.1))
Continuing with Example 2.1, for $A \in \mathfrak{s l}(n, \mathbb{C})$, the moduli of the eigenvalues of e^{A} are the exponentials of the real parts of the eigenvalues of A, counting multiplicities. The matrix $e^{\operatorname{Re} A}$ is positive definite. So the eigenvalues of $e^{\operatorname{Re} A}$ are indeed the singular values, and are the exponentials of the eigenvalues of $\operatorname{Re} A$. The eigenvalues of $\operatorname{Re} A$ are known as the real singular values of A, denoted by $\beta_{1} \geq \cdots \geq \beta_{n}$. Denote the real parts of the eigenvalues of A by $\alpha_{1} \geq \cdots \geq \alpha_{n}$. By Corollary $3.2 e^{A} \prec e^{\operatorname{Re} A}$ which amounts to

$$
\begin{aligned}
& \prod_{i=1}^{k} e^{\alpha_{i}} \leq \prod_{i=1}^{k} e^{\beta_{i}}, \quad i=1, \ldots, n-1 \\
& \prod_{i=1}^{n} e^{\alpha_{i}}=\prod_{i=1}^{n} e^{\beta_{i}}
\end{aligned}
$$

that is $e^{\alpha} \prec_{\log } e^{\beta}$. Thus, by taking \log on the above relation, the relation $e^{A} \prec$ $e^{\operatorname{Re} A}$ amounts to the usual majorization relation $\alpha \in \operatorname{conv} S_{n} \beta$, a well known result of Ky Fan [3, Proposition III.5.3]. From the second relation of Corollary 3.2, $e^{A} e^{A^{*}} \prec e^{A+A^{*}}$ which amounts to the fact that the singular values of e^{A} (that is, the square roots of the eigenvalues of $e^{A} e^{A^{*}}$) are multipicatively majorized, and hence weakly majorized [3, p.42], [2], by the singular values (also the eigenvalues) of the positive definite $e^{\operatorname{Re} A}$. Thus

$$
\left\|\left|e ^ { A } \left\|\left|\leq\left\|\mid e^{\operatorname{Re} A}\right\| \|\right.\right.\right.\right.
$$

for all unitarily invariant norms $|||\cdot|||[3$, Theorem IX.3.1] by Ky Fan Dominance Theorem [3, Theorem IV.2.2]. Thus we have (1.1).

Remark 3.6. (So-Thompson's inequality)
From $e^{A} e^{A^{*}} \prec e^{A+A^{*}}, A \in \mathbb{C}_{n \times n}$, So-Thompson inequalities [15, Theorem 2.1] asserts that

$$
\prod_{i=1}^{k} s_{i}\left(e^{A}\right) \leq \prod_{i=1}^{k} e^{s_{i}(A)}, \quad k=1, \ldots, n
$$

can be derived via Fan-Hoffman inequalities [3, proposition III.5.1]

$$
\lambda_{i}(\operatorname{Re} A) \leq s_{i}(A), \quad i=1, \ldots, n
$$

where $s_{1}(A) \geq \cdots \geq s_{n}(A)$ denote the singular values of $A \in \mathbb{C}_{n \times n}$.
Remark 3.7. (Weyl's inequality and inequalities (1.2) and (1.3))
Let $A \in S L(n, \mathbb{C})$. By $(3.4) A^{2} \prec A^{*} A$. By Example 2.1, $\left|\lambda^{2}(A)\right| \prec_{\log }\left|\lambda\left(A^{*} A\right)\right|=$ $\left|s\left(A^{*} A\right)\right|$, that is,

$$
|\lambda(A)| \prec_{\log } s(A) .
$$

By scaling and continuity argument, the \log majorization remains valid for $A \in$ $\mathbb{C}_{n \times n}$, that is, Weyl's inequality [3, p.43]. In the literature, Weyl's inequality is often proved via the k th exterior power once $\left|\lambda_{1}(A)\right| \leq s_{1}(A)$ is established, for example [3, p.42-43]. Such an approach shares some favor of Theorem 2.3.

If $A, B \in C_{n \times n}$ are Hermitian, then e^{A}, e^{B} and e^{A+B} are positive definite. Though $e^{A} e^{B}$ is not positive definite in general, its eigenvalues, denoted by $\delta_{1} \geq$ $\cdots \geq \delta_{n}$, are positive since $e^{A} e^{B}$ and the positive definite $e^{A / 2} e^{B} e^{A / 2}$ share the same eigenvalues. Denote the eigenvalues of e^{A+B} by $\gamma_{1} \geq \cdots \geq \gamma_{n}$. Thus γ is multiplicatively majorized by δ because of $e^{A+B} \prec e^{A} e^{B}$ (Theorem 3.1). Notice that δ is also multiplicatively majorized by the singular values $s_{1} \geq \cdots \geq s_{n}$ of $e^{A} e^{B}$, by Weyl's inequality. Hence we have the weak majorization relation $\gamma \prec_{w} s$ [3, p.42] so that (1.2) follows. Finally (1.3) follows from Theorem 3.1 and Theorem 2.3.

Remark 3.8. (Lenard-Thompson's inequality) Lenard's result [14] together with [17, Theorem 2] imply that

$$
\begin{equation*}
\left\|\left|e^{A+B}\| \|\|\leq\| e^{A / 2} e^{B} e^{A / 2} \|\right|, \quad A, B \in \mathbb{C}_{n \times n}\right. \text { Hermitian, } \tag{3.5}
\end{equation*}
$$

from which Golden-Thompson's result follows. It is because e^{A+B} and $e^{A / 2} e^{B} e^{A / 2}$ are positive definite and their traces are indeed the Ky Fan n-norm, that is, sum of singular values which is unitarily invariant. Indeed Lenard's result just asserts that any arbitrary neigborhood of e^{A+B} contains X such that $X \prec e^{A / 2} e^{B} e^{A / 2}[14$, p.458] (It is weaker than (3.6)). By a limit argument and Thompson's argument, (3.5) follows. But the more basic question is whether (3.6) is true. Indeed

$$
e^{A+B} \prec e^{A} e^{B}, \quad A, B \in \mathfrak{p}
$$

(Theorem 3.1) is a unified generalization of Golden-Thompson's inequality and (1.2) and (3.5) in the context of Lie group since

$$
\begin{equation*}
e^{A+B} \prec e^{A / 2} e^{B} e^{A / 2}, \quad A, B \in \mathfrak{p} \tag{3.6}
\end{equation*}
$$

Now (3.6) is true simply because $\pi_{\lambda}\left(e^{A} e^{B}\right)$ and $\pi_{\lambda}\left(e^{A / 2} e^{B} e^{A / 2}\right)$ have the same spectrum (by the fact that $X Y$ and $Y X$ have the same spectrum and π_{λ} is a representation) and thus have the same spectral radius. Then apply Theorem 2.3.

4. Extension of Araki's result

Araki's result [1] (actually it appears in the proof of the main Theorem [1, p.168169]. Also see [9] for a short proof) asserts that if $A, B \in \mathbb{C}_{n \times n}$ Hermitian, then

$$
\begin{equation*}
\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r} \prec e^{r A / 2} e^{r B} e^{r A / 2}, \quad r>1, \tag{4.1}
\end{equation*}
$$

that amounts to

$$
s\left(\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}\right) \prec_{\log } s\left(e^{r A / 2} e^{r B} e^{r A / 2}\right), \quad r>1,
$$

or equivalently

$$
s\left(\left(e^{q A / 2} e^{q B} e^{q A / 2}\right)^{1 / q}\right) \prec_{\log } s\left(\left(e^{p A / 2} e^{p B} e^{p A / 2}\right)^{1 / p}\right), \quad 0<q \leq p
$$

Together with Lie-Trotter formula

$$
e^{A+B}=\lim _{r \rightarrow 0}\left(e^{r A / 2} e^{r B} e^{r A / 2}\right)^{1 / r}
$$

Golden-Thompson's result is strenghtened [2]:

$$
\left\|\mid e^{p A / 2} e^{p B} e^{p B / 2}\right\| \|
$$

decreases down to $\left\|\left|e^{A+B} \|\right|\right.$ as $p \downarrow 0$ for any unitarily invariant norm $\||\cdot \||$ on $\mathbb{C}_{n \times n}$ and in particular

$$
\operatorname{tr} e^{A+B} \leq \operatorname{tr}\left[e^{p A / 2} e^{p B} e^{p B / 2}\right]^{1 / p}, \quad p>0
$$

Araki's result also implies a result of Wang and Gong [18] (also see [3, Theorem IX.2.9]).

In order to extend (4.1) for general G, we need a result of Heinz [8] conerning two positive semidefinte operators. Indeed the orginal proof of Araki's result [1] also makes use of Heinz's result. Give two positive semidefinite operators A, B, the spectrum (counting multiplicities) $\lambda(A B)=\lambda\left(A^{1 / 2} B A^{1 / 2}\right)$ and thus all eigenvalues of $A B$ are positive. So the largest eigenvalue of $A B, \lambda_{1}(A B)$, is the spectral radius of $A B$. The first part of the following theorem is due to Heinz [8] (see [p.255-256] for two nice proofs of Heinz's result). The second part is proved via the Heinz's result in [3, Theorem IX.2.6] in a somewhat lengthly way.

Theorem 4.1. The following two statements are equivalent and valid.
(1) (Heinz) For any two positive semidefinite operators $A, B,\left\|A^{s} B^{s}\right\| \leq\|A B\|^{s}$, $0 \leq s \leq 1$.
(2) For any two positive semidefinite operators $A, B, \lambda_{1}\left(A^{s} B^{s}\right) \leq \lambda_{1}^{s}(A B)$, $0 \leq s \leq 1$.

Proof. We just establish the equivalence of the two statements. Since $\|T\|=$ $\left\|T^{*} T\right\|^{2}$,
$\left\|A^{s} B^{s}\right\|=\left\|\left(A^{s} B^{s}\right) A^{s} B^{s}\right\|^{1 / 2}=\left\|B^{s} A^{2 s} B^{s}\right\|^{1 / 2}=\lambda_{1}^{1 / 2}\left(B^{s} A^{2 s} B^{s}\right)=\lambda_{1}^{1 / 2}\left(A^{2 s} B^{2 s}\right)$,
and

$$
\|A B\|^{s}=\|A B B A\|^{s / 2}=\lambda_{1}^{s / 2}\left(A B^{2} A\right)=\lambda_{1}^{s / 2}\left(A^{2} B^{2}\right)
$$

Remark 4.2. An equivalent statement to Heniz's result is: for any positive operators $A, B,\left\|A^{t} B^{t}\right\| \geq\|A B\|^{t}$ if $t \geq 1$, or equivalently $\lambda_{1}\left(A^{t} B^{t}\right) \geq \lambda_{1}^{t}(A B)[3$, p.256-257].

For general G, the map $\exp : \mathfrak{p} \rightarrow P$ where $P:=e^{\mathfrak{p}}$ is one-to-one since the map

$$
(K, \mathfrak{p}) \rightarrow G, \quad(k, X) \mapsto k e^{X}
$$

is a diffeomorphism [12, p.305], and thus $\left(e^{A}\right)^{r}:=e^{r A} \in P$ where $r \in \mathbb{R}$. So $f^{r}, g^{r} \in P, f^{r} g^{r}$ (hyperbolic, since $f^{r} g^{r}$ is conjugate to $f^{r / 2} g^{r} f^{r / 2}$), $r \in \mathbb{R}$, are well defined for $f, g \in P$. The following is an extension of Heinz's result on the group level.

Theorem 4.3. Let $f, g \in P$. Then

$$
\begin{array}{lll}
(f g)^{t} & \prec f^{t} g^{t}, & t \geq 1, \\
(f g)^{s} & \prec f^{s} g^{s}, & 0 \leq s \leq 1 .
\end{array}
$$

Proof. Since each element e^{A} in $P(A \in \mathfrak{p})$ is of the form $e^{-\theta A / 2} e^{A / 2}=\left(e^{A}\right)^{*} e^{A}$ $(A=-\theta A), \pi_{\lambda}\left(e^{A}\right)$ is positive definite. Thus $\pi_{\lambda}(f), \pi_{\lambda}(g) \in \operatorname{Aut}\left(V_{\lambda}\right)$ are positive definite if $f, g \in P$. Suppose $0 \leq s \leq 1$. Then

$$
\begin{aligned}
\left|\pi_{\lambda}\left((f g)^{s}\right)\right|=\left|\pi_{\lambda}(f g)\right|^{s}=\left|\pi_{\lambda}(f) \pi_{\lambda}(g)\right|^{s} & \geq\left|\pi_{\lambda}^{s}(f) \pi_{\lambda}^{s}(g)\right| \\
& =\mid\left(\pi _ { \lambda } (f ^ { s }) \pi _ { \lambda } (g ^ { s }) | = | \left(\pi_{\lambda}\left(f^{s} g^{s}\right) \mid\right.\right.
\end{aligned}
$$

by Theorem 4.1 (2). Applying Theorem 2.3 to have the desired result $(f g)^{s} \prec f^{s} g^{s}$, $0 \leq s \leq 1$. The other relation is by Remark 4.2.

When $A, B \in \mathfrak{p}$, the element $e^{A / 2} e^{B} e^{A / 2}$ is in P since it is of the form $g^{*} g$ where $g=e^{B / 2} e^{A / 2}$. Thus $\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r} \in P, r \in \mathbb{R}$ is well defined.

Theorem 4.4. Let $A, B \in \mathfrak{p}$. Then

$$
\begin{array}{lll}
\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r} & \prec e^{r A / 2} e^{r B} e^{r A / 2}, & r>1, \\
e^{r A / 2} e^{r B} e^{r A / 2} & \prec\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}, & 0 \leq r \leq 1
\end{array}
$$

Moreover, for all $\lambda \in \hat{G}$

$$
\begin{array}{ll}
\chi_{\lambda}\left(\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}\right) \leq \chi_{\lambda}\left(e^{r A / 2} e^{r B} e^{r A / 2}\right), & r>1 \\
\chi_{\lambda}\left(e^{r A / 2} e^{r B} e^{r A / 2}\right) \leq \chi_{\lambda}\left(\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}\right), & 0 \leq r \leq 1
\end{array}
$$

Proof. Notice that $\pi_{\lambda}\left(e^{A}\right)$ is positive definite and

$$
\pi_{\lambda}\left(\left(e^{A}\right)^{r}\right)=\left(\pi_{\lambda}\left(e^{A}\right)\right)^{r}, \quad r \in \mathbb{R}
$$

where $\left(\pi_{\lambda}\left(e^{A}\right)\right)^{r}$ is the usual r th power of the positive definite operator $\pi_{\lambda}\left(e^{A}\right) \in$ Aut $\left(V_{\lambda}\right)$. In particular $\left|\pi_{\lambda}\left(\left(e^{A}\right)^{r}\right)\right|=\left|\pi_{\lambda}\left(e^{A}\right)\right|^{r}$. So for $r \in \mathbb{R}$,

$$
\begin{aligned}
\left|\pi_{\lambda}\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}\right| & =\left|\pi_{\lambda}\left(e^{A / 2} e^{B} e^{A / 2}\right)\right|^{r} \quad\left(e^{A / 2} e^{B} e^{A / 2} \in P\right) \\
& =\left|\pi_{\lambda}\left(e^{A} e^{B}\right)\right|^{r} \\
& =\left|\pi_{\lambda}\left(e^{A}\right) \pi_{\lambda}\left(e^{B}\right)\right|^{r}
\end{aligned}
$$

and

$$
\left|\pi_{\lambda}\left(e^{r A / 2} e^{r B} e^{r A / 2}\right)\right|=\left|\pi_{\lambda}\left(e^{r A} e^{r B}\right)\right|=\left|\left(\pi_{\lambda}\left(e^{A}\right)\right)^{r}\left(\pi_{\lambda}\left(e^{B}\right)\right)^{r}\right| .
$$

Since the operators $\pi_{\lambda}\left(e^{A}\right)$ and $\pi_{\lambda}\left(e^{B}\right)$ are positive definite, by Theorem 4.1 (2) and Remark 4.2,

$$
\begin{aligned}
\left|\pi_{\lambda}\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}\right| & \leq\left|\pi_{\lambda}\left(e^{r A / 2} e^{r B} e^{r A / 2}\right)\right|, & r \geq 1 \\
\left|\pi_{\lambda}\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}\right| & \geq\left|\pi_{\lambda}\left(e^{r A / 2} e^{r B} e^{r A / 2}\right)\right|, & 0 \leq r \leq 1
\end{aligned}
$$

By Theorem 2.3, the desired relations then follow.

Now $\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r} \in P$ since $e^{A / 2} e^{B} e^{A / 2} \in P$. Clearly $e^{r A / 2} e^{r B} e^{r A / 2} \in P$. Thus $\left(e^{A / 2} e^{B} e^{A / 2}\right)^{r}$ and $e^{r A / 2} e^{r B} e^{r A / 2}$ in P and thus are hyperbolic [13, Proposition 6.2] and by [13, Theroem 6.1], the desired inequalities follow.

5. Thompson functions

Definition 5.1. [3, 14] A continuous function $\phi: G \rightarrow \mathbb{C}$ is a Thompson function if it satisfies
(1) $\phi\left(f g f^{-1}\right)=\phi(g)$ for all $f, g \in G$, that is, ϕ is a class function with respect to conjugation.
(2) $\left|\phi\left(g^{2 m}\right)\right| \leq \phi\left(\left(g^{*} g\right)^{m}\right)$ for all $g \in G, m=1,2, \ldots$

Notice that we define Thompson functions on the group G instead of the Lie algebra \mathfrak{g}. In the case $G=G L(n, \mathbb{C})$ (reductive), class \mathcal{T} functions are defined on $\mathfrak{g l}(n, \mathbb{C})[3,17]$ and $G L(n, \mathbb{C})$ just happens to be a subset of its Lie algebra $\mathfrak{g l}(n, \mathbb{C})$ but it is not necessarily true for general semi-simple or reductive Lie groups.

Theorem 5.2. Let $\phi: G \rightarrow \mathbb{C}$ be a Thompson function. Then
(1) $\phi\left(e^{A}\right) \geq 0$ if $A \in \mathfrak{p}$, and
(2) $\left|\phi\left(e^{A+B}\right)\right| \leq \phi\left(e^{A} \mathfrak{p} e^{B} \mathfrak{p}\right)$ for all $A, B \in \mathfrak{g}$. Thus $\left|\phi\left(e^{A}\right)\right| \leq \phi\left(e^{A} \mathfrak{p}\right)$ if $A \in \mathfrak{g}$, and $0 \leq \phi\left(e^{A+B}\right) \leq \phi\left(e^{A} e^{B}\right)$ if $A, B \in \mathfrak{p}$.
Proof. (1) $\phi\left(e^{A}\right)=\phi\left(e^{A / 2} e^{A / 2}\right)=\phi\left(e^{A / 2} e^{A^{*} / 2}\right)$ since $A \in \mathfrak{p}$. Then apply the second property of ϕ.
(2) The first condition of ϕ is equivalent to $\phi(f g)=\phi(g f)$, for all $f, g \in G$. We repeat the argument in Bhatia [3, p.260] word for word. For any positive integer m, by the properties of ϕ, we have for all $f, g \in G$,

$$
\left|\phi\left((f g)^{2^{m}}\right)\right| \leq \phi\left(\left((f g)^{*}(f g)\right)^{2^{m-1}}\right)=\phi\left(\left(g^{*} f^{*} f g\right)^{2^{m-1}}\right)=\phi\left(\left(f^{*} f g g^{*}\right)^{2^{m-1}}\right)
$$

Repeat the argument to obtain

$$
\left|\phi\left((f g)^{2^{m}}\right)\right| \leq \phi\left(\left(\left(f^{*} f\right)^{2}\left(g g^{*}\right)^{2}\right)^{2^{m-2}}\right) \leq \cdots \leq \phi\left(\left(f^{*} f\right)^{2^{m-1}}\left(g g^{*}\right)^{2^{m-1}}\right)
$$

Set $f=e^{A / 2^{m}}$ and $g=e^{B / 2^{m}}$. Thus

$$
\left|\phi\left(\left(e^{A / 2^{m}} e^{B / 2^{m}}\right)^{2^{m}}\right)\right| \leq \phi\left(\left(e^{A^{*} / 2^{m}} e^{A / 2^{m}}\right)^{2^{m-1}}\left(e^{B^{*} / 2^{m}} e^{B / 2^{m}}\right)^{2^{m-1}}\right)
$$

Applying the Lie product formula we conclude

$$
\left|\phi\left(e^{A+B}\right)\right| \leq \phi\left(e^{A} \mathfrak{p} e^{B} \mathfrak{p}\right)
$$

and the rest follow immediately.

See [3, Exercise IX.3.3] for some examples of Thompson functions on $S L(n, \mathbb{C})$ by switching $\mathbb{C}_{n \times n}$ to $S L(n, \mathbb{C})$. With some scaling, the particular case $\phi(g):=\operatorname{tr} g$, $g \in S L(n, \mathbb{C})$ yields Golden-Thompson inequality. For general G, the character $\chi_{\lambda}:=\operatorname{tr} \pi_{\lambda}: G \rightarrow \mathbb{C}$ is a Thompson function since

$$
\left|\operatorname{tr} \pi_{\lambda}\left(g^{2 m}\right)\right|=\left|\operatorname{tr} \pi_{\lambda}\left(g^{2}\right)\right|^{m} \leq \operatorname{tr} \pi_{\lambda}\left(g^{*} g\right)^{m}=\operatorname{tr} \pi_{\lambda}\left(\left(g^{*} g\right)^{m}\right)
$$

by Cauchy-Schwarz's inequality. Thus we have
Corollary 5.3. Given $\lambda \in \hat{G}$, the character $\chi_{\lambda}: G \rightarrow \mathbb{C}$ is a Thompson function. Hence
(1) $0 \leq \chi_{\lambda}\left(e^{A}\right), A \in \mathfrak{p}$.
(2) If $X, Y \in \mathfrak{g}$, then

$$
\left|\chi_{\lambda}\left(e^{X+Y}\right)\right| \leq \chi_{\lambda}\left(e^{X_{\mathfrak{p}}} e^{Y_{\mathfrak{p}}}\right)
$$

for all $\lambda \in \hat{G}$, where χ_{λ} denotes the character of π_{λ}. In addition if e^{X+Y} is hyperbolic, $0 \leq \chi_{\lambda}\left(e^{X+Y}\right) \leq \chi_{\lambda}\left(e^{X_{\mathfrak{p}}} e^{Y \mathfrak{p}}\right)$. Moreover (i) $\left|\phi\left(e^{X}\right)\right| \leq\left|\phi\left(e^{X_{\mathfrak{p}}}\right)\right|$, $X \in \mathfrak{p}$, and (ii) $\left|\chi_{\lambda}\left(e^{A+B}\right)\right| \leq \chi_{\lambda}\left(e^{A} e^{A}\right)$ if $A, B \in \mathfrak{p}$.
Corollary $5.3(1)$ is trivial since $\pi_{\lambda}\left(e^{A}\right)$ is positive definite if $A \in \mathfrak{p}$. Corollary 5.3 (2)(ii) is contained in [13, Theorem 6.3].

When $X+Y$ is real semisimple, that is, e^{X+Y} is hyperbolic and is conjugate to $e^{Z} \in e^{\mathfrak{p}}, Z \in \mathfrak{a} \subset \mathfrak{p}$. So $\pi_{\lambda}\left(e^{X+Y}\right)$ is similar to the positive definite operator $\pi_{\lambda}\left(e^{Z}\right)$ and hence $\left|\chi_{\lambda}\left(e^{X+Y}\right)\right|=\chi_{\lambda}\left(e^{X+Y}\right)$. Then $0<\chi_{\lambda}\left(e^{X+Y}\right) \leq \chi_{\lambda}\left(e^{X_{\mathfrak{p}}} e^{Y \mathfrak{p}}\right)$.
Example 5.4. Let $G=S L(2, \mathbb{R})$. Let

$$
A:=\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{R})
$$

which is real semisimple, that is, diagonalizable over \mathbb{R}. We can decompose $A=$ $X+Y, X, Y \in \mathfrak{s l}(2, \mathbb{R})$, in various ways. For examples,

$$
X=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right), \quad \operatorname{Re} X=X, \quad \operatorname{Re} Y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

or

$$
X=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right), \quad \operatorname{Re} X=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad \operatorname{Re} Y=Y
$$

The inequality $\chi_{\lambda}\left(e^{X+Y}\right) \leq \chi_{\lambda}\left(e^{\operatorname{Re} X} e^{\operatorname{Re} Y}\right), \lambda \in \hat{G}$, holds for all such decompositions.

Acknowledgment The author is thankful to an anonymous referee for bringing $[1,2]$ to his attention so that the paper is greatly improved.

References

[1] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys., 19 (1990) 167-170.
[2] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197/198 (1994) 113-131.
[3] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
[4] J.E. Cohen, Spectral inequalities for matrix exponentials, Linear Algebra Appl., 111 (1988) 25-28.
[5] J.J. Duistermaat and J.A.C. Kolk, Lie Groups, Springer, Berlin, 2000.
[6] S. Golden, Lower bounds for the Helmholtz function, Phys. Rev., 137 (1965) B1127-B1128.
[7] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[8] E. Heinz, Beitrag̈e zur Störungstheoric der Spektralzerlegung, Math. Ann., 123 (1951), 415438.
[9] F. Hiai, Trace norm convergence of exponential product formula, Lett. Math. Phys., 33 (1995), 147-158.
[10] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.
[11] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
[12] A.W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, 1996.
[13] B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973) 413-460.
[14] A. Lenard, Generalization of the Golden-Thompson inequality $\operatorname{Tr}\left(e^{A} e^{B}\right) \geq \operatorname{Tr} e^{A+B}$, Indiana Univ. Math. J. 21 (1971/1972) 457-467.
[15] W. So and R.C. Thompson, Singular values of matrix exponentials, Linear and Multilinear Algebra, 47 (2000) 249-258.
[16] C.J. Thompson, Inequality with applications in statistical mechanics, J. Mathematical Phys., 6 (1965) 1812-1813.
[17] C. J. Thompson, Inequalities and partial orders on matrix spaces, Indiana Univ. Math. J., 21 (1971/72) 469-480.
[18] B. Wang and M. Gong, Some eigenvalue inequalities for positive semidefinite matrix power products, Linear Algebra Appl. 184 (1993) 249-260.
[19] F. Warmer, Foundation of Differentiable manifolds and Lie Groups, Scott Foresman and Company, 1971.

Department of Mathematics, Auburn University, AL 36849-5310, USA
E-mail address: tamtiny@auburn.edu

