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SOME INEQUALITIES FOR THE EXPONENTIALS

TIN-YAU TAM

Abstract. Let ‖| · ‖| be any give unitarily invariant norm. We generalize, in

the context of semisimple Lie group, the inequalities (1) ‖|eA‖| ≤ ‖|eRe A‖|
for all complex matrices A, where Re A denotes the Hermitian part of A, and
(2) ‖|eA+B‖| ≤ ‖|eAeB‖| where A and B are n× n Hermitian matrices. The
inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thompson, Cohen,
and So-Thompson are recovered from the main results. Araki’s relation on
(eA/2eBeA/2)r and erA/2erBerA/2, where A, B are Hermitian and r ∈ R, is
generalized.

1. Introduction

It is known [3, Theorem IX.3.1, Theorem IX.3.7] that for any unitarily invariant
norm ‖| · ‖| : Cn×n → R,

(1.1) ‖|eA‖| ≤ ‖|eRe A‖|, A ∈ Cn×n,

(1.2) ‖|eA+B‖| ≤ ‖|eAeB‖|, A,B ∈ Cn×n are Hermitian,

where Re A denotes the Hermitian part of A ∈ Cn×n. Another result in Bhatia’s
Matrix Analysis [3, Theorem IX.3.5] implies that for any irreducible representa-
tion π of the general linear group GL(n,C) (indeed it is sufficient to consider the
semisimple SL(n,C) with an appropriate scaling),

(1.3) |π(eA+B)| ≤ |π(eRe AeRe B)|, A,B ∈ Cn×n,

where |X| denotes the spectral radius (the maximum modulus of the eigenvalues) of
the linear map X. In particular, when A,B are Hermitian, by considering the rep-
resentation tr : GL(n,C) → C, we have the famous Golden-Thompson inequality
[6, 16]

(1.4) tr eA+B ≤ tr (eAeB), A,B Hermitian,

since the eigenvalues eAeB are those of eA/2eBeA/2 which is positive definite and
thus are positive. See [14, 17, 1, 2] for some generalizations of Golden-Thompson’s
inequality. Indeed, Bhatia [3, p.259] defines a class of functions, called the class T ,
and the notion comes out from a result of Thompson [17, Lemma 6].

Definition 1.1. A continuous function f : Cn×n → C is said to be in the class T
if it satisfies

(1) f(XY ) = f(Y X) for all X, Y ∈ Cn×n,
(2) |f(X2m)| ≤ f((XX∗)m) for all X ∈ Cn×n, m = 1, 2, . . . .
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Theorem 1.2. ([3, Theorem IX.3.5]) If f ∈ T , then for all A,B ∈ Cn×n,

|f(eA+B)| ≤ f(eRe AeRe B).

Since XY and Y X have the same eigenvalues, counting multiplicities, and the
spectral radius of X is less than or equal to the operator norm of X, the spectral
radius is an element of T . Thus (1.3) follows from Theorem 1.2. However unitarily
invariant norms generally fail to be in class T . A quick example: consider the
operator norm ‖ · ‖ which is clearly unitarily invariant and

X =
(

1 0
0 0

)
, Y =

(
0 0
1 0

)
.

Certainly the first criterion of T is not satisfied for ‖ · ‖.
Though the appearance of (1.3) differs from that of (1.1) and (1.2), they can be

derived from a pre-order order of Kostant seminal paper [13].
After the preliminary materials are introduced in Section 2, we extend in Section

3 the inequalities (1.1), (1.2) and (1.3) in the context of semisimple Lie group. In
a sequence of remarks, we show how to derive from Theorem 3.1 the inequalities of

(1) Weyl [3] (the moduli of the eigenvalues of A are log majorized by the sin-
gular values of A ∈ Cn×n),

(2) Ky Fan [3] (the real parts of the eigenvalues of A are majorized by the real
singular values of A ∈ Cn×n),

(3) Lenard-Thompson [14, 17] (‖|eA+B‖| ≤ ‖|eA/2eBeA/2‖|, A,B ∈ Cn×n Her-
mitian),

(4) Cohen [4] (the eigenvalues of the positive definite part of eX (with respect to
polar decomposition) are log majorized by the eigenvalues of eRe A, where
A ∈ Cn×n),

(5) So-Thompson [15] (the singular values of eA are weakly log majorized by
the exponentials of the singular values of A ∈ Cn×n).

In Section 4 we extend, in the context of Lie group, Araki’s result [1] on the relation
of the two matrices (eA/2eBeA/2)r and erA/2erBerA/2 where A,B ∈ Cn×n are
Hermitian, r ≥ 0. In the last section, the notion of class T functions is extended
on the group level (will be called Thompson functions) and related inequalities are
obtained.

2. Preliminaries

We recall some basic notions and results in [13]. Let g be a real semisimple
Lie algebra. Let G be any Lie group having g as its Lie algebra. An element
X ∈ g is called real semisimple (nilpotent) if ad X is diagonalizable over R (ad X
is nilpotent, respectively). An element g ∈ G is called hyperbolic (unipotent) if
g = exp(X) where X ∈ g is real semisimple (nilpotent respectively). An element
g ∈ G is elliptic if Adg is diagonalizable over C with eigenvalues of modulus 1. The
complete multiplicative Jordan decomposition [13, Proposition 2.1] for G asserts
that each g ∈ g can be uniquely written as

g = ehu,

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h,
u commute. We write g = e(g)h(g)u(g).
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Let g = k + p be a fixed Cartan decomposition of g. Let K ⊂ G be the analytic
group of k so that Ad(K) is a maximal compact subgroup of Ad(G). Let a ⊂ p be a
maximal Abelian subalgebra of g in p. Then A := exp a is the analytic subgroup of
a. Let W be the Weyl group of (a, g) which may be defined as the quotient of the
normalizer of A in K modulo the centralizer of A in K. The Weyl group operates
naturally in a and A and the isomorphism exp : a → A is a W-isomorphism.

For each real semisimple X ∈ g (hyperbolic h ∈ G) let

c(X) = Ad(G)X ∩ a, C(h) = {ghg−1 : g ∈ G} ∩A

denote the set of all elements in a (A) which are conjugate to X (h, respectively).
It turns out that X ∈ g (h ∈ G, e ∈ G) is real semisimple (hyperbolic, elliptic) if
and only if it is conjugate to an element in a (A, K, respectively) [13, Proposition
2.3 and 2.4]. Thus c(X) and C(h) are single W-orbits in a and A respectively.
Moreover

C(exp(X)) = exp(c(X)).

Denote by conv W (X) the convex hull of the Weyl group orbit c(X) ⊂ a.
When g ∈ G is arbitrary, define

C(g) := C(h(g)),

where h(g) is the hyperbolic component of g and

A(g) := exp(convW (log h(g))).

(For a hyperbolic g ∈ G, the real semisimple X such that eX = g is unique, and
we write log g = X, since Ad(eX) = ead X and the restriction of the usual matrix
exponential map eA =

∑∞
n=1

An

n! on the set of diagonalizable matrices over R is
one-to-one). So A(g) ⊂ A and is invariant under the Weyl group. It is the “convex
hull” of C(g) in the multiplicative sense. Given f, g ∈ G, we say that f ≺ g if

A(f) ⊂ A(g),

or equivalently
C(f) ⊂ A(g).

Notice that ≺ is a pre-order on G and A(`g`−1) = A(g) since h(`g`−1) = `h(g)`−1

for all ` ∈ G, and is a partial order on the equivalence classes of hyperbolic elements
under the conjugation of G. The order ≺ is different from Thompson’s pre-order
[17] on SL(n,C) which simplifies the one made by Lenard [14] (The orders of Lenard
and Thompson agree on the space of positive definite matrices).

Example 2.1. Let G = SL(n,R) with K = SO(n) and A ⊂ SL(n,R) consists of
positive diagonal matrices. Viewing g ∈ SL(n,R) as an element in gl(n,R), the
additive Jordan decomposition [11, p.153] for gl(n,R) yields

g = s + n1

(s ∈ SL(n,R) semisimple, that is, diagonalizable over C, n1 ∈ sl(n,R) nilpotent
and sn1 = n1s). Moreover these conditions determine s and n1 completely [10,
Proposition 4.2]. Put u = 1 + s−1n1 ∈ SL(n,R) and we have the multiplicative
Jordan decomposition

g = su,
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where s is semisimple, u is unipotent, and su = us. By the uniqueness of the
additive Jordan decomposition, s and u are also completely determined. Since s is
diagonalizable,

s = eh,

where e is elliptic, h is hyperbolic, eh = he, and these conditions completely de-
termine e and h. The decomposition can be obtained by observing that there is
k ∈ SL(n,C) such that

k−1sk = s1Ir1 ⊕ · · · ⊕ smIrm
,

where s1 = eiξ1 |s1|, . . . , sm = eiξm |sm| are the distinct eigenvalues of s with multi-
plicities r1, . . . , rm respectively. Set

e := k(eiξ1Ir1 ⊕ · · · ⊕ eiξmIrm
)k−1, h := k(|s1|Ir1 ⊕ · · · ⊕ |sm|Irm

)k−1.

If s = e′h′ with e′h′ = h′e′, e′ elliptic and h′ hyperbolic, then s, e′ and h′ are
simultaneously diagonalizable over C and hence for some k′ ∈ SL(n,C), k′−1sk′ =
s1Ir1 ⊕ · · · ⊕ smIrm

,

e′ = k′(eiξ1Ir1 ⊕ · · · ⊕ eiξmIrm)k′−1, h′ = k′(|s1|Ir1 ⊕ · · · ⊕ |sm|Irm)k′−1.

Thus the first r1 columns of k′ form a basis for the eigenspace of s associated
with the eigenvalue s1, . . . . . . , and the last rm columns of k′ form a basis for the
eigenspace of s associated with the eigenvalue sm. So k′ = kB where B ∈ Cr1×r1 ⊕
· · · ⊕ Crm×rm and thus e′ = e and h = h. Since

ehu = g = ugu−1 = ueu−1uhu−1u,

the uniqueness of s, u, e and h implies e, u and h commute. Since g is fixed
under complex conjugation, the uniqueness of e, h and u imply e, h, u ∈ SL(n,R)
[7, p.431]. Thus g = ehu is the complete multiplicative Jordan decomposition for
SL(n,R). The eigenvalues of h are simply the moduli of the eigenvalues of s and
thus of g. We have similar decomposition for SL(n,C).

Let sl(n,R) = so(n) + p be the fixed Cartan decomposition of sl(n,R), that is,
k = so(n) and p is the space of traceless real symmetric matrices. So K = SO(n).
Let a ⊂ p be the maximal Abelian subalgebra of sl(n,R) in p containing the diagonal
matrices. So the analytic group A of a is the group of positive diagonal matrices
of determinant 1. The Weyl group W of (a, g) is the full symmetric group Sn [12]
which acts on A and a by permuting the diagonal entries of the matrices in A and
a. Now

C(f) = {diag (|ασ(1)|, · · · , |ασ(n)|) : σ ∈ Sn},
where α1, . . . , αn denote the eigenvalues of f ∈ SL(n,C). So

c(log h(f)) = {diag (log |ασ(1)|, · · · , log |ασ(n)|) : σ ∈ Sn}.
We will arrange them in such a way that |α1| ≥ |α2| ≥ · · · ≥ |αn|. So f ≺ g,
f, g ∈ SL(n,R) means that the log h(f)) is an element of the convex hull of the
single W -orbit c(log h(g)). Thus log |α| is majorized by log |β| [3, p.33], denoted
by |α| ≺log |β| which is called log majorization in [2], where β’s are the eigenvalues
of g. In other words, |α1| ≥ |α2| ≥ · · · ≥ |αn|, are multiplicatively majorized by
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|β1| ≥ |β2| ≥ · · · ≥ |βn|, that is,
k∏

i=1

|αi| ≤
k∏

i=1

|βi|, k = 1, . . . , n− 1,

n∏

i=1

|αi| =
n∏

i=1

|βi|.

On the other hand, one may deduce the above inequalities as necessary condi-
tions for f ≺ g via Theorem 2.3 by considering the natural representation of
SL(n,R) on Vλ = Rn and the kth exterior powers ∧kf , k = 1, . . . , n. These
would yield

∏k
i=1 |αi| ≤

∏k
i=1 |βi|, k = 1, . . . , n. Then consider the representation

A 7→ (det A)−1 to have the equality. Same results hold for SL(n,C).

Remark 2.2. In the above example, the pre-order ≺ in SL(n,R) ⊂ SL(n,C)
coincides with that in SL(n,C) since the Weyl groups are identical. But it is
pointed out in [13, Remark 3.1.1] that the pre-order ≺ is not necessarily the same
as the pre-order on the semisimple G that would be induced by a possible embedding
of G in SL(n,C) for some n.

We denote by Ĝ the index set of the irreducible representations of G, πλ :
G → Aut (Vλ) a fixed representation in the class corresponding to λ ∈ Ĝ, |πλ(g)|
the spectral radius of the automorphism πλ(g) : Vλ → Vλ where g ∈ G, that is,
the maximum modulus of the eigenvalues of πλ(g), and χλ the character of πλ.
The following nice result of Kostant describes the pre-order ≺ via the irreducible
representations of G and plays an important role in the coming sections.

Theorem 2.3. (Kostant [13, Theorem 3.1]) Let f, g ∈ G. Then f ≺ g if and only
if |πλ(f)| ≤ |πλ(g)| for all λ ∈ Ĝ, where | · | denotes the spectral radius.

3. The Main results

Fix a Cartan decomposition g = k + p. For each X ∈ g, write X = Xk + Xp
where Xk ∈ k and Xp ∈ p.

Theorem 3.1. Let g be a real semisimple Lie algebra. Let X, Y ∈ g and g = k + p
be a fixed Cartan decomposition of g. Then for any n ≥ 1 and g ∈ G,

g2n ≺ (g∗)ngn ≺ (g∗g)n,

and
eX+Y ≺ e−θ(X+Y )/2e(X+Y )/2 ≺ e

Xpe
Yp ,

where θ is the Cartan involution of g with respect to the given Cartan decomposition.

By setting Y = X, we have

Corollary 3.2. Let X ∈ g. Then eX ≺ e−θX/2eX/2 ≺ e
Xp .

Proof. of Theorem 3.1 Let θ ∈ Aut (g) be the Cartan involution of g, that is, θ is 1
on k and −1 on p. Set P = ep. We have the (global) Cartan decomposition

G = KP.

Then θ induces an automorphism Θ of G such that the differential of Θ at the
identity is θ [12, p.387]. Explicitly

Θ(kp) = kp−1, k ∈ K, p ∈ P.
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For any g ∈ G let
g∗ := Θ(g−1).

If g = kp, the polar decomposition of g ∈ G, then

g∗ = Θ(p−1k−1) = Θ(p−1)k−1 = pk−1,

and hence g∗g = p2 ∈ P , since the centralizer GΘ = {g ∈ G : Θ(g) = g} coincides
with K [12, p.305]. So

g∗ := Θ(g−1) = (Θ(g))−1, (g∗)∗ = g, (fg)∗ = g∗f∗, (g∗)n = (gn)∗,

for all f, g ∈ G, n positive integer. Since θ is the differential of Θ at the identity,
we have [7, 110]

Θ(eA) = eθA,

for all A ∈ g. So

(3.1) (eA)∗ = Θ(e−A) = e−θA.

We now claim for any g ∈ G, and any natural number n,

(3.2) g2n ≺ (g∗)ngn ≺ (g∗g)n.

The relation g2n ≺ (g∗g)n is known in [13, p.448] and we use similar idea (indeed
the original idea can be found in [17] when G = SL(n,C)) to establish (3.2). We
denote by Πλ : g → End (Vλ) the differential at the identity of the representation
πλ : G → Aut (Vλ). So [7, p.110]

(3.3) exp ◦Πλ = πλ ◦ exp,

where the exponential function on the left is exp : End (Vλ) → Aut (Vλ) and the
one on the right side is exp : g → G. Now u = k + ip (direct sum) is a compact
real form of gC (the complexification of g). The representation Πλ : g → End (Vλ)
naturally defines a representation u → End (Vλ) of u, also denoted by Πλ and vice
versa. Let U be a simply connected Lie group of U [19, p.101] so that it is compact
[5, Corollary 3.6.3]. There is a unique homomorphism π̂λ : U → Aut (Vλ) such that
the differential of π̂λ at the identity is Πλ [19, Theorem 3.27]. Thus there exists an
inner product (we will assume that Vλ is endowed with this structure from now on)
〈·, ·〉 on Vλ such that π̂λ(u) is orthogonal for all u ∈ U . Differentiate the identity

(π̂λ(etZ)X, π̂λ(etZ)Y ) = (X, Y ),

for all X, Y ∈ Vλ at t = 0 we have

(Πλ(Z)X, Y ) = −(X, Πλ(Z)Y )

by (3.3). Thus Πλ(Z) is skew Hermitian for all Z ∈ u [12, Proposition 4.6], [13,
p.435]. Then Πλ(Z) is skew Hermitian if Z ∈ k and is Hermitian if Z ∈ p. So πλ(z)
is unitary if z ∈ K and is positive definite if z ∈ P by (3.3). Since each g can be
written as g = kp, k ∈ K and p ∈ P ,

〈u, πλ(g∗)v〉 = 〈u, πλ(pk−1)v〉
= 〈u, πλ(p)πλ(k−1)v〉
= 〈πλ(k)πλ(p)u, v〉
= 〈πλ(g)u, v〉,

for all u, v ∈ Vλ. Thus

(3.4) πλ(g)∗ = πλ(g∗),
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where πλ(g)∗ denotes the Hermitian adjoint of πλ(g). Thus πλ(g∗g) = πλ(g)∗πλ(g) ∈
Aut (Vλ) is a positive definite operator for all g ∈ G. Denote by ‖πλ(g)‖, g ∈ G,
the operator norm of πλ(g). Thus

|πλ(p)| = ‖πλ(p)‖, for all p ∈ P.

Because of Theorem 2.3, to arrive at the claim (3.2) it suffices to show

|πλ(g2n)| ≤ |πλ((g∗)ngn)| ≤ |πλ((g∗g)n)|, for all λ ∈ Ĝ.

Now

|πλ((g∗)ngn)| = |πλ((gn)∗gn)|
= ‖πλ((gn)∗gn)‖ (πλ((gn)∗gn) ∈ Aut (Vλ) is positive definite)
= ‖πλ(gn)∗πλ(gn)‖ by (3.4)
= ‖πλ(gn)‖2 (‖T‖2 = ‖T ∗T‖).

On the other hand,

|πλ((g∗g)n)| = |πλ(g∗g)|n
= ‖πλ(g∗g)‖n (πλ((g∗g) ∈ Aut (Vλ) is positive definite)
= ‖πλ(g)∗πλ(g)‖n

= ‖πλ(g)‖2n (‖T‖2 = ‖T ∗T‖)
≥ ‖πλ(gn)‖2 (‖Tn‖ ≤ ‖T‖n),

where the inequality is due to the well known fact that the spectral radius is no
greater than the operator norm. So we have (g∗)ngn ≺ (g∗g)n. Now

|πλ((g∗)n)gn)| = |πλ((gn)∗)πλ(gn)| = ‖πλ(gn)‖2 ≥ |πλ(gn)|2 = |πλ(g2n)|.
Hence g2n ≺ (g∗)ngn and we just proved the claim.

By the first relation in (3.2), if g = xy where x, y ∈ G, we have for any natural
number m,

(xy)2
m+1 ≺ (y∗x∗)2

m

(xy)2
m

.

Set x = eX/2m

, y = eY/2m

, where X, Y ∈ g. We get

((eX/2m

eY/2m

)2
m

)2 ≺ ((eY/2m

)∗(eX/2m

)∗)2
m

(eX/2m

eY/2m

)2
m

= (e−θY/2m

e−θX/2m

)2
m

(eX/2m

eY/2m

)2
m

by (3.1). Since limt→∞(eX/teY/t)t = eX+Y [7, p.115], and the relation ≺ remains
valid as we take limits on both sides because the spectral radius is a continuous
function on Aut (Vλ), we have e2(X+Y ) ≺ e−θ(X+Y )e(X+Y ). As a result

eX+Y ≺ e−
1
2 θ(X+Y )e

1
2 (X+Y ),

and we just established the first part of Theorem 3.1.
Let g = e(X+Y )/n, X, Y ∈ g. By the second relation of (3.2),

(e−θ(X+Y )/n)n(e(X+Y )/n)n ≺ ((e−θ(X+Y )/ne(X+Y )/n))n.

So
e−θ(X+Y )eX+Y ≺ e

2(X+Y )p = e
2Xp+2Yp ≺ e

2Xpe
2Yp ,

where the last relation is established in [13, Theorem 6.3]. ¤
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Remark 3.3. Certainly, the statement eX+Y ≺ e
Xke

Yk is not true by simply
considering G = SL(n,C) in which K = SU(n) and k = su(n). There e

Xke
Yk ∈

SU(n) and we may pick X, Y ∈ sl(n,C) such that X + Y is nonzero Hermitian
matrix with a positive eigenvalue. Viewing each g ∈ SL(n,C) as a linear operator on
Vλ = Cn (the natural representation of SL(n,C)), the spectral radius |eXke

Yk | = 1
but |eX+Y | > 1.

Remark 3.4. (Cohen’s result) When G = GL(n,C), the relation g∗ngn ≺ (g∗g)n

was established in [4] and g2n ≺ (g∗g)n was obtained in [17]. Kostant [13, Proof of
Theorem 6.3] also proved g2n ≺ (g∗g)n and eA+B ≺ eAeB , A,B ∈ p, for general G.
The relation in Theorem 3.1

g∗ngn ≺ (g∗g)n

is equivalent to
p(gn) ≺ (p(g))n,

where g = k(g)p(g) is the polar decomposition of g ∈ G. If we set g = eX/n, then
we have

p(eX) ≺ [p(eX/n)]n, n = 1, 2, ...

Now p(eX/n) = ((eX/n)∗eX/n)1/2 = (e−θX/neX/n)1/2. So

lim
n→∞

[p(eX/n)]n = lim
n→∞

[(e−θX/neX/n)1/2]n = e
Xp ,

and thus
p(eX) ≺ e

Xp

which is Cohen’s result [4] when G = SL(n,C) with appropriate scaling.

Remark 3.5. (Ky Fan’s inequality and inequality (1.1))
Continuing with Example 2.1, for A ∈ sl(n,C), the moduli of the eigenvalues

of eA are the exponentials of the real parts of the eigenvalues of A, counting mul-
tiplicities. The matrix eRe A is positive definite. So the eigenvalues of eRe A are
indeed the singular values, and are the exponentials of the eigenvalues of Re A.
The eigenvalues of Re A are known as the real singular values of A, denoted by
β1 ≥ · · · ≥ βn. Denote the real parts of the eigenvalues of A by α1 ≥ · · · ≥ αn. By
Corollary 3.2 eA ≺ eRe A which amounts to

k∏

i=1

eαi ≤
k∏

i=1

eβi , i = 1, . . . , n− 1,

n∏

i=1

eαi =
n∏

i=1

eβi ,

that is eα ≺log eβ . Thus, by taking log on the above relation, the relation eA ≺
eRe A amounts to the usual majorization relation α ∈ convSnβ, a well known
result of Ky Fan [3, Proposition III.5.3]. From the second relation of Corollary 3.2,
eAeA∗ ≺ eA+A∗ which amounts to the fact that the singular values of eA (that is,
the square roots of the eigenvalues of eAeA∗) are multipicatively majorized, and
hence weakly majorized [3, p.42], [2], by the singular values (also the eigenvalues)
of the positive definite eRe A. Thus

‖|eA‖| ≤ ‖|eRe A‖|,



EXPONENTIAL INEQUALITIES 9

for all unitarily invariant norms ‖| · ‖| [3, Theorem IX.3.1] by Ky Fan Dominance
Theorem [3, Theorem IV.2.2]. Thus we have (1.1).

Remark 3.6. (So-Thompson’s inequality)
From eAeA∗ ≺ eA+A∗ , A ∈ Cn×n, So-Thompson inequalities [15, Theorem 2.1]

asserts that
k∏

i=1

si(eA) ≤
k∏

i=1

esi(A), k = 1, . . . , n

can be derived via Fan-Hoffman inequalities [3, proposition III.5.1]

λi(Re A) ≤ si(A), i = 1, . . . , n,

where s1(A) ≥ · · · ≥ sn(A) denote the singular values of A ∈ Cn×n.

Remark 3.7. (Weyl’s inequality and inequalities (1.2) and (1.3))
Let A ∈ SL(n,C). By (3.4) A2 ≺ A∗A. By Example 2.1, |λ2(A)| ≺log |λ(A∗A)| =

|s(A∗A)|, that is,
|λ(A)| ≺log s(A).

By scaling and continuity argument, the log majorization remains valid for A ∈
Cn×n, that is, Weyl’s inequality [3, p.43]. In the literature, Weyl’s inequality is
often proved via the kth exterior power once |λ1(A)| ≤ s1(A) is established, for
example [3, p.42-43]. Such an approach shares some favor of Theorem 2.3.

If A, B ∈ Cn×n are Hermitian, then eA, eB and eA+B are positive definite.
Though eAeB is not positive definite in general, its eigenvalues, denoted by δ1 ≥
· · · ≥ δn, are positive since eAeB and the positive definite eA/2eBeA/2 share the
same eigenvalues. Denote the eigenvalues of eA+B by γ1 ≥ · · · ≥ γn. Thus γ is
multiplicatively majorized by δ because of eA+B ≺ eAeB (Theorem 3.1). Notice
that δ is also multiplicatively majorized by the singular values s1 ≥ · · · ≥ sn of
eAeB , by Weyl’s inequality. Hence we have the weak majorization relation γ ≺w s
[3, p.42] so that (1.2) follows. Finally (1.3) follows from Theorem 3.1 and Theorem
2.3.

Remark 3.8. (Lenard-Thompson’s inequality) Lenard’s result [14] together with
[17, Theorem 2] imply that

(3.5) ‖|eA+B‖|| ≤ ‖|eA/2eBeA/2‖|, A,B ∈ Cn×n Hermitian,

from which Golden-Thompson’s result follows. It is because eA+B and eA/2eBeA/2

are positive definite and their traces are indeed the Ky Fan n-norm, that is, sum
of singular values which is unitarily invariant. Indeed Lenard’s result just asserts
that any arbitrary neigborhood of eA+B contains X such that X ≺ eA/2eBeA/2 [14,
p.458] (It is weaker than (3.6)). By a limit argument and Thompson’s argument,
(3.5) follows. But the more basic question is whether (3.6) is true. Indeed

eA+B ≺ eAeB , A,B ∈ p

(Theorem 3.1) is a unified generalization of Golden-Thompson’s inequality and (1.2)
and (3.5) in the context of Lie group since

(3.6) eA+B ≺ eA/2eBeA/2, A,B ∈ p.

Now (3.6) is true simply because πλ(eAeB) and πλ(eA/2eBeA/2) have the same
spectrum (by the fact that XY and Y X have the same spectrum and πλ is a
representation) and thus have the same spectral radius. Then apply Theorem 2.3.
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4. Extension of Araki’s result

Araki’s result [1] (actually it appears in the proof of the main Theorem [1, p.168-
169]. Also see [9] for a short proof) asserts that if A,B ∈ Cn×n Hermitian, then

(4.1) (eA/2eBeA/2)r ≺ erA/2erBerA/2, r > 1,

that amounts to

s((eA/2eBeA/2)r) ≺log s(erA/2erBerA/2), r > 1,

or equivalently

s((eqA/2eqBeqA/2)1/q) ≺log s((epA/2epBepA/2)1/p), 0 < q ≤ p.

Together with Lie-Trotter formula

eA+B = lim
r→0

(erA/2erBerA/2)1/r,

Golden-Thompson’s result is strenghtened [2]:

‖|epA/2epBepB/2‖|
decreases down to ‖|eA+B‖| as p ↓ 0 for any unitarily invariant norm ‖| · ‖| on Cn×n

and in particular

tr eA+B ≤ tr [epA/2epBepB/2]1/p, p > 0.

Araki’s result also implies a result of Wang and Gong [18] (also see [3, Theorem
IX.2.9]).

In order to extend (4.1) for general G, we need a result of Heinz [8] conerning
two positive semidefinte operators. Indeed the orginal proof of Araki’s result [1]
also makes use of Heinz’s result. Give two positive semidefinite operators A,B, the
spectrum (counting multiplicities) λ(AB) = λ(A1/2BA1/2) and thus all eigenvalues
of AB are positive. So the largest eigenvalue of AB, λ1(AB), is the spectral radius
of AB. The first part of the following theorem is due to Heinz [8] (see [p.255-256]
for two nice proofs of Heinz’s result). The second part is proved via the Heinz’s
result in [3, Theorem IX.2.6] in a somewhat lengthly way.

Theorem 4.1. The following two statements are equivalent and valid.
(1) (Heinz) For any two positive semidefinite operators A, B, ‖AsBs‖ ≤ ‖AB‖s,

0 ≤ s ≤ 1.
(2) For any two positive semidefinite operators A, B, λ1(AsBs) ≤ λs

1(AB),
0 ≤ s ≤ 1.

Proof. We just establish the equivalence of the two statements. Since ‖T‖ =
‖T ∗T‖2,
‖AsBs‖ = ‖(AsBs)AsBs‖1/2 = ‖BsA2sBs‖1/2 = λ

1/2
1 (BsA2sBs) = λ

1/2
1 (A2sB2s),

and
‖AB‖s = ‖ABBA‖s/2 = λ

s/2
1 (AB2A) = λ

s/2
1 (A2B2).

¤

Remark 4.2. An equivalent statement to Heniz’s result is: for any positive op-
erators A, B, ‖AtBt‖ ≥ ‖AB‖t if t ≥ 1, or equivalently λ1(AtBt) ≥ λt

1(AB) [3,
p.256-257].
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For general G, the map exp : p → P where P := ep is one-to-one since the map

(K, p) → G, (k, X) 7→ keX

is a diffeomorphism [12, p.305], and thus (eA)r := erA ∈ P where r ∈ R. So
fr, gr ∈ P , frgr (hyperbolic, since frgr is conjugate to fr/2grfr/2), r ∈ R, are well
defined for f, g ∈ P . The following is an extension of Heinz’s result on the group
level.

Theorem 4.3. Let f, g ∈ P . Then

(fg)t ≺ f tgt, t ≥ 1,

(fg)s ≺ fsgs, 0 ≤ s ≤ 1.

Proof. Since each element eA in P (A ∈ p) is of the form e−θA/2eA/2 = (eA)∗eA

(A = −θA), πλ(eA) is positive definite. Thus πλ(f), πλ(g) ∈ Aut (Vλ) are positive
definite if f, g ∈ P . Suppose 0 ≤ s ≤ 1. Then

|πλ((fg)s)| = |πλ(fg)|s = |πλ(f)πλ(g)|s ≥ |πs
λ(f)πs

λ(g)|
= |(πλ(fs)πλ(gs)| = |(πλ(fsgs)|,

by Theorem 4.1 (2). Applying Theorem 2.3 to have the desired result (fg)s ≺ fsgs,
0 ≤ s ≤ 1. The other relation is by Remark 4.2. ¤

When A,B ∈ p, the element eA/2eBeA/2 is in P since it is of the form g∗g where
g = eB/2eA/2. Thus (eA/2eBeA/2)r ∈ P , r ∈ R is well defined.

Theorem 4.4. Let A,B ∈ p. Then

(eA/2eBeA/2)r ≺ erA/2erBerA/2, r > 1,

erA/2erBerA/2 ≺ (eA/2eBeA/2)r, 0 ≤ r ≤ 1.

Moreover, for all λ ∈ Ĝ

χλ((eA/2eBeA/2)r) ≤ χλ(erA/2erBerA/2), r > 1,

χλ(erA/2erBerA/2) ≤ χλ((eA/2eBeA/2)r), 0 ≤ r ≤ 1.

Proof. Notice that πλ(eA) is positive definite and

πλ((eA)r) = (πλ(eA))r, r ∈ R,

where (πλ(eA))r is the usual rth power of the positive definite operator πλ(eA) ∈
Aut (Vλ). In particular |πλ((eA)r)| = |πλ(eA)|r. So for r ∈ R,

|πλ(eA/2eBeA/2)r| = |πλ(eA/2eBeA/2)|r (eA/2eBeA/2 ∈ P )

= |πλ(eAeB)|r
= |πλ(eA)πλ(eB)|r,

and
|πλ(erA/2erBerA/2)| = |πλ(erAerB)| = |(πλ(eA))r(πλ(eB))r|.

Since the operators πλ(eA) and πλ(eB) are positive definite, by Theorem 4.1 (2)
and Remark 4.2,

|πλ(eA/2eBeA/2)r| ≤ |πλ(erA/2erBerA/2)|, r ≥ 1,

|πλ(eA/2eBeA/2)r| ≥ |πλ(erA/2erBerA/2)|, 0 ≤ r ≤ 1.

By Theorem 2.3, the desired relations then follow.
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Now (eA/2eBeA/2)r ∈ P since eA/2eBeA/2 ∈ P . Clearly erA/2erBerA/2 ∈ P .
Thus (eA/2eBeA/2)r and erA/2erBerA/2 in P and thus are hyperbolic [13, Proposi-
tion 6.2] and by [13, Theroem 6.1], the desired inequalities follow. ¤

5. Thompson functions

Definition 5.1. [3, 14] A continuous function φ : G → C is a Thompson function
if it satisfies

(1) φ(fgf−1) = φ(g) for all f, g ∈ G, that is, φ is a class function with respect
to conjugation.

(2) |φ(g2m)| ≤ φ((g∗g)m) for all g ∈ G, m = 1, 2, . . . .

Notice that we define Thompson functions on the group G instead of the Lie
algebra g. In the case G = GL(n,C) (reductive), class T functions are defined on
gl(n,C) [3, 17] and GL(n,C) just happens to be a subset of its Lie algebra gl(n,C)
but it is not necessarily true for general semi-simple or reductive Lie groups.

Theorem 5.2. Let φ : G → C be a Thompson function. Then
(1) φ(eA) ≥ 0 if A ∈ p, and
(2) |φ(eA+B)| ≤ φ(eApe

Bp) for all A,B ∈ g. Thus |φ(eA)| ≤ φ(eAp) if A ∈ g,
and 0 ≤ φ(eA+B) ≤ φ(eAeB) if A,B ∈ p.

Proof. (1) φ(eA) = φ(eA/2eA/2) = φ(eA/2eA∗/2) since A ∈ p. Then apply the
second property of φ.

(2) The first condition of φ is equivalent to φ(fg) = φ(gf), for all f, g ∈ G. We
repeat the argument in Bhatia [3, p.260] word for word. For any positive integer
m, by the properties of φ, we have for all f, g ∈ G,

|φ((fg)2
m

)| ≤ φ(((fg)∗(fg))2
m−1

) = φ((g∗f∗fg)2
m−1

) = φ((f∗fgg∗)2
m−1

).

Repeat the argument to obtain

|φ((fg)2
m

)| ≤ φ(((f∗f)2(gg∗)2)2
m−2

) ≤ · · · ≤ φ((f∗f)2
m−1

(gg∗)2
m−1

).

Set f = eA/2m

and g = eB/2m

. Thus

|φ((eA/2m

eB/2m

)2
m

)| ≤ φ((eA∗/2m

eA/2m

)2
m−1

(eB∗/2m

eB/2m

)2
m−1

).

Applying the Lie product formula we conclude

|φ(eA+B)| ≤ φ(eApe
Bp),

and the rest follow immediately.
¤

See [3, Exercise IX.3.3] for some examples of Thompson functions on SL(n,C) by
switching Cn×n to SL(n,C). With some scaling, the particular case φ(g) := tr g,
g ∈ SL(n,C) yields Golden-Thompson inequality. For general G, the character
χλ := tr πλ : G → C is a Thompson function since

|tr πλ(g2m)| = |tr πλ(g2)|m ≤ tr πλ(g∗g)m = tr πλ((g∗g)m),

by Cauchy-Schwarz’s inequality. Thus we have

Corollary 5.3. Given λ ∈ Ĝ, the character χλ : G → C is a Thompson function.
Hence

(1) 0 ≤ χλ(eA), A ∈ p.
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(2) If X, Y ∈ g, then

|χλ(eX+Y )| ≤ χλ(eXpe
Yp),

for all λ ∈ Ĝ, where χλ denotes the character of πλ. In addition if eX+Y is
hyperbolic, 0 ≤ χλ(eX+Y ) ≤ χλ(eXpe

Yp). Moreover (i) |φ(eX)| ≤ |φ(eXp)|,
X ∈ p, and (ii) |χλ(eA+B)| ≤ χλ(eAeA) if A,B ∈ p.

Corollary 5.3 (1) is trivial since πλ(eA) is positive definite if A ∈ p. Corollary
5.3 (2)(ii) is contained in [13, Theorem 6.3].

When X + Y is real semisimple, that is, eX+Y is hyperbolic and is conjugate
to eZ ∈ ep, Z ∈ a ⊂ p. So πλ(eX+Y ) is similar to the positive definite operator
πλ(eZ) and hence |χλ(eX+Y )| = χλ(eX+Y ). Then 0 < χλ(eX+Y ) ≤ χλ(eXpe

Yp).

Example 5.4. Let G = SL(2,R). Let

A :=
(

1 2
0 −1

)
∈ sl(2,R)

which is real semisimple, that is, diagonalizable over R. We can decompose A =
X + Y , X, Y ∈ sl(2,R), in various ways. For examples,

X =
(

1 0
0 −1

)
, Y =

(
0 2
0 0

)
, Re X = X, Re Y =

(
0 1
1 0

)
,

or

X =
(

1 2
0 0

)
, Y =

(
0 0
0 −1

)
, Re X =

(
1 1
1 0

)
, Re Y = Y.

The inequality χλ(eX+Y ) ≤ χλ(eRe XeRe Y ), λ ∈ Ĝ, holds for all such decomposi-
tions.
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