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Abstract. A generalization of the Dominance Theorem of Ky Fan on the unitarily invariant
norms is obtained. We also extend some results of So and Zietak on unitarily invariant norms
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1. Introduction. A norm ‖ · ‖ : Cp×q → R is said to be unitarily invariant if for
any A ∈ Cp×q, ‖UAV ‖ = ‖A‖ for all U ∈ U(p), V ∈ U(q), where U(p) denotes the
group of p× p unitary matrices. The characterization of unitarily invariant norms is
well-known and is due to von Neumann [20, 2]. Among the unitarily invariant norms,
Ky Fan’s k-norms, ‖ · ‖k, are the most important ones due to the following result of
Ky Fan [2]. The Ky Fan k-norms ‖ · ‖k : Cp×p → R, defined by ‖A‖k =

∑k
i=1 si(A),

where s1(A) ≥ · · · ≥ sn(A) are the singular values of A. Our main purpose in the
next section is to extend the following result.

Theorem 1.1. (Ky Fan) Let A,B ∈ Cn×n. Then ‖A‖ ≤ ‖B‖ for all unitarily
invariant norms if and only if ‖A‖k ≤ ‖B‖k for all k = 1, . . . , n.

In sections 3 and 4 generalizations of the results of Zietak [23] are obtained,
namely, the characterization of the dual matrices of a given matrix and the study of
the faces of the unit ball, both with respect to a unitarily invariant norm. In section
5, a result of So [15] is generalized.

Here is a framework for our study which only requires basic knowledge of linear
algebra. Let G be a closed subgroup of the orthogonal group on a finite dimensional
real inner product space V . The triple (V, G, F ) is an Eaton triple if F ⊂ V is a
nonempty closed convex cone such that

(A1) Gx ∩ F is nonempty for each x ∈ V .
(A2) maxg∈G(x, gy) = (x, y) for all x, y ∈ F .

Example 1.2. Consider the symmetric group Sn. It can be thought of as a
subgroup of the group On(R) of n×n orthogonal matrices in the following way. Make
a permutation act on Rn by permuting the standard basis vectors e1, . . . , en (permute
the subscripts). Observe that the transposition (ij) acts as a reflection, sending ei−ej
to its negative and fixing pointwise the orthogonal complement, which consists of
all vectors in Rn having equal ith and jth components. Since Sn is generated by
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transpositions, it is a reflection group. The triple (Rn, Sn, F ) is an Eaton triple,
where F = {(a1, . . . , an) ∈ Rn : a1 ≥ · · · ≥ an}.

The Eaton triple (W,H, F ) is called a reduced triple of the Eaton triple (V,G, F )
if it is an Eaton triple and W := span F and H := {g|W : g ∈ G, gW = W} ⊂ O(W ),
the orthogonal group of W . For x ∈ V , let F (x) denote the unique element of the
singleton set Gx ∩ F . It is known that H is a finite reflection group [13]. Also see
[11, 16] for the normal decomposition systems and normal decomposition subsystems
and their relation to Eaton triples and reduced triples.

Let us recall some rudiments of finite reflection groups [8]. Let V be a finite
dimensional real inner product space. A reflection sα on V is an element of O(V ),
which sends some nonzero vector α to its negative and fixes pointwise the hyperplane
Hα orthogonal to α, that is sαλ := λ − 2(λ, α)/(α, α)α, λ ∈ V . A finite group G
generated by reflections is called a finite reflection group. A root system of G is a
finite set of nonzero vectors in V , denoted by Φ, such that {sα : α ∈ Φ} generates G,
and satisfies

(R1) Φ ∩ Rα = {±α} for all α ∈ Φ.
(R2) sαΦ = Φ for all α ∈ Φ.

The elements of Φ are called roots. We do not require that the roots are of equal
length. A root system Φ is crystallographic if it satisfies the additional requirement:

(R3) 2 (α,β)
(β,β) ∈ Z for all α, β ∈ Φ,

and the group G is known as the Weyl group of Φ.
A (open) chamber C is a connected component of V \∪α∈ΦHα. Given a total order

< in V [8, p.7], λ ∈ V is said to be positive if 0 < λ. Certainly, there is a total order
in V : Choose an arbitrary ordered basis {λ1, . . . , λm} of V and say µ > ν if the first
nonzero number of the sequence (λ, λ1), . . . , (λ, λm) is positive, where λ = µ−ν. Now
Φ+ ⊂ Φ is called a positive system if it consists of all those roots which are positive
relative to a given total order. Of course, Φ = Φ+ ∪Φ−, where Φ− = −Φ+. Now Φ+

contains [8, p.8] a unique simple system ∆, that is, ∆ is a basis for V1 := span Φ ⊂ V ,
and each α ∈ Φ is a linear combination of ∆ with coefficients all of the same sign
(all nonnegative or all nonpositive). The vectors in ∆ are called simple roots and the
corresponding reflections are called simple reflections. The finite reflection group G is
generated by the simple reflections. Denote by Φ+(C) the positive system obtained by
the total order induced by an ordered basis {λ1, . . . , λm} ⊂ C of V as described above.
Indeed Φ+(C) = {α ∈ Φ : (λ, α) > 0 for all λ ∈ C}. The correspondence C 7→ Φ+(C)
is a bijection of the set of all chambers onto the set of all positive systems. The
group G acts simply transitively on the sets of positive systems, simple systems and
chambers. The closed convex cone F := {λ ∈ V : (λ, α) ≥ 0, for all α ∈ ∆}, that
is, F := C− is the closure of the chamber C which defines Φ+ and ∆, is called a
(closed) fundamental domain for the action of G on V associated with ∆. Since G
acts transitively on the chambers, given x ∈ V , the set Gx∩F is a singleton set and its
element is denoted by x0. It is known that (V, G, F ) is an Eaton triple (see [13]). Let
V0 := {x ∈ V : gx = x for all g ∈ G} be the set of fixed points in V under the action
of G. Let ∆ = {α1, . . . , αn}, that is, dim V1 = n, where V1 = V ⊥

0 . If {λ1, . . . , λn}
denotes the basis of V1 dual to the basis {βi = 2αi/(αi, αi) : i = 1, . . . , n}, that is,
(λi, βj) = δij , then F = {

∑n
i=1 ciλi : ci ≥ 0} +̇ V0. Thus the interior Int F = C of F
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is the nonempty set {
∑n

i=1 ciλi : ci > 0} +̇ V0. The dual cone of F in V1 is the cone

dual V1F := {x ∈ V1 : (x, u) ≥ 0, for all u ∈ F}

induced by F , and is equal to {
∑n

i=1 ciαi : ci ≥ 0}. The finite reflection group G is
said to be essential relative to V if V0 = {0}. In this case, F = {

∑n
i=1 ciλi : ci ≥ 0}.

The space V is said to be irreducible if V contains no proper G-invariant subspace.
If we denote by 〈x, y〉 = 2(x, y)/(y, y), y 6= 0 (depends linearly on x), the matrix

(〈αi, αj〉) is called the Cartan matrix. It is the change of basis matrix from {λj} to
{αi}: αi =

∑

j〈αi, αj〉λj . Let L be the collection of all subsets L of {1, . . . , n} for
which there does not exist a nonempty subset J ⊂ L satisfying (αj , αk) = 0 for all
j ∈ J , k ∈ L\J . So L ∈ L if and only if ΦL is irreducible in the sense of [1, p56]. If
L ∈ L, then dij > 0 are positive rational numbers [7, p.72], for all i, j ∈ L where (dij)
is the inverse of the Cartan matrix.

The following example will yield the results of Ky Fan and Zietak via our results.
Example 1.3. Let Cp×q denote the space of p × q complex matrices equipped

with the inner product (A,B) = Re tr AB∗. For definiteness we assume p ≤ q. Let
G be the group of action of U(p) × U(q) on Cp×q defined by A 7→ UAV ∗, where
U ∈ U(p), V ∈ U(q). By the singular value decomposition, for any A ∈ Cp×q, there
exist U ∈ U(p), V ∈ U(q) such that A = UΣV . A well-known result of von Neumann
[20] asserts that

max {Re tr AUBV : U ∈ U(p), V ∈ U(q)} =
p

∑

i=1

si(A)si(B),

where s1(A) ≥ s2(A) ≥ · · · ≥ sp(A) are the singular values of A. Thus (Cp×q, G, F )
is an Eaton triple with reduced triple (W,H, F ), where W is the space p × q real
“diagonal” matrices and F is the cone of p× q real “diagonal” matrices with diagonal
entries in nonincreasing order. Here H is the group that permutes the diagonal entries
of Σ ∈ W and changes signs. If we identify W with Rp, then the simple roots [19] are

αi = ei − ei+1, i = 1, . . . , p− 1, αp = ep,

and the dual basis consists of

λi =
i

∑

k=1

ek, i = 1, . . . , p− 1. λp =
1
2

p
∑

k=1

ek.

The function fλm(A) := (λm, F (A)) yields the sum of the m largest singular values
of the complex matrix A, where F (A) is the unique Σ, where A = UΣV , that is, Ky
Fan’s m-norm when 1 ≤ m ≤ p− 1 and fλp is just half of Ky Fan’s p-norm. Similarly
one may get the real case.

Example 1.4. Let V = Hn be the space of n×n Hermitian matrices with inner
product

(X, Y ) = tr XY, X, Y ∈ Hn.
3



Let G = Ad (U(n)) be the group of adjoint action of the unitary group U(n) on Hn,
that is, Ad (U)(A) = UAU∗ for all U ∈ U(n). By the spectral theorem for Hermitian
matrices, for each H ∈ Hn there is a U ∈ U(n) such that

UAU∗ = diag(a1, a2, . . . , αn),

where a1 ≥ a2 ≥ · · · ≥ an are the eigenvalues of A. Let

F := {diag(a1, a2, . . . , an) : a1 ≥ a2 ≥ · · · ≥ an}

be the set of diagonal matrices in Hn with diagonal elements arranged in nonincreasing
order. This ensures that (A1) is satisfied. By a result of Ky Fan [16, Corollary 1.6,
p.4-5]: for any two n×n Hermitian matrices A and B with eigenvalues a1 ≥ · · · ≥ an,
b ≥ · · · ≥ bn, respectively,

max {tr AUBU∗ : U ∈ U(n)} =
n

∑

i=1

aibi,

(A2) is satisfied. Let W := span F , the space of diagonal matrices. Then (Hn, G, F )
is an Eaton triple with reduced triple (W,Sn, F ), where Sn is the symmetric group.
Sn is not essential relative to W since W0 = span {In} is the set of fixed points under
the action of Sn. If we identify W with Rn, then the simple roots are

αi = ei − ei+1, i = 1, . . . , n− 1,

where {ei} is the standard basis of Rn. The corresponding λi are

λi =
i

∑

k=1

ek, i = 1, . . . , n− 1.

The function fλm(z) := (λm, F (z)) yields the sum of the largest m eigenvalues of the
Hermitian z. The statements remain true for the space of n× n Hermitian matrices
with zero trace. The real case is similar.

2. Generalization of Ky Fan’s Dominance Theorem. Let V be a real Eu-
clidean space with the inner product (·, ·). The dual norm ϕD : V → R of a norm
ϕ : V → R is defined as

ϕD(A) = max
ϕ(X)≤1

(A,X),

that is, the dual norm of A is simply the norm of the linear functional induced by A
via the inner product. It is clear that

ϕD(A) = max
ϕ(X)=1

(A,X), and ϕ = ϕDD.

It is easy to see that ϕ is G-invariant if and only if ϕD is G-invariant.
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Let (V, G, F ) be an Eaton triple. For any nonzero α ∈ F , we define

fα(A) = (α, F (A)).

Though fα is G-invariant (since fα(gA) = (α, F (gA)) = (α, F (A)) = fα(A) for all
g ∈ G), it is not necessarily a norm (see Example 1.4). Very recently Tam and Hill
[18] obtained the following result.

Theorem 2.1. [18] Let ϕ be a G-invariant norm on V where (V,G, F ) is an
Eaton triple. Let C = {F (A) : ϕD(A) ≤ 1, A ∈ V } ⊂ F , a compact set. Then

ϕ(X) = max{fα(X) : α ∈ C}, for all X ∈ V.

We are ready to prove the following generalization of Ky Fan’s result.
Theorem 2.2. Let (V,G, F ) be an Eaton triple with reduced triple (W,H, F ).

such that H is essential relative to W . Let A,B ∈ V . If fλi(A) ≤ fλi(B) for all
i = 1, . . . n, then ϕ(A) ≤ ϕ(B) for all G-invariant norms ϕ.

Proof. Let ϕ be a G-invariant norm. By Theorem 2.1 there exists a compact
set C such that ϕ(A) = maxα∈C fα(A). Since C is compact, the maximum must be
attained at some α ∈ C. Since C ⊂ F and H is essential relative to W , α =

∑n
i=1 ciλi,

where ci ≥ 0 for all i = 1, . . . , n. Thus

ϕ(A) = (
n

∑

i=1

ciλi, F (A)) =
n

∑

i=1

cifλi(A) ≤
n

∑

i=1

cifλi(B) = (α, F (B)) ≤ ϕ(B).

Example 2.3. The result yields Ky Fan’s Dominance Theorem via Example 1.3,
where H is essential relative to W . It is not the case for Example 1.4 in which the
symmetric group Sn is not essential relative to W . If A = diag( 1

n−1 , . . . , 1
n−1 ,−1)

and B = diag(1, 0, . . . , 0), then fλi(A) = i
n−1 ≤ 1 = fλi(B) for all i = 1, . . . , n − 1

which mean the first largest n− 1 eigenvalues of A are majorized by the first largest
n − 1 eigenvalues of B and indeed it is the case. However, ‖A‖n = 2 > 1 = ‖B‖n.
Theorem 2.2 applies for the traceless case of Example 1.4 for if the eigenvalues of a
traceless Hermitian A are majorized by the eigenvalues of a traceless Hermitian B,
then the absolute values of the eigenvalues of A are weakly majorized by the absolute
values of the eigenvalues of B [2, p.42]. Thus ‖A‖n ≤ ‖B‖n and Theorem 2.2 says
so.

Remark 2.4. In Theorem 2.2, the condition that H is essential relative to W
is necessary. If W0 6= {0}, then choose A,B ∈ W0 with A 6= B. Since A, B ∈ W0,
F (A) = A, F (B) = B and thus fλi(A) = fλi(B) = 0 for all i = 1, . . . , n. Consider
the G-invariant norm ϕ(A) = (A,A)1/2 and we have ϕ(A) 6= ϕ(B). The condition
fλi(A) ≤ fλi(B) for all i = 1, . . . n, amounts to F (A) ∈ conv HF (B), or equivalently,
F (B)− F (A) ∈ dual W F [17].

Though fλi is a convex G-invariant function, it may not be a norm. If fλi , i =
1, . . . , n, are norms, then the converse of Theorem 2.2 is clearly true. The necessary
and sufficient condition for fλ being a norm is given in [18]. That −1 ∈ H is a

5



sufficient condition and holds for the case Cp×q which yields Ky Fan’s Dominance
Theorem.

Due to the importance of the functions fλi , i = 1, . . . , n, we want to compute the
dual of fλi , i = 1, . . . , n, if they are norms.

Theorem 2.5. Let (V,G, F ) be an Eaton triple with reduced triple (W,H, F ).
Suppose W is irreducible. If fλi : V → R defined by fλi(x) = (F (x), λi), x ∈ V ,
i = 1, . . . , n, are norms, then

fD
λk

(x) = max
j=1,...,n

(F (x), λj)/(λk, λj), for all x ∈ V.

Proof. Since fD
λk

is G-invariant, we may assume x ∈ F . Now fD
λk

(x) = max{(x, y) :
fλk(y) = 1} and by (A2) we may assume y ∈ F . By [18, Theorem 7], H is essential
relative to W and thus y =

∑n
j=1 cjλj for some cj ≥ 0. So

fD
λk

(x) = max{
n

∑

j=1

cj(x, λj) :
n

∑

j=1

cj(λk, λj) = 1, cj ≥ 0, j = 1, . . . , n}.

Let (dkj) be the inverse of the Cartan matrix (〈αi, αj〉). Since λk =
∑n

j=1 dkjαj ,
where dkj > 0 for all k, j [7, p.72], (λk, λj) = dkj(αj , αj)/2 > 0. The set S =
{
∑n

j=1 cjλj :
∑n

j=1 cj(λk, λj) = 1} is an affine hyperplane. The intersection S ∩
F is evidently a convex set. Since λj , j = 1, . . . , n, are the generators of F , the
maximum is attained among cjλj such that cj(λk, λj) = 1, j = 1, . . . , n. Explicitly
each

∑n
j=1 cjλj ∈ S ∩ F can be rewritten as

∑n
j=1 cj(λk, λj)[λj/(λk, λj)], a convex

combination of λj/(λk, λj).
Example 2.6. With respect to Example 1.3 and p = q = n, the symmetric

matrix ((λk, λj)) is:

Λ =



















1 1 1 1 · · · 1 1
2

1 2 2 2 · · · 2 1
1 2 3 3 · · · 3 3

2
1 2 3 4 · · · 4 2

· · · · · · · · ·
1 2 3 4 · · · n− 1 n−1

2
1
2 1 3

2 2 · · · n−1
2

n
4



















Direct observation leads to

fD
λk

(A)

=
{

max{fλ1(A), 2fλn(A)/k} = max{s1(A), (
∑n

i=1 si(A))/k} if 2 ≤ k ≤ n− 1
2fλ1(A) = 2s1(A) if k = n.

So the dual of the Ky Fan k-norm is max{s1(A), (
∑n

i=1 si(A))/k}, k = 1, . . . , n, [2,
p.90] (the definition of dual norm there involves taking absolute value but it makes
no difference in our case).

The irreducible root systems associated with the finite reflection groups are well
known [8]. One can readily compute the dual norms of fλj , j = 1, . . . , n, of other
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types (the previous example is of type Bn). The following is a slight extension of the
previous theorem and the proof is omitted.

Theorem 2.7. Let (V, G, F ) be an Eaton triple with reduced triple (W,H, F ).
Suppose that H ∼= H1 × · · · ×Hr is a decomposition of H into its irreducible compo-
nents, where Hi = H|Wi , with H0 = {id}, i = 1, . . . , r, and W = W1 + · · · + Wr is
an orthogonal direct sum so that F = F1 + · · ·+Fr. Let {αj1, . . . , αjnj} be the simple
roots for Hj, j = 1, . . . , r. Suppose fλjk : V → R, 1 ≤ j ≤ r, 1 ≤ k ≤ nj defined by
fλjk(x) = (λjk, F (x)) is a norm. Then

fD
λjk

(x) = max
t=1,...,nj

(Fj(x), λjk)/(λjk, λjt), for all x ∈ V.

We remark that the assumption that H is essential relative to W in Theorem 2.7
is necessary for each fλjk being a norm [18, Theorem 7].

3. Dual elements and facial structure. Let V be a real inner product space
and let O(V ) denote the group of orthogonal linear operators on V . Motivated by
[23] we introduce the notion of the ϕ-dual elements to A ∈ V , where ϕ : V → R is a
norm (not necessarily G-invariant): An element K ∈ V with ϕ(K) ≤ 1 is said to be
a ϕ-dual element to A if ϕD(A) = (A,K). It is clear that if A 6= 0, then the ϕ-dual
elements K of A are in the unit sphere Sϕ = {A ∈ V : ϕ(A) = 1}. The set of ϕ-dual
elements to A is a compact convex set (possibly empty) and is denoted by DV (A : ϕ),
that is,

DV (A : ϕ) := {K ∈ V : ϕD(A) = (A,K), ϕ(K) ≤ 1}.

If A 6= 0, then DV (A : ϕ) := {K ∈ V : ϕD(A) = (A, K), ϕ(K) = 1}. Clearly,
DV (αA : ϕ) = DV (A : ϕ) for any α > 0 and DV (αA : ϕ) = −DV (A : ϕ) for any
α < 0. We will denote by Bϕ = {A ∈ V : ϕ(A) ≤ 1} the unit ball in V associated
with the norm ϕ. Clearly DV (0 : ϕ) = Bϕ. A norm ϕ : V → R is said to be strictly
convex if X1, X2, X := 1

2 (X1 + X2) ∈ Sϕ implies X1 = X2 = X. For example, the
Schatten p-norms, 1 < p < ∞, are strictly convex. We remark that DV (A : ϕ) ⊂ Sϕ

is a singleton set if A 6= 0 and ϕ is strictly convex.
Given a norm ϕ on V 6= {0}, a convex set F ⊂ Bϕ is called a face of Bϕ if B,C ∈ F

whenever αB + (1 − α)C ∈ F for some 0 < α < 1, and B,C ∈ Bϕ [23]. In other
words, every closed line segment in Bϕ with a relative interior point in F has both
endpoints in F [14, p.162]. The empty set and Bϕ itself are faces of Bϕ, known as the
trivial faces. Extreme points of Bϕ are simply zero-dimensional faces of Bϕ. Since
Bϕ is compact, so are its faces [14, Corollary 18.11]. A nontrivial face F is called an
maximal face of Bϕ if there is no other faces of Bϕ containing F properly.

Example 3.1.
1. Consider V = R3 equipped with the max norm ϕ. Then Bϕ is simply the

unit cube. The nontrivial faces of Bϕ are the corners, the edges (notice that
the faces of a face of Bϕ are faces of Bϕ) and the walls. The walls are the
maximal faces.

2. Consider V = R3 equipped with the 2-norm ϕ. Then Bϕ is simply the usual
unit ball. The points on the unit sphere are the extreme points and there are
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no other nontrivial faces. This is true for any strictly convex norm ϕ on a
vector space V and [15, Theorem 2] is merely a particular case.

Example 3.2. Let ϕ be a norm (not necessarily G-invariant) on V . Each
DV (A : ϕ), A 6= 0, is a face of Bϕ: if αK1 + (1− α)K2 ∈ DV (A : ϕ) ⊂ Sϕ, 0 < α < 1,
and K1,K2 ∈ Sϕ,

ϕD(A) = (A,αK1 + (1− α)K2) = α(A,K1) + (1− α)(A,K2) ≤ ϕD(A),

since (A, Ki) ≤ ϕD(A)ϕ(Ki) ≤ ϕD(A). Thus (A,Ki) = ϕD(A), for i = 1, 2.
The following is an extension of [23, Theorem 4.1] and the idea of the proof is

from [15, 23]. Also see [15, 22]. It gives some relationship between the facial structure
of Bϕ and the sets of dual elements associated with a norm ϕ on V .

Theorem 3.3. Let V 6= {0} be a real inner product space and let ϕ be a norm on
V . Let F ⊂ Sϕ be a nontrivial face of the unit ball Bϕ. Then ∩H∈FDV (H : ϕD) 6= φ.
Hence

1. there exists A ∈ V such that F ⊂ DV (A : ϕ).
2. each maximal face of Bϕ is of the form DV (A : ϕ) for some A 6= 0.

Proof. Each DV (H : ϕD) is closed in the compact set Bϕ so it is sufficent to show
that the family {DV (H : ϕD) : H ∈ F} has the finite intersection property [12, p.170].
Let H1, . . . , Hk ∈ F. Since F ⊂ Sϕ, ϕ(Hi) = 1 for all i = 1, . . . , k. By the convexity
of F, Ĥ := 1

k (H1 + · · ·+ Hk) ∈ F so that ϕ(Ĥ) = 1. Let K ∈ DV (Ĥ : ϕD). So

1 = ϕ(Ĥ) = (Ĥ, K) =
1
k

k
∑

i=1

(Hi,K) ≤ 1
k

k
∑

i=1

ϕ(Hj)ϕD(K) ≤ 1,

since ϕD(K) = 1. Thus (Hi,K) = 1 for all i = 1, . . . , k. Hence K ∈ ∩k
i=1DV (Hi : ϕD).

1. Any A ∈ ∩H∈FDV (H : ϕD) satisfies F ⊂ DV (A : ϕ) since for each H ∈ F,
ϕD(A) = 1 and 1 = ϕ(H) = ϕDD(H) = (H, A).

2. It follows from Example 3.2 and the definition of maximal face.

In view of the above theorem, we remark that if F = Bϕ, then simply set A = 0
and the case is trivial.

4. Characterization of the dual elements. The following is a generalization
of [23, Theorem 3.1] (see Example 1.2).

Proposition 4.1. Let V be a real inner product space and let G ⊂ O(V ).
Suppose A ∈ V and A = gB, for some g ∈ G. Let ϕ be a G-invariant norm on V .
Then DV (A : ϕ) = gDV (B : ϕ).

Proof. Since ϕD is G-invariant as well as ϕ and g is orthogonal,

K ∈ DV (A : ϕ) ⇔ (A,K) = ϕD(A), ϕ(K) = 1

⇔ (B, g−1K) = ϕD(B), ϕ(g−1K) = 1

⇔ g−1K ∈ DV (B : ϕ).
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The notion of dual elements of A ∈ V is related to the subdifferential of ϕ at A.

∂ϕ(A) = {K ∈ V : ϕ(B) ≥ ϕ(A) + (K, B −A) for all B ∈ V }.

It is easy to see that ∂ϕ(A) is a closed convex set and 0 ∈ ∂ϕ(A) implies A = 0. More
generally the subdifferential can be defined for convex functions ϕ : V → R:

∂ϕ(x) = {ξ : ϕ(x′) ≥ ϕ(x) + (ξ, x′ − x) for all x′ ∈ V },

and the elements of the subdifferential of ϕ at x ∈ V are called subgradients of ϕ at x.
Geometrically ϕ(x′) ≥ ϕ(x) + (ξ, x′ − x) for all x′ ∈ V means that the affine function
h(x′) := ϕ(x) + (ξ, x′ − x) is a nontrivial supporting hyperplane to the convex set
epi ϕ (the epigraph of ϕ) at the point (x, ϕ(x)) [14, p.215].

Proposition 4.2. Let V be a real inner product space and let A ∈ V . Suppose
ϕ is a norm. Then K ∈ ∂ϕ(A) if and only if ϕ(A) = (A, K) and ϕD(K) ≤ 1. Thus
∂ϕD(A) = DV (A,ϕ).

Proof. Suppose ϕ(A) = (A,K) and ϕD(K) ≤ 1. Then ϕ(A) + (B − A,K) =
(B, K) ≤ ϕD(K)ϕ(B) ≤ ϕ(B) for all B. Suppose K ∈ ∂ϕ(A), that is, ϕ(B) ≥ ϕ(A)+
(B−A,K) for all B ∈ V . Notice that setting B = 0 and B = 2A yield ϕ(A) = (A,K).
Thus ϕ(B) ≥ (B,K) for all B, which means ϕD(K) ≤ 1 by letting B run over the
unit ball Bϕ. Then notice ∂ϕD(A) = {K : (A,K) = ϕD(A), ϕ(K) ≤ 1} = DV (A,ϕ).

Proposition 4.3.
1. Let V be a real inner product space and let x ∈ V and g ∈ O(V ). Let

ϕ : V → R be a convex function such that ϕ(gx) = ϕ(x) for all x ∈ V . Then
∂ϕ(gx) = g∂ϕ(x).

2. Let (V, G, F ) be an Eaton triple. Let ϕ : V → R be a G-invariant convex
function. Then ∂ϕ(x) = g∂ϕ(F (x)), where gF (x) = x, x ∈ V .

Proof. The second part follows immediately from the first part. Now

ξ ∈ ∂ϕ(x) ⇔ ϕ(x′) ≥ ϕ(x) + (ξ, x′ − x) for all x′ ∈ V
⇔ ϕ(gx′) ≥ ϕ(gx) + (gξ, gx′ − gx) for all x′ ∈ V

⇔ ϕ(y) ≥ ϕ(gx) + (gξ, y − gx) for all y ∈ V
⇔ gξ ∈ ∂ϕ(gx).

Let (V, G, F ) be an Eaton triple with reduced triple (W,H, F ). It is clear that the
restriction ϕ̂ : W → R of a G-invariant norm ϕ : V → R on W is also a norm and H-
invariant. On the other hand, if ϕ̂ : W → R is a H-invariant norm, then one can define
ϕ : V → R by ϕ(x) = ϕ̂(F (x)) which is a G-invariant norm. This is a generalization
[18] of von Neumann’s well-known result on the one-to-one correspondence between
unitarily invariant norms and symmetric gauge functions [20] as well as the result of
Davis [4]. Indeed it is true for G-invariant convex functions [18]. Given γ ∈ F , how do
we obtain DW (γ : ϕ̂) from DV (γ : ϕ)? We intend to give the answer in the following
proposition.
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Lemma 4.4. Let (V, G, F ) be an Eaton triple with reduced triple (W,H,F ). Let
ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of ϕ

on W . Then
∧

(ϕD)= (ϕ̂)D, that is, the dual of the restriction is the restriction of the
dual.

Proof. Notice that ϕD is also a G-invariant norm. For any x ∈ W ,

∧
(ϕD) (x) = ϕD(x) = max

ϕ(u)≤1, u∈V
(u, x) ≥ max

ϕ̂(z)≤1, z∈W
(z, x) = (ϕ̂)D(x).

In other words,
∧

(ϕD)≥ (ϕ̂)D. Moreover we may assume that x ∈ F . Let u ∈ V

such that ϕ(u) ≤ 1 and
∧

(ϕD) (x) = (u, x). By (A2), (u, x) ≤ (gu, x), where gu ∈ F ,
g ∈ G. Since ϕ(u) = ϕ(gu), we can replace u by w := gu ∈ F ⊂ W , that is,
∧

(ϕD) (x) = (w, x), where w ∈ F with ϕ(w) ≤ 1. So
∧

(ϕD) (x) ≤ (ϕ̂)D(x) and thus
∧

(ϕD)= (ϕ̂)D.
Proposition 4.5. Let (V,G, F ) be an Eaton triple with reduced triple (W,H,F ).

Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of ϕ
on W .

1. Then for each γ ∈ W , DV (γ : ϕ) ∩W = DW (γ : ϕ̂).
2. If X ∈ DV (A : ϕ), then F (X) ∈ DW (F (A) : ϕ̂).

Proof.
1.

X ∈ DW (γ : ϕ̂)

⇔ X ∈ W, ϕ̂(X) ≤ 1, (γ, X) = ϕ̂D(γ)

⇔ X ∈ W, ϕ(X) ≤ 1, (γ,X) =
∧

(ϕD) (X) since
∧

(ϕD)= (ϕ̂)D

⇔ X ∈ W, ϕ(X) ≤ 1, (γ, X) = ϕD(X)

⇔ X ∈ W, X ∈ DV (γ : ϕ).

2. If X ∈ DV (A : ϕ), then ϕ(X) = 1 and ϕD(A) = (X, A) ≤ (F (X), F (A)) ≤

ϕ̂D(F (A)) =
∧

ϕD (F (A)) = ϕD(F (A)) = ϕD(A). Thus F (X) ∈ DV (F (A) : ϕ̂)
since ϕ̂(F (X)) = ϕ(X) = 1.

Proposition 4.5 is an extension of [22, Theorem 4.1]. Proposition 4.5 (1) enables
us to compute DW (γ : ϕ̂) if we know DV (γ : ϕ). On the other hand, we want to
know how to recover DV (γ : ϕ) if we know DW (γ : ϕ̂). We now proceed to tackle
the problem. To this end we need to recall some basics about the Clarke generalized
gradient. Let Y be a subset of V . A function f : Y → R is said to be Lipschitz [3,
p.25] on Y with Lipschitz constant K if for some K ≥ 0,

|f(y)− f(y′)| ≤ K
√

(y − y′, y − y′), y, y′ ∈ Y.
10



We say that f is Lipschitz near x if for some ε > 0, f satisfies the Lipschitz condition
on the set x + εB, where B is the open unit ball with respect to the inner product.
Let f be Lipschitz near a given x ∈ V and let 0 6= v ∈ V . The Clarke directional
derivative [3, p.25] of f at x in the direction v is defined as

fo(x; v) = lim sup
y→x t↓0

f(y + tv)− f(y)
t

,

The Clarke generalized gradient of f at x, denoted by ∂Cf(x), is defined as

∂Cf(x) := {ξ ∈ V : fo(x; v) ≥ (ξ, v) for all v ∈ V }.

Theorem 4.6. Let (V, G, F ) be an Eaton triple with reduced triple (W,H, F ).
Let ϕ : V → R be a G-invariant convex Lipschitz function and denote by ϕ̂ : W → R
the restriction of ϕ on W . Then

∂ϕ(A) = convGA∂ϕ̂(F (A)),

where GA := {g ∈ G : A = gF (A)}.
Proof. We first notice that ϕ̂ : W → R is also convex and Lipschitz and ϕ = ϕ̂◦F .

Since ϕ is convex and Lipschitz, the subdifferentials of ϕ and ϕ̂ coincide with the
Clarke’s generalized gradients of ϕ and ϕ̂ [3, Proposition 2.2.7] respectively, and thus
we have

∂ϕ(A) = g ∂ϕ(F (A)) by Proposition 4.3, where g ∈ GA

= g ∂Cϕ(F (A))

= g ∂C(ϕ̂ ◦ F )(F (A)) since ϕ̂ ◦ F = ϕ

= g conv GF (A)∂C ϕ̂(F (A)) by [19, Lemma 3.11]

= conv GA∂ϕ̂(F (A)) since g GF (A) = GA.

Theorem 4.7. Let (V, G, F ) be an Eaton triple with reduced triple (W,H, F ).
Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of
ϕ on W . Then ∂ϕ(A) = convGA∂ϕ̂(F (A)), where GA := {g ∈ G : A = gF (A)}.
Hence DV (A : ϕ) = convGADW (F (A) : ϕ̂). In particular when γ ∈ F , we have
DV (γ : ϕ) = convGγDW (γ : ϕ̂) and Gγ = {g ∈ G : gγ = γ}.

Proof. As a norm ϕ is clearly convex. So it suffices to show that ϕ is Lipschitz.
Now for any y, y′ ∈ V , we have

|ϕ(y)− ϕ(y′)| ≤ ϕ(y − y′)
= max

α∈C
(α, F (y − y′)) by Theorem 2.1

≤ max
α∈C

(α, α)1/2(F (y − y′), F (y − y′))1/2

≤ K(y − y′, y − y′)1/2,
11



where K := maxα∈C (α, α)1/2 is the Lipschitz constant for ϕ. Hence

DV (A : ϕ) = ∂ϕD(A) by Proposition 4.2

= convGA∂
∧

(ϕD) (F (A)) by Theorem 4.6

= conv GADW (F (A) : (
∧

(ϕD))D) by Proposition 4.2

= conv GADW (F (A) : (ϕ̂)DD) by
∧

(ϕD)= (ϕ̂)D

= convGADW (F (A) : ϕ̂) since (ϕ̂)DD = ϕ̂.

We remark that the last statement of Theorem 4.7 generalizes [23, Theorem 3.2]
if one considers the fact that GγDW (γ, ϕ̂) is a convex set for Example 1.3 [23]. See
[21, Theorem 2]. It is also the case for Example 1.4 [10, Theorem 3.12]. See Remark
3.12 of [18].

Example 4.8. When γ = 0, Gγ = G, and DV (γ : ϕ) = conv GγDW (γ : ϕ̂)
becomes Bϕ = conv GBϕ̂, where Bϕ is the unit ball in V with respect to the norm ϕ
and Bϕ̂ is the unit ball in W with respect to ϕ̂. Indeed Bϕ = GBϕ̂

Example 4.9.
1. With respect to Example 1.4, let ϕ(A) =

∑n
i=1 |λi(A)|, that is the sum of

singular values of the Hermitian matrix A (Ky Fan’s n-norm). Evidently it
is a unitary similarity norm. It follows that [2] ϕD(A) = maxi=1,...,n |λi(A)|,
the operator norm. Let γ = diag(γ1, . . . , γn), where γ1 > · · · > γn. Then Gγ

is the group of similarity via the group U(1)⊕ · · · ⊕ U(1) which denotes the
group of diagonal unitary matrices. Now K ∈ DW (γ : ϕ̂) means that K is a
real diagonal matrix,

∑n
i=1 |ki| = 1 (since γ 6= 0 and thus DW (γ : ϕ̂) ⊂ Sϕ)

with maxi=1,...,n |γi| =
∑n

i=1 γiki. So
Case 1 |γ1| ≥ |γn| (so γ1 ≥ 0): k1 = 1, and k2 = · · · = kn = 0. So GγDW (γ :

ϕ̂) = DW (γ : ϕ̂) = {diag(1, . . . , 0)}. On the other hand, X ∈ DV (γ : ϕ)
means γ1 =

∑n
i=1 γixii with

∑n
i=1 si(X) = 1 . Notice that the diagonal

element of X, (|x11|, · · · , |xnn|) is weakly majorized by the vector of
singular values of X, (s1(X), . . . , sn(X)). So x11 = 1 and x22 = · · · =
xnn = 0 and thus X = diag(1, 0, . . . , 0). So DV (γ : ϕ) = DW (γ : ϕ̂).

Case 2 |γ1| < |γn| (so γn ≤ 0): kn = −1, and k1 = · · · = kn−1 = 0. So
GγDW (γ : ϕ̂) = DW (γ : ϕ̂) = {diag(0, . . . , 0,−1)}. Similarly DV (γ :
ϕ) = DW (γ : ϕ̂).

2. Continuing with the above example, let γ = In instead. Clearly Gγ is the
group of similarity via the whole unitary group. Now K ∈ DW (γ : ϕ̂) means
that K is a real diagonal matrix,

∑n
i=1 |ki| = 1 and 1 =

∑n
i=1 ki. Thus ki ≥ 0

for all i = 1, . . . , n. Hence

DW (γ : ϕ̂) = {diag(k1, . . . , kn) : ki ≥ 0, i = 1, . . . , n,
n

∑

i=1

ki = 1},
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so that

GγDW (γ : ϕ̂) = {U diag(k1, . . . , kn)U−1 : U ∈ U(n), ki ≥ 0,

i = 1, . . . , n,
n

∑

i=1

ki = 1}.

On the other hand, X ∈ DV (γ : ϕ) means that X is a Hermitian ma-
trix,

∑n
i=1 xii = 1 with

∑n
i=1 si(X) = 1. Notice that (|x11|, · · · , |xnn|) is

weakly majorized by (s1(X), . . . , sn(X)). So 0 ≤ xii for all i = 1, . . . , n and
∑n

i=1 xii = 1. Thus the eigenvalues of X must be nonnegative. So X must
be of the form U diag(k1, . . . , kn)U−1 for some U ∈ U(n), where ki ≥ 0, for
all i = 1, . . . , n, with

∑n
i=1 ki = 1. Hence DV (γ : ϕ) = GγDW (γ : ϕ̂). Indeed

by [17, Theorem 11],

{U diag(k1, . . . , kn)U−1 : U ∈ U(n), ki ≥ 0, i = 1, . . . , n,
n

∑

i=1

ki = 1}

= conv {U diag(1, 0, . . . , 0)U−1 : U ∈ U(n)}.

We remark that we have similar result when ϕ is the operator norm.
We have the following extension of the first part of Example 4.9. The result takes

care of the regular points γ ∈ W , that is, the points in Int W F .
Theorem 4.10. Let (V,G, F ) be an Eaton triple with reduced triple (W,H, F ).

Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of ϕ
on W . If F (A) ∈ Int W F , then DV (A : ϕ) = gDW (F (A) : ϕ̂), where A = gF (A). In
particular, if γ ∈ Int W F , then DV (γ : ϕ) = DW (γ : ϕ̂) ⊂ F .

Proof. In view of proposition 4.1, it suffices to show the last statement. Suppose
γ ∈ Int W F , the interior of F in W . Let X ∈ DV (γ : ϕ). We may assume ϕD(γ) = 1
since DV (γ : ϕ) is invariant under positive scaling of γ and the case γ = 0 is trivial
(Example 4.8). So 1 = ϕD(γ) = (γ, X) and 1 = ϕ(X) = maxα∈C(α, F (X)), where
C = {β ∈ F : ϕD(β) ≤ 1}. Let p(X) be the projection of X under the orthogonal
projection p : V → W with respect to the inner product. Since γ ∈ C ⊂ F ⊂
W , we have (γ, X) = (γ, p(X)) = (γ, F (X)). By [13, Theorem 3.2], p(X) is in
conv HF (X), where H is a finite reflection group, that is, p(X) =

∑k
i=1 cihiF (X)

where hi ∈ H and ci > 0 with
∑k

i=1 ci = 1, and hiF (X), i = 1, . . . , k, are distinct.
Thus

∑k
i=1 ci(γ, hiF (X)) = (γ, F (X)). By (A2) (γ, hiF (X)) ≤ (γ, F (X)) and thus

(γ, hiF (X)) = (γ, F (X)) for all i = 1, . . . , k. Suppose hiF (X) 6= F (X). By [8, p.22],
each nonzero F (X)− hiF (X) is a nonnegative combination of the simple roots, that
is, for each i = 1, . . . , k, there exist nonnegative numbers dj ≥ 0, j = 1, . . . , n, not all
zero, such that F (X)− hiF (X) =

∑n
j=1 djαj . Now γ ∈ Int W F , we have (γ, αj) > 0

for all j = 1, . . . , n so that (γ, F (X)−hiF (X)) > 0, a contradiction. So p(X) = F (X).
By considering (X, X) = (F (X), F (X)), we have X = F (X). Thus DV (γ : ϕ) ⊂ F .
By Proposition 4.5, DV (γ : ϕ) = DW (γ : ϕ̂).

In view of Example 4.9 and Theorem 4.10, one may guess that if γ ∈ Int W F ,
then DV (γ : ϕ) = DW (γ : ϕ̂) ⊂ F is a singleton set. The following example shows
that it is not true.
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Example 4.11. With respect to Example 1.3, let ϕ(A) =
∑k

i=1 si(A), the Ky
Fan k-norm on Cn×n. Notice that ϕD(A) = max{s1(A), (

∑n
i=1 si(A))/k} [2, p.90].

Choose appropriate n, k, and γ ∈ Int W F (γ1 > γ2 > · · · > γn > 0) such that
γ1 = (

∑n
i=1 γi)/k. Now A ∈ DW (γ : ϕ̂) means that A = diag(a1, . . . , an) with

a1 ≥ · · · ≥ an ≥ 0 by Theorem 4.10,
∑k

i=1 ai = 1, and

γ1 = ϕ̂D(γ) =
n

∑

i=1

γiai.

One may have more than one A ∈ F satisfying the above condition. For example
n = 3, γ1 = 1, γ2 = 2/3 and γ3 = 1/3 and k = 2. Then both A = diag(1, 0, 0) and
A′ = diag(1/2, 1/2, 1/2) satisfy the conditions. Thus DW (γ : ϕ̂) is not a singleton set
in F . One may view it as a way to show that the corresponding Ky Fan’s k-norm is
not strictly convex.

5. On the unit balls. Let (V,G, F ) be an Eaton triple with reduced triple
(W,H,F ). Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the
restriction of ϕ on W . Then we evidently have Bϕ̂ = Bϕ ∩W , that is, the unit ball of
ϕ̂ in W is the intersection of W and the unit ball of ϕ in V . Thus one can determine
Bϕ̂ from Bϕ easily. On the other hand one can easily show that Bϕ = GBϕ̂ (see
Example 4.8). We summarize them as

Proposition 5.1. Let (V, G, F ) be an Eaton triple with reduced triple (W,H,F ).
Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of ϕ
on W . Then

1. Bϕ̂ = Bϕ ∩W .
2. Bϕ = GBϕ̂.

Recall that a norm ϕ : V → R is said to be strictly convex if X1, X2, X :=
1
2 (X1 + X2) ∈ Sϕ implies X1 = X2 = X. The following is an extension of [22,
Theorem 3.1].

Theorem 5.2. Let (V, G, F ) be an Eaton triple with reduced triple (W,H, F ).
Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of
ϕ on W . Then ϕ is strictly convex if and only if ϕ̂ is strictly convex. In this event,
DV (γ : ϕ) = DW (γ : ϕ̂) ⊂ F is a singleton set for any γ ∈ F .

Proof. Suppose that ϕ is strictly convex. If X, X1, X2 ∈ Sϕ̂ with X = 1
2 (X1+X2),

then they all belong to Sϕ and thus X = X1 = X2.
On the other hand, suppose that ϕ̂ is strictly convex. If X1, X2, X ∈ Sϕ, where

X := 1
2 (X1 + X2), then

1 = ϕ̂(F (X)) = ϕ̂(F (
1
2
[X1 + X2]))

= ϕ̂(
1
2
[F (X1 + X2)])

= max
α∈Ĉ

(α,
1
2
F (X1 + X2)) by Theorem 2.1

≤ 1
2

max
α∈Ĉ

(α, F (X1) + F (X2)) by [17, Theorem 10]
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≤ 1
2

max
α∈Ĉ

(α, F (X1)) +
1
2

max
α∈Ĉ

(α, F (X2))

=
1
2
ϕ̂(F (X1)) +

1
2
ϕ̂(F (X2)) = 1,

where Ĉ = {F (A) : (ϕ̂)D(A) = 1, A ∈ W}. So 1
2 [F (X1) + F (X2)] ∈ Sϕ̂. By the

strict convexity of ϕ̂, 1
2 [F (X1) + F (X2)] = F (X1) = F (X2). We now proceed to

show that F (X) = F (X1) by contradiction. Suppose F (X) 6= F (X1). We may
assume that F (X), F (X1) = F (X2) ∈ Sϕ̂. By the strict convexity of ϕ̂, the element
Y := 1

2 (F (X) + F (X1)) 6∈ Sϕ̂. For all i = 1, . . . , n, by [17, Theorem 10],

(λi, F (X)) =
1
2
(λi, F (X1 + X2)) ≤

1
2
(λi, F (X1) + F (X2)) = (λi, Y ),

and

(λi, Y ) =
1
2
(λi, F (X) + F (X1))

=
1
2
(λi, F (X)) +

1
2
(λi, F (X1))

=
1
4
(λi, F (X1 + X2)) +

1
2
(λi, F (X1))

≤ 1
4
(λi, F (X1) + F (X2)) +

1
2
(λi, F (X1))

= (λi, F (X1)),

since F (X1) = F (X2). So by Theorem 2.2, ϕ̂(F (X)) ≤ ϕ̂(Y ) ≤ ϕ̂(F (X1)). Thus
Y ∈ Sϕ̂, a contradiction.

Hence F (X) = F (X1) = F (X2) ∈ F . Now let ‖X‖ = (X, X)1/2. Evidently it
is a G-invariant strictly convex norm since it is induced by the inner product. Since
X, X1, X2 are of the same length with respect to ‖ · ‖, X = X1 = X2 and thus we
have the desired result.

If either one of the events happens, DV (γ : ϕ) and DW (γ : ϕ̂) are singleton
sets since ϕ is strictly convex. By Proposition 4.5 (1), they are identical. Now
if γ 6= 0, X ∈ DV (γ : ϕ) means ϕD(γ) = (X, γ) and ϕ(X) = 1. Notice that
ϕD(γ) = (X, γ) ≤ (F (X), γ) ≤ ϕD(γ) since ϕ(F (X)) = 1. Thus F (X) ∈ DV (γ : ϕ)
which is a singleton set. So X = F (X) ∈ F .

The following is an extension of [15, Theorem 1].
Theorem 5.3. Let (V, G, F ) be an Eaton triple with reduced triple (W,H, F ).

Let ϕ : V → R be a G-invariant norm and denote by ϕ̂ : W → R the restriction of
ϕ on W . Then Ext(Bϕ) = GExt(Bϕ̂), where Ext(Bϕ̂) denotes the set of extreme
points of Bϕ̂.

Proof. Suppose that A ∈ Ext(Bϕ). Let g ∈ G such that A = gF (A). Let
F (A) = tx + (1 − t)y, for some x, y ∈ Bϕ̂, 0 < t < 1. Evidently ϕ(gx) = ϕ(gy) = 1
and A = tgx + (1 − t)gy. Thus gx = gy and hence x = y. So F (A) ∈ Ext(Bϕ̂) and
thus we have the inclusion Ext(Bϕ) ⊂ GExt(Bϕ̂).
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On the other hand, suppose a ∈ Ext(Bϕ̂). We now proceed to show that ga ∈
Ext(Bϕ) for all g ∈ G. Without loss of generality we may assume that a ∈ F . Let
ga = tX +(1− t)Y , for some X,Y ∈ Bϕ, 0 < t < 1. Set x = g−1X and y = g−1Y . So
a = tx+(1− t)y and then a = tp(x)+ (1− t)p(y) where p : V → W is the orthogonal
projection. By [13, Theorem 3.2], p(x) is in conv HF (X) so that ϕ(p(x)) ≤ ϕ(F (x)) =
ϕ(x) = 1 by the triangle inequality. Similarly ϕ(p(y)) ≤ ϕ(y) = 1. Now

1 = ϕ(a) ≤ tϕ(p(x)) + (1− t)ϕ(p(y)) ≤ tϕ(x) + (1− t)ϕ(y) = 1.

So ϕ(p(x)) = ϕ(x) = 1 and ϕ(p(y)) = ϕ(y) = 1. Since a ∈ Ext(Bϕ̂), a = p(x) = p(y).
We then have a ∈ conv HF (x). However, a ∈ Ext(Bϕ̂) implies that a = hF (x) for
some h ∈ H and since a ∈ F , a = F (x) [8, p.22]. Similarly a = F (y). It follows that
x = p(x) = F (x) by considering (F (x), F (x)) = (x, x) and similarly y = p(y) = F (y).
Hence g−1X = g−1Y so that X = Y which is the desired result.
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