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GENERALIZATON OF KY FAN-AMIR-MOÉZ-HORN-MIRSKY’S
RESULT ON THE EIGENVALUES AND REAL SINGULAR

VALUES OF A MATRIX

TIN-YAU TAM AND WEN YAN

Abstract. Ky Fan’s result states that the real parts of the eigenvalues of an
n × n complex matrix x are majorized by the eigenvalues of the Hermitian
part of x. The converse was established by Amir-Moéz and Horn, and Mirsky,
independently. We generalize the results in the context of complex semisimple
Lie algebra. The real case is also discussed.

1. Introduction

A result of Ky Fan [6] asserts that the real parts of the eigenvalues, denoted by
α ∈ Rn, of each n×n complex matrix x are majorized [15, p.239] by the eigenvalues
β ∈ Rn of the Hermitian part 1

2 (x + x∗) of x. This amounts to
∑k

i=1 αi ≤
∑k

i=1 βi

for all k = 1, . . . , n − 1, and
∑n

i=1 αi =
∑n

i=1 βi after rearranging the entries of α
and β, respectively, in nonincreasing order. The converse was established by Amir-
Moéz and Horn [1], and independently by Mirsky [17]. It was later rediscovered by
Sherman and Thompson [20]. That is, if γ ∈ Cn and β ∈ Rn such that the real part
of γ is majorized by β, then there exists a complex n× n matrix x such that γ are
eigenvalues of x and β are the eigenvalues of the Hermitian part of x. The results
are valid for the imaginary part of the eigenvalues of x and 1

2 (x − x∗). The study
can be traced back to some old results of Bendixson [3], Hirsch [9], and Bromwich
[4]. Also see [15, p.237-239].

With an appropriate translation of x we may view x as an element of the Lie
algebra g = sl(n,C) of the special linear group G = SL(n,C). The special unitary
group K = SU(n) is a maximal compact subgroup of G. The diagonal matrices in g
form a Cartan subalgebra h of g, and those with purely imaginary diagonal entries
form a Cartan subalgebra t of the Lie algebra k = su(n) of K. As a real K-module,
g is just the direct sum of two copies of the adjoint module k of K: g = k⊕ ik which
in our case is the well-known Hermitian decomposition of a complex matrix. By the
Schur Triangularization Theorem for complex matrices, the eigenvalues of x may
be viewed as the image of an element y ∈ K ·x∩ b under the orthogonal projection
g → h with respect to the Killing form, where K acts on g via the restriction of the
adjoint representation, K · x is the orbit of x under the action of K, and b is the
Borel subalgebra consisting of n × n upper triangular matrices. Thus taking the
real part of the eigenvalues of x amounts to sending y via the projection π : g → it
to its image. The majorization relation α ≺ β is equivalent to α ∈ conv Snβ for
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α, β ∈ Rn [2, 15], a well known result of Hardy, Littlewood and Pólya. So the
result of Ky Fan may be stated as π(K · (x + z) ∩ b) ⊂ convWz, and the result of
Amir-Moéz-Horn and Mirsky may be written as convWz ⊂ ∪x∈k π(K · (x+ z)∩b),
where z ∈ it and W is the Weyl group of (g, h) (W = Sn in this situation). They
may then be combined as

∪x∈k π(K · (x + z) ∩ b) = convWz,

or π((k + K · z) ∩ b) = convWz. In this paper we prove that the statement is true
for any complex semisimple Lie algebra g. We also discuss the real case.

2. Preliminaries

Let K be a connected compact semisimple Lie group, G its complexification, and
let k and g be their respective Lie algebras. Thus g = k⊕ ik. We fix a maximal torus
T of K and denote its Lie algebra by t. Then h = t⊕ it is a Cartan subalgebra of
g.

Let R be the root system of (g, h) and fix a base Π for R. The set of positive
roots (with respect to Π) is denoted by R+. Let gα denote the root space of a root
α. We introduce the maximal nilpotent subalgebras n and n− of g:

n =
∑̇

α∈R+
gα, n− =

∑̇
α∈R+

g−α.

Then b = h + n is a Borel subalgebra of g. The coroot corresponding to a root α
is denoted by Hα. Recall that [gα, g−α] is a 1-dimensional subspace of h and Hα

is the unique element of [gα, g−α] such that α(Hα) = 2. The Weyl group of (g, h)
will be denoted by W .

We denote by θ the Cartan involution of g (when viewed as a real Lie algebra):
It is identity on k and negative identity on ik. We remark that θ(h) = h and
θ(gα) = g−α for all α ∈ R.

The Killing form of g will be denoted by ϕ. Unless stated otherwise, the orthog-
onal complements will be taken with respect to ϕ.

3. The complex semisimple case

In this section we assume that g is a complex semisimple Lie algebra and use
the notations in the previous section.

Proposition 3.1. [5] K · x intersects b for each x ∈ g.

The following is a generalization of Ky Fan-Amir-Moéz-Horn-Mirsky’s result.

Theorem 3.2. Let g be a complex semisimple Lie algebra and let π : g → it be the
orthogonal projection with respect to the Killing form. If z ∈ it, then

∪x∈k π(K · (x + z) ∩ b) = convWz,

or equivalently, π((k + K · z) ∩ b) = convWz. In particular, for each w ∈ g,
π(K · w ∩ b) ⊂ convWz, where z ∈ K · 1

2 (w − θw) ∩ it.

Proof. Given x ∈ k, since K · x ⊂ k and K · z ⊂ ik, it follows

π(K · (x + z) ∩ b) ⊂ π(K · (x + z)) = π(K · z) = convWz,

by Kostant’s result [14, Theorem 8.2]. Hence ∪x∈k π(K · (x + z) ∩ b) ⊂ ∪x∈k π(K ·
(x + z)) ⊂ convWz.
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Conversely let β ∈ convWz. By Kostant’s result again, there exists y ∈ K ·z such
that π(y) = β. Recall the root space decomposition [12]: g = h+̇

∑̇
α∈R+(gα +g−α).

The direct sum gα + g−α may not be orthogonal. Let y = y0 +
∑

α∈R+(yα + y−α),
where y0 ∈ h, yα ∈ gα and y−α ∈ g−α. Since y ∈ ik, ik is the −1 eigenspace of θ,
and θgα = g−α (α 6= 0), we have

−y0 +
∑

α∈R+

(−yα − y−α) = −y = θy = θy0 +
∑

α∈R+

(θyα + θy−α).

Since the sums are direct, y0 ∈ it ⊂ ik and y−α = −θyα for all α ∈ R. Then
y = y0 +

∑
α∈R+(yα − θyα), and y0 = π(y) = β. Set x :=

∑
α∈R+(yα + θyα) ∈ k.

Then x + y = y0 + 2
∑

α∈R+yα ∈ (x + K · z) ∩ b. Clearly π(x + y) = π(y) = β.
Now

∪x∈k π(K · (x + z) ∩ b) = π(∪x∈k K · (x + z) ∩ b)

= π(∪x∈k ∪k∈K (k · x + k · z) ∩ b)

= π(∪k∈K ∪x∈k (k · x + k · z) ∩ b))

= π(∪k∈K (k + k · z) ∩ b))
= π((k + K · z) ∩ b).

For w ∈ g, K · w ∩ b is nonempty by Proposition 3.1. We decompose it as
w = 1

2 (w + θw)+ 1
2 (w− θw). Clearly π(K ·w∩ b) ⊂ πx∈kπ(K · ( 1

2 (w + θw)+ 1
2 (w−

θw)) ∩ b) ⊂ convWz where z ∈ K · 1
2 (w − θw) ∩ it. ¤

Remark 3.3. When g = sl(n,C), the theorem is simply Ky Fan-Amir-Moéz-Horn-
Mirsky’s result with an appropriate translation. Amir-Moéz and Horn [1] intro-
duced the term real singular values (imaginary singular values, respectively) for
the eigenvalues of 1

2 (x + x∗) ( 1
2i (x − x∗)), where x∗ is the complex conjugate of

x ∈ g.

Remark 3.4. The statement of Theorem 3.2 remains true when the Cartan sub-
space ik is replaced by k. Since g is an inner product space equipped with the
natural inner product (x, y) = −ϕ(x, θy), and k and ik are orthogonal,

‖x‖2 = ‖1
2
(x + θx)‖2 + ‖1

2
(x− θx)‖2.

When g = sl(n,C), it simply asserts that the square of the Frobenius norm of x is
the sum of squares of the real and imaginary singular values of x [1, Theorem 5].

Remark 3.5. Sherman and Thompson [20] states the converse of Ky Fan’s result
slightly different: If z is a given Hermitian matrix with eigenvalues β ∈ Rn and
α ∈ Rn, satisfying α ≺ β, then there exists a skew Hermitian matrix x such that α
is the real part of the eigenvalues of x + z. It is indeed equivalent to Amir-Moéz-
Mirsky’s result: there exists an n× n complex matrix y such that the real part of
the eigenvalues of y are α and the eigenvalues of 1

2 (y + y∗) are β. It is because
that the eigenvalues of y are invariant under conjugation, and the spectral theorem
implies that k( 1

2 (y + y∗))k−1 = z for some U ∈ SU(n).

Example 3.6. [12, p.85] Consider the simple complex Lie algebra cn which is
realized as g = sp(n,C) = sp(n) + isp(n), and K = Sp(n), symplectic group [12]
which consists of the matrices of the form(

U −V
V U

)
∈ U(2n).
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Now
h = {diag (h1, . . . , hn,−h1, . . . ,−hn) : h1, . . . , hn ∈ C},

which will be identified with Cn and it with Rn in the natural way. The positive
roots are

{ei ± ej , 2ek : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}.
The corresponding root spaces are

gei−ej = C(Ei,j − Ej+n,i+n),

gei+ej = C(Ei,j+n + Ej,i+n),

g2ek = C(Ek,k+n),

where Eij denotes the matrix with (i, j) entry 1 and zero otherwise. The Weyl
group W of (g, h) acts on h (viewed as a real vector space) and thus on it:

(h1, . . . , hn) 7→ (±hσ(1), . . . ,±hσ(n)), σ ∈ Sn,

where Sn is the symmetric group. The simple roots ∆ [11, p.64] are

αi = ei − ei+1, i = 1, . . . , n− 1, αn = 2en,

and the fundamental dominant weights [11, p.67] (also known as the dual basis of
∆) are

λi =
i∑

k=1

ek, i = 1, . . . , n.

The (closed) fundamental Weyl chamber (the cone generated by the fundamental
dominant weights) it+ is

it+ := {(h1, . . . , hn) : h1 ≥ · · · ≥ hn ≥ 0}.
The dual cone of it+ in it (the cone generated by the simple roots), defined as

dual itit+ := {x ∈ it : (x, u) ≥ 0, for all u ∈ it+},
may be written as

dual itit+ = {x ∈ it :
j∑

k=1

xk ≥ 0, j = 1, . . . , n}.

Recall that α ∈ conv Wβ if and only if β − α ∈ dual ikit+, provided that α, β ∈ it+
[14, Lemma 3.3]. Thus the n absolute values of the real parts of (h1, . . . , hn), where
(h1, . . . , hn,−h1, . . . ,−hn) ∈ π(K ·x∩b), (notice that ±hj are not the eigenvalues of
x in general) are weakly majorized [2] by the n nonnegative eigenvalues of 1

2 (x+x∗).
The converse is true.

Example 3.7. [12, p.85] Consider the simple complex Lie algebra dn which is
realized as g = so(2n,C) = so(2n) + iso(2n), the algebra of 2n× 2n complex skew
symmetric matrices, and K = SO(2n). Now

h = {
(

0 h1

−h1 0

)
⊕ · · · ⊕

(
0 hn

−hn 0

)
: h1, . . . , hn ∈ C},

which will be identified with Cn and it with Rn in the natural way. Similarly,

t = {
(

0 t1
−t1 0

)
⊕ · · · ⊕

(
0 tn
−tn 0

)
: t1, . . . , tn ∈ R}.
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The positive roots are {ei± ej : 1 ≤ i < j ≤ n}. The corresponding root spaces are

gei−ej = C
(

0 Xij

−XT
ij 0

)
,

gei+ej = C
(

0 Yij

−Y T
ij 0

)
,

where

Xij =
(

1 i
−i 1

)
, Yij =

(
1 −i
−i −1

)

are the (i, j) blocks (2× 2 matrices) of the indicated matrices.
The Weyl group W of (g, h) acts on h (viewed as a real vector space) and thus

on it:

(h1, . . . , hn) 7→ (±hσ(1), . . . ,±hσ(n)), σ ∈ Sn, number of negative signs is even.

The simple roots ∆ [11, p.64] are

αi = ei − ei+1, i = 1, . . . , n− 2, αn−1 = en−1 − en, αn = en−1 + en,

and the fundamental dominant weights are

λi =
i∑

k=1

ek, i = 1, . . . , n− 2, λn−1 =
1
2
(
n−1∑

k=1

ek − en), λn =
1
2

n∑

k=1

ek.

The (closed) fundamental Weyl chamber it+ is

it+ := {(h1, . . . , hn) : h1 ≥ · · · ≥ hn−1 ≥ |hn|}.
The dual cone of it+ in it is

dual itit+ = {x ∈ it :
j∑

k=1

xk ≥ 0,

n−1∑

k=1

xk − xn ≥ 0, j = 1, . . . , n}.

The set K · x ∩ b does not provide, in general, the eigenvalues of x ∈ g, though
the eigenvalues of x occur in pair but opposite in sign (need not be real). The
eigenvalues of the skew symmetric matrix 1

2 (x−x) (also Hermitian) are ±βj , βj ∈ R,
j = 1, . . . , n. Arrange β’s so that β1 ≥ · · · ≥ βn. The real parts of (h1, . . . , hn),
where h = (h1, . . . , hn,−h1, . . . ,−hn) ∈ π(K · x ∩ b), are denoted by α1, . . . , αn

such that |α1| ≥ · · · ≥ |αn|. Let r be the number of negative entries among αi,
i = 1, . . . , n. Then [24, 23]

k∑

i=1

|αi| ≤
k∑

i=1

βi, k = 1, . . . , n− 1,

n−1∑

i=1

|αi| − |αn| ≤
n−1∑

i=1

βi − βn,

n−1∑

i=1

|αi| − (−1)r[signPf(
1
2
(x + xt)) ] |αn| ≤

n−1∑

i=1

βi(A)− βn,

where Pf ( 1
2 (x − x)) denotes the Pfaffian [7, Appendix D] of the 2n × 2n skew

symmetric matrix 1
2 (x− x).
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4. The eigenvalues and the real and imaginary singular values for
sl(2,C) and sl(2,R)

More restriction on the eigenvalues of x ∈ sl(n,C) is expected, if the real and
imaginary singular values of x ∈ sl(n,C) are known. The following is the simplest
case and it shows that the norm condition in Remark 3.4 is not sufficient.

Proposition 4.1. Let α, β ∈ R and a + ib ∈ C. Then there exists x ∈ sl(2,C)
whose eigenvalues, real singular values, and imaginary singular values are ±(a+ib),
±α, and ±β, respectively, if and only if (−a, a) ≺ (−α, α), (−b, b) ≺ (−β, β), and
β2 − b2 = α2 − a2.

Proof. Let x ∈ sl(2,C) whose eigenvalues, real singular values, and imaginary sin-
gular values are ±(a + ib), ±α, and ±β, respectively. After an appropriate unitary
similarity, we may assume that x is in upper triangular form:

x =
(

a + ib c
0 −a− ib

)
, (x+x∗)/2 =

(
a c/2

c/2 −a

)
, (x−x∗)/2i =

(
b c/2i

−c/2i −b

)
.

The eigenvalues of the matrices are ±(a + ib), ±α = ±(a2 + 1
4 |c|2)1/2, and ±β =

±(b2 + 1
4 |c|2)1/2. So (−a, a) ≺ (−α, α), (−b, b) ≺ (−β, β) and β2 − b2 = α2 − a2 =

1
4 |c|2. Conversely, if the conditions are satisfied, the above triangular matrix x

(thus not unique) is the required one with α2 − a2 = 1
4 |c|2, ¤

Proposition 4.2. Let α, β ∈ R and a+ib ∈ C. Then there exists x ∈ sl(2,R) whose
eigenvalues, real singular values, and imaginary singular values are ±(a + ib), ±α,
and ±β, respectively, if and only if (1) b = 0, (−a, a) ≺ (−α, α), and β2 = α2−a2,
or (2) a = α = 0, b = ±β.

Proof. If the eigenvalues of x ∈ sl(2,R) are complex, they must be conjugate to
each other, that is, ±ib, b ∈ R. Otherwise, they must be of the form ±a, a ∈ R. By
Proposition 4.1, or by observing each x ∈ sl(2,R) is (special) orthogonally similar
to one of the forms:

(a)
(

a c
0 −a

)
, a, c ∈ R, (b)

(
0 b
−b 0

)
, b ∈ R,

accordingly, we have the necessary conditions. Conversely, (1) let x be in the form
(a) whose eigenvalues, real singular values, and imaginary singular values are ±a,
±α = ±(a2 + 1

4c2)1/2, and ±β = ±( 1
4c2)1/2. Thus set c = ±2|β|; (2) let x be in the

form (b) and it is obvious. ¤

5. The real semisimple case

The proof [1] given by Amir-Moéz and Horn for the converse of Ky Fan’s result
also works for sl(n,R), a normal real form of sl(n,C). In the complex semisimple
case g, all maximal solvable subalgebras in g are conjugate via the adjoint group of g
[11, Section 16.4] (it is also true for Cartan subalgebras). The Borel subalgebra b in
Section 2 and 3 is the “standard” one with respect to the chosen Cartan subalgebra
h = t + it and the basis Π for the root system R. However, in the real case, there
are different conjugacy classes of maximal solvable subalgebras [16, 18, 19]. The
conjugacy classes may be obtained via the nonconjugate Cartan subalgebras [16].
It is well known [13, 22] that Cartan subalgebras of a real semisimple Lie algebra
are not conjugate in general.
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From now on in this section we denote by g a real semisimple Lie algebra. Let
g = k + p be the Cartan decomposition associated with the Cartan involution θ,
that is, k is the +1 eigenspace of θ and p is the −1 eigenspace of θ. Fix a maximal
abelian subalgebra ap in p. Let

g = g0+̇
∑̇

α∈R+
(gα + g−α),

be the restricted root-space decomposition of g relative to ap [12, p.313], where R+

is the set of positive roots (with respect to a fixed base Π of R) of the root system
R of (g, ap), and

gα = {X ∈ g : [H, X] = α(H)X for all H ∈ ap}, α ∈ R.

We also have the orthogonal sum

g0 = ap+̇m,

where m = Zk(ap), the centralizer of a in k. Notice that [12, p.313]

k ∩ g0 = m, p ∩ g0 = ap.

The Weyl group of (g, ap) will be denoted by W . Let b := ap +
∑̇

α∈R+gα.

Example 5.1. [12, p.313-314] When g = sl(n,F) where F = R,C,H, k ⊂ g consists
of the skew Hermitian matrices of g and p ⊂ g consists of the Hermitian matri-
ces, the maximal abelian subspace ap of p is the algebra of traceless real diagonal
matrices, and m consists of all skew Hermitian diagonal matrices in g. Thus for
F = R, m = 0; for F = C, m consists of all traceless diagonal pure imaginary
matrices. For F = H, m consists of all diagonal matrices whose diagonal entries xj

satisfies xj = −xj . The restricted root space gei−ej consists of all matrices with
(i, j) entry 1 and zero otherwise, 1 ≤ i 6= j ≤ n, where ei denotes the functional on
ap evaluating the ith diagonal entry of each element of ap.

The proof of the following is similar to that of Theorem 3.2 and is omitted.

Theorem 5.2. Let g be a real semisimple Lie algebra g. Let π : g → ap be the
orthogonal projection with respect to the Killing form. Then for each β ∈ ap,

π((k + K · β) ∩ b)) = convWβ.

Remark 5.3. Theorem 5.2 provides Amir-Moéz-Horn’t type result for the real
semisimple Lie algebras sl(n,R). We can obtain Theorem 3.2 from Theorem 5.2: If
g1 is a complex semisimple Lie algebra, g = gR1 its realification, let k be a compact
real form of g1. Then g = k + ik is a Cartan decomposition of g. Taking ap = it
where t is a Cartan subalgebra of k, a = t + it is a Cartan subalgebra of g and is
the realification of a Cartan subalgebra h1 of g1. The root space decomposition of
g with respect to ap is the same as the restricted root space decomposition of g1

with respect to h1.

Remark 5.4. The algebra s = g0 +
∑̇

α∈R+gα is called the standard maximal
solvable subalgebra of g which contains the maximally vector Cartan subalgebra g0

[21, p.405], with respect to ap and Π. Clearly b := ap +
∑̇

α∈R+gα ⊂ s.

We now begin our discussion of the real counterpart of Proposition 3.1 and
Theorem 5.5. It is well known [10] that for any x ∈ sl(n,R), there exists k ∈ SO(n)
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such that kxk−1 is of block upper triangular form where the (main diagonal) blocks
are either 1× 1 or 2× 2:




A1 . . . . . . . . . . . . . . .
A2 . . . . . . . . . . . .

. . . . . . . . .
Aj . . .

a2j+1 . . .
. . . . . .

an




,

with zero trace, where Ak =
(

ak bk

−bk ak

)
, k = 1, . . . , j. Indeed the above forms are

associated with the maximal solvable subalgebras of sl(n,R). There are

Nn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]

(the Fibonacci number defined by Nn = Nn−1 + Nn−2, N1 = 1, N2 = 2) conjugacy
classes of maximal solvable subalgebras [18] of sl(n,R).

Certainly we K · x may not interest b := ap +
∑

α∈R+ gα for some x ∈ g in
view of sl(n,R) in which b may be viewed as the algebra of real upper triangular
matrices. Motivated by Proposition 3.1 and the case sl(n,R), we now ask whether
for any element x in the real semisimple Lie algebra g, K ·x intersects some maximal
solvable subalgebra s. To be specific, we recall some basic notions. Fix a Cartan
decomposition of the real semisimple Lie algebra g = k+p and let θ be the associated
Cartan involution. Fix a maximal abelian subalgebra ap ⊂ p in p . Let a be the
Cartan subalgebra of g containing ap, that is, a := g0. A θ-stable Cartan subalgebra
(and will simply be called Cartan subalgebra) of g is a subalgebra c that is maximal
among abelian θ-stable subalgebras of g. The Cartan subalgebras of g have the same
dimension which is called the (complex) rank of g. There are only finitely many
conjugate classes of Cartan subalgebras [22, p.395]. Each Cartan subalgebra in g
is G-conjugate [22, Theorem 2] to another Cartan subalgebra c = ck+̇cp, where
ck := c ∩ k is called the toral part, and cp := c ∩ p is called the vector part, such
that ak ⊂ ck and cp ⊂ ap. Such c is called a standard Cartan subalgebra (relative
to θ and ap) [21, p.405].

A result of Mostow [16, Theorem 4.1] asserts that each maximal solvable subalge-
bra s of g contains a Cartan subalgebra c, for example, compact Cartan subalgebra
of g is maximal solvable [16, Lemma 4.1]. If c is a standard Cartan subalgebra,
such s is called a standard maximal solvable subalgebra (with respect to ap and
θ). Each G-conjugate of s is still a maximal solvable subalgebra, due to Cartan’s
criterion of solvablity [12, Proposition 1.43], and the adjoint action of G respects
the bracket and preserves the Killing form. Thus each conjugacy class of maximal
solvable subalgebras under the adjoint action of G contains a standard maximal
solvable subalgebra s.
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For example, when g = sl(3,R), there are two conjugacy classes of Cartan sub-
algebras [12] represented by the standard Cartan subalgebras:

c1 =








a 0 0
0 b 0
0 0 −a− b


 : a, b ∈ R



 , c2 =








a b 0
−b a 0
0 0 −2a


 : a, b ∈ R



 .

However there are three conjugacy classes of maximal solvable subalgebras [18]
represented by the standard maximal solvable subalgebras:

s1 =








a c e
0 b d
0 0 −a− b


 : a, b, c, d, e ∈ R



 ,

s2 =








a b c
−b a d
0 0 −2a


 : a, b, c, d ∈ R



 ,

s3 =







−2a c d
0 a b
0 −b a


 : a, b, c, d ∈ R



 .

Notice that s2 and s3 contain conjugate standard Cartan subalgebras corresponding
to c2.

With the above terminology, we state Theorem 5.2 as

Theorem 5.5. Let S be the set of standard maximal solvable subalgebra with respect
to ap and θ. Let β ∈ ap. Then

π(k + K · β) ∩ b) = π((k + K · β) ∩ (∪s∈Ss)) = convWβ.

Remark 5.6. In generally it is not true that given arbitrary x ∈ g, K ·x intersects
s for some standard maximal solvable subalgebra s of the real semisimple algebra
g. Consider the real simple Lie algebra g = su1,1.

Proof. We consider the group:

SU(1, 1) =
{(

α β

β α

)
: |α|2 − |β|2 = 1

}
,

whose Lie algebra is a real form of sl(2,C):

su1,1 =
{(

ia c
c −ia

)
: a ∈ R, c ∈ C

}
,

K =
{
diag (eiθ, e−iθ) : θ ∈ R}

,

k =
{(

ia 0
0 −ia

)
: a ∈ R

}
,

p =
{(

0 c
c 0

)
: c ∈ C

}
,

ap =
{(

0 b
b 0

)
: b ∈ R

}
.

There are two conjugate standard Cartan subalgebras: k and ap [22, p.401]. They
are also the two [19, p.518] standard maximal solvable subalgebras of su1,1. Since
k is a compact Cartan subalgebra of su1,1, it is maximal solvable [17, Lemma 4.1].
To see ap is maximal solvable, let s be a standard maximal solvable subalgebra
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of g containing ap. Now s cannot contain (1-dimensional) k since k is a standard
maximal solvable subalgebra. So s is either ap itself or p but the later is not an
algebra. So s = ap. Clearly no element in K sends

(
ia c
c −ia

)
∈ su1,1, a, c 6= 0,

into either k or ap. ¤
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