3.1

Remarks: The notion of solvability imitates the corresponding notion in group theory searching a proof of the general unsolvability of quintic and higher equations, finally realized by Galois theory.

Questions: 1. Show that the derived series is descending, i.e., $L^{i+1} \subset L^i$.
2. Show that $t(n, F)$ is solvable.
3. Show that the radical of L is the smallest ideal I such that $\text{Rad } L/I = 0$.
4. Show that $L/\text{Rad } L$ is semisimple.

3.2

Remarks: Another proof of Lemma 3.2 If $x \in \mathfrak{gl}(V)$ is nilpotent, say, $x^p = 0$, then $(\text{ad } x)^{2p-1} = 0$, i.e., $\text{ad } x$ is also nilpotent.

Proof. $(\text{ad } x)^n y$ is the sum of terms of the form $\pm x^i y x^j$ with $i + j = n$. □

Questions: 1. Show that $n(n, F)$ is a nilpotent algebra.
2. Show that the descending central series is descending, i.e., $L^{i+1} \subset L^i$.
3. Show that the center of a nonzero nilpotent L is nonzero.
4. Is the term nilpotent algebra justified according to Lemma 3.2?
5. Show that abelian \Rightarrow nilpotent \Rightarrow solvable.
6. Show that L is solvable if and only if $L^1 = [L, L]$ is nilpotent.
7. Given an ideal I of L, what is the relation between $(L/I)^{(n)}$ and $L^{(n)}/I$?
Exercises on Section 3

2. Suppose that \(L \) is solvable. The derived series \(L = L^{(0)} \supseteq L^{(1)} \supseteq \cdots \supseteq L^{(n)} = 0 \) satisfies the properties. We know from 2.1 that \(L^{(i+1)} = [L^{(i)}, L^{(i)}] \) is an ideal of \(L^{(i)} \). It remains to show that \(L^{(i)}/L^{(i+1)} \) is abelian.

For \(x, y \in L^{(i)} \), \([x, y] \in L^{(i+1)} \)

\[
[x + L^{(i+1)}, y + L^{(i+1)}] \subseteq [x, y] + [x, L^{(i+1)}] + [y, L^{(i+1)}] + [L^{(i+1)}, L^{(i+1)}] \subseteq L^{(i+1)},
\]
i.e., \(L^{(i)}/L^{(i+1)} \) is abelian.

Conversely suppose that \(L = L_0 \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_k = 0 \) such that \(L_{i+1} \) is an ideal of \(L_i \) and \(L_i/L_{i+1} \) is abelian for all \(i \). We will show that all \(L_i \) are solvable and use backward induction (clearly \(L_k = 0 \) is solvable). Clearly \(L_i/L_{i+1} \) is solvable for all \(i \). Now \(L_{k-1} \supseteq L_{k-1}/L_k \) is solvable so that \(L_{k-1} \) is a solvable ideal of \(L_{k-2} \). Now \(L_{k-2}/L_{k-1} \) is abelian and thus solvable. By Proposition 3.1(b), \(L_{k-2} \) is solvable. By induction argument we have the desired result.

Remark: We may add an additional condition \(\dim L_i/L_{i+1} = 1 \) for all \(i \).

\[\]

Proof. From the derived series, we interpolate subspaces (how?) so that \(\dim L_i/L_{i+1} = 1 \).

Conversely choose \(x_i \) so that \(L_i = \mathbb{F}x_i + L_{i+1} \) (direct sum). We show by induction that \(L^{(i)} \subseteq L_i \) so that \(L^{(k)} = 0 \). In fact \(L = L_0 \). If \(L^{(i)} \subseteq L_i \), then

\[
L^{(i+1)} = [L^{(i)}, L^{(i)}] \subseteq [\mathbb{F}x_i + L_{i+1}, \mathbb{F}x_i + L_{i+1}] \subseteq [\mathbb{F}x_i, L_{i+1}] + [L_{i+1}, L_{i+1}] \subseteq L_{i+1}.
\]

4. Recall \(L^{(i)} = [L^{(i-1)}, L^{(i-1)}] \) (p.10). Notice that \(\text{ad } L \subseteq \mathfrak{gl}(L) \) is a Lie algebra and the derived series is given by

\[
(\text{ad } L)^{(i)} = [(\text{ad } L)^{(i-1)}, (\text{ad } L)^{(i-1)}].
\]

Since \(\text{ad } : L \to \mathfrak{gl}(L) \) is a homomorphism (p.8),

\[
(\text{ad } L)^{(1)} := [\text{ad } L, \text{ad } L] = \text{ad } [L, L] = \text{ad } L^{(1)}.
\]

By induction

\[
(\text{ad } L)^{(i)} = \text{ad } (L^{(i)}),
\]
i.e., \(\text{ad } \) and \((\cdot)^{(i)}\) commute. Clearly if \(L \) is solvable, so is \(\text{ad } L \) because \(\text{ad } 0 = 0 \), or simply by Proposition 3.1 (a). Conversely \(\text{ad } L \) solvable implies \(\text{ad } L^{(n)} = 0 \) for some \(n \). So \(L^{(n)} \subseteq Z \) is abelian since \(Z = \text{Ker } \text{ad} \) (p.8). Then \(L^{(n+1)} = 0 \), i.e., \(L \) is solvable.

Similar for nilpotency. First use Proposition 3.2(a). Then show by induction that

\[
(\text{ad } L)^{(i)} = \text{ad } (L^{(i)}),
\]
i.e., \(\text{ad } \) and \((\cdot)^{(i)}\) commute. So \(\text{ad } L \) nilpotent implies \(\text{ad } (L^n) = 0 \) for some \(n \), i.e., \(L^{n+1} = [L^n, L] = 0 \).

5. (a) \(L^{(1)} = [L, L] \subseteq \text{span } x \). So \(L^{(2)} = 0 \) and hence \(L \) is solvable. Moreover \(x \in L^i \) for all \(i \) so \(L \) is not nilpotent.

(b) Consider \(\text{ad } (x + y) \) satisfying

\[
\text{ad } (x + y)(x) = -z, \quad \text{ad } (x + y)(y) = z, \quad \text{ad } (x + y)(z) = y,
\]

2
so that the matrix of \(\text{ad} (x + y) \) is \[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 0
\end{pmatrix}
\]
Notice that \((\text{ad} (x + y))^3 \neq 0 \) and index of nilpotency is always less than or equal to the dimension of the matrix, i.e., 3. So by Engel’s theorem, \(L \) is not nilpotent.

6. The sum of two ideals is still an ideal (p.6). So we only need to show that \(I + J \) is nilpotent if \(I \) and \(J \) are nilpotent ideal. Each element of \((I + J)^n \) is of the form

\[
[x_1 + y_1, [x_2 + y_2, \cdots [x_n + y_n, x_{n+1}, y_{n+1}]], x_i \in I, y_i \in J,
\]
which is a sum of terms of the form

\[
z = [z_1, [z_2, \cdots [z_n, z_{n+1}] \cdots]],
\]
where \(z_i \) is either in \(I \) or \(J \). Suppose that \(z \) has \(m z_i \) in \(I \), i.e., \(n - m z_i \) in \(J \). Then \(z \in I^{m-1} \) or equivalently \(z \in J^{n-m-1} \). Choose sufficiently large \(n \), \(z = 0 \), since both \(I \) and \(J \) are nilpotent.

(The statement is analogous to Proposition 3.1) Thus \(L \) possesses a unique maximal (set inclusion) nilpotent ideal.

(a) Refer to the example on p.5, i.e., \([x, y] = x\). The algebra \(L \) is not nilpotent by Exercise 3.5. Hence the span of \(x \) is the maximal nilpotent ideal.

(b) Refer to Exercise 1.2. The algebra \(L \) is not nilpotent. Hence the span of \(x \) and \(y \) is the maximal nilpotent ideal.

8. (An ideal \(I \) of codimension 1 means that \(\dim I = \dim L - 1 \)) Let \(K \) be a maximal proper subalgebra of \(L \). By Exercise 3.7, \(K \subseteq N_L(K) \) where \(N_L(K) \) is a subalgebra of \(L \). By the maximality of \(K \), \(L = N_L(K) \), i.e., \(K \) is an ideal, so that \(L/K \) is well-defined. If \(\dim L/K \) were greater than 1, then the inverse image (with respect to the natural map \(L \to L/K \)) in \(L \) of a one dimensional subalgebra of \(L/K \) (which always exists) would be a proper subalgebra properly containing \(K \), a contradiction (see p.13). Therefore \(K \) has codimension one.