May, 2008

On four kinds of scalars of a nonsingular matrix

Speaker: Tin-Yau Tam (譚天祐)

Colloquium

tamtiny@auburn.edu
Goal: Discuss four sets of scalars of a nonsingular matrix

joint work with Huajun Huang (黄华君)
Outline

- 3 sets of scalars
- Gelfand-Naimark decomposition
- 2 parties
- 3 parties
1. 3 sets of scalars of a nonsingular matrix

\[\text{GL}_n(F) = n \times n \text{ nonsingular matrices over } F \text{ where } F = \mathbb{C} \text{ or } F = \mathbb{R}. \]

\[QR \text{ decomposition:} \]

\[A = QR, \]

where \(Q \in \text{U}_n(F) \) and \(R \) is upper \(\Delta \) with positive diagonal entries.

Here \(\text{U}_n(F) \) denotes the group of unitary matrices if \(F = \mathbb{C} \) and orthogonal matrices if \(F = \mathbb{R} \).
The first set of scalars is

\[a(A) := \text{diag } R = (r_{11}, \cdots, r_{nn}) \in \mathbb{R}^n_+. \]

Remark: \(a_i(A) \) is the distance in terms of 2-norm of the \(i \)-th column of \(A \) to the span of the previous \(i - 1 \) columns of \(A \), \(i = 1, \ldots, n \) (we adopt the convention that the span of the empty set is the zero space).
Eigenvalues

Schur triangularization: There is $U \in U_n(\mathbb{C})$ and upper ΔT such that

$$A = U^* T U,$$

where $\text{diag } T = (\lambda_1, \ldots, \lambda_n)$ and λ's are the eigenvalues of A. Moreover the order of λ's can be prefixed. We denote by

$$\lambda(A) := (\lambda_1, \ldots, \lambda_n)$$

the unordered n-tuple of eigenvalues of A.
Singular values

SVD asserts that there are $U, V \in U_n(\mathbb{F})$ such that

$$A = U \text{diag} (s_1, \ldots, s_n) V,$$

where $s_1 \geq \cdots \geq s_n$ are the singular values of $A \in \text{GL}_n(\mathbb{F})$. Here $\text{diag} \, \nu$ means the diagonal matrix with diagonal $\nu \in \mathbb{F}^n$. We denote by

$$s(A) := \text{diag} (s_1, \ldots, s_n).$$
Relation between $\lambda(A)$ and $s(A)$

\textbf{Weyl: } $|\lambda(A)| \prec_{\log} s(A)$:

$$\prod_{i=1}^{k} |\lambda'_i(A)| \leq \prod_{i=1}^{k} s_i(A), \quad k = 1, \ldots, n - 1,$$

$$\prod_{i=1}^{n} |\lambda'_i(A)| = \prod_{i=1}^{n} s_i(A),$$

where $\lambda'_1(A), \ldots, \lambda'_n(A)$ are the rearrangements of $\lambda_1(A), \ldots, \lambda_n(A)$ such that

$$|\lambda'_1(A)| \geq \cdots \geq |\lambda'_n(A)|.$$
Horn: Conversely if $|\lambda| \prec_{\log} s$ ($\lambda \in \mathbb{C}^n$, $s \in \mathbb{R}_+^n$, $s_1 \geq \cdots \geq s_n$), then there exists $A \in \text{GL}_n(\mathbb{C})$ such that $\lambda(A) = \lambda$ and $s(A) = s$.

Thompson: A may be chosen to be a real matrix if the non-real numbers among $\lambda_1, \ldots, \lambda_n$ occur in complex conjugate pairs.
Relation between $a(A)$ and $s(A)$

Kostant’s theorem:

$$a(A) \prec_{\log} s(A),$$

and conversely if $a \prec_{\log} s$ ($a, s \in \mathbb{R}_+^n$), then there exists $A \in \text{GL}_n(\mathbb{F})$ such that $s(A) = s$ and $a(A) = a$.

The result is a special case of Kostant’s nonlinear convexity theorem on Iwasawa decomposition of a semisimple Lie group.
2. Gelfand-Naimark decomposition and the 4th set of scalars

Proposition 2.1. Let $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$. Each $A \in \text{GL}_n(\mathbb{F})$ has $A = L\omega U$, for a permutation matrix ω, a unit lower triangular matrix $L \in \text{GL}_n(\mathbb{F})$, and an upper triangular $U \in \text{GL}_n(\mathbb{F})$. The permutation matrix ω is uniquely determined by A:

$$\text{rank } \omega(i|j) = \text{rank } A(i|j) \quad \text{for} \quad 1 \leq i, j \leq n.$$

Moreover $\text{diag } U$ is uniquely determined by A. Here $A(i|j)$ denote the submatrix formed by the first i rows and the first j columns of A, $1 \leq i, j \leq n$.
Proof:

\[
\begin{align*}
A & \quad \rightarrow \quad L_1AD_1 & \quad \rightarrow \quad L_1AD_1U_1 \\
\begin{bmatrix}
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\ast & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\ast & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\ast & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\end{bmatrix} & \quad \rightarrow \quad \begin{bmatrix}
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
1 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\end{bmatrix} & \quad \rightarrow \quad \begin{bmatrix}
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
0 & \cdots & \ast & \cdots & \ast & \cdots & \ast \\
\end{bmatrix}
\end{align*}
\]

Repeat the procedure on the second column of \(L_1AD_1U_1 \) and so on. Eventually we obtain a permutation matrix \(\omega \), unit lower triangular matrices \(L_1, \ldots, L_n \in \text{GL}_n(\mathbb{F}) \), diagonal matrices \(D_1, \ldots, D_n \in \text{GL}_n(\mathbb{F}) \), and unit upper triangular matrices \(U_1, \ldots, U_n \in \text{GL}_n(\mathbb{F}) \) such that

\[
L_n \cdots L_1AD_1U_1 \cdots D_nU_n = \omega.
\]

Denote

\[
L^{-1} = L_n \cdots L_1, \quad \text{and} \quad U^{-1} = D_1U_1 \cdots D_nU_n.
\]

Then \(A = L\omega U \) as desired.
Since the group of nonsingular diagonal matrices normalizes the group of unit upper triangular matrices, $U^{-1} = U'D$ for some unit upper triangular matrix U', where $D := D_1 \cdots D_n$. So $U = D^{-1}U'^{-1}$. In other words, the i-th diagonal entry u_{ii} of U is indeed the first nonzero entry of the i-th column in the i-th elimination step.

By block multiplication we notice that

$$A(i|j) = \begin{bmatrix} L(i|i) & 0 \\ \omega(i|j) & * \end{bmatrix} \begin{bmatrix} U(j|j) \end{bmatrix} = L(i|i)\omega(i|j)U(j|j).$$

So $\text{rank } \omega(i|j) = \text{rank } A(i|j), 1 \leq i, j \leq n$. Obviously $\text{rank } \omega(i|j)$ is the number of nonzero entries in $\omega(i|j)$. Thus it is easy to verify that ω_{ij} is nonzero if and only if

$$\text{rank } \omega(i|j) - \text{rank } \omega(i|j - 1) - \text{rank } \omega(i - 1|j) + \text{rank } \omega(i - 1|j - 1) = 1.$$

So the permutation matrix ω is uniquely determined by $\text{rank } \omega(i|j), 1 \leq i, j \leq n$. Hence ω is uniquely determined by A.
The 4th set of scalars

If \(L\omega U = L'\omega U' \) for another unit lower triangular \(L' \) and upper triangular \(U' \), then

\[
\omega^{-1}L'^{-1}L\omega = U'U^{-1}.
\]

Clearly the diagonal entries of \(\omega^{-1}L'^{-1}L\omega \) are ones and thus

\[
\text{diag } U = \text{diag } U'
\]

So we define

\[
u (A) := \text{diag } U = \text{diag } (u_{11}, \ldots, u_{nn}) \in \mathbb{F}^n,
\]

where \(A = L\omega U \) is any Gelfand-Naimark decomposition of \(A \).
Remark: Although ω and $u(A)$ are unique in Gelfand-Naimark decomposition $A = L\omega U$ of A, the L and U components may be not unique.

We want to find complete relations

1. between $u(A)$ and $a(A)$,
2. between $u(A)$ and $s(A)$,
3. between $u(A)$ and $\lambda(A)$, and
4. between $a(A)$ and $\lambda(A)$.
Weyl-Horn-Thompson

\[\lambda \leftrightarrow S \leftrightarrow \kappa \]

↓ × ↓ Kostant

\[u \leftrightarrow a \]
A partial order \leq

Given $a, b \in \mathbb{R}^n_+$, $a \leq b$ means

\[
\prod_{i=1}^{k} a_i \leq \prod_{i=1}^{k} b_i, \quad k = 1, \ldots, n - 1,
\]

\[
\prod_{i=1}^{n} a_i = \prod_{i=1}^{n} b_i.
\]

The partial order \leq looks very similar to log majorization $a \prec_{\log} b$. However they are different since \leq does not require the entries of a and b in the above inequalities having descending order.
The partial order \preceq is different from log majorization. For example, if

$$a = (3, 2), \quad b = (1, 6),$$

then

$$a \preceq_{\log} b$$

but

$$a \npreceq b.$$

Indeed $b \preceq a.$
3. Two Parties

\(u \) and \(a \)

Theorem 3.1. Let \(F = \mathbb{C} \) or \(\mathbb{R} \). If \(A \in \text{GL}_n(F) \), then
\[|u(A)| \leq a(A). \]
Conversely if \(a := (a_1, \ldots, a_n) \) where \(a_1, \ldots, a_n > 0 \) and \(u := (u_1, \ldots, u_n) \) where \(u_1, \ldots, u_n \in F \) are nonzero numbers such that \(|u| \leq a \), then there exists \(A \in \text{GL}_n(F) \) such that \(a(A) = a \) and \(u(A) = u \) and \(A \) has \(LU \) decomposition.

Indeed, if \(u \leq a \), where \(u_1, \ldots, u_n > 0 \), then there exists \(Q \in \text{SO}(n) \) such that \(u(Q \text{ diag } a) = u \) and \(Q \text{ diag } a \) has \(LU \) decomposition.
\[u \text{ and } s \]

Theorem 3.2. Let \(\mathbb{F} = \mathbb{C} \) or \(\mathbb{R} \). If \(A \in \text{GL}_n(\mathbb{F}) \), then
\[|u(A)| \leq s(A). \]

Conversely, if \(s := (s_1, \ldots, s_n) \) and \(u := (u_1, \ldots, u_n) \), where \(s_1 \geq \cdots \geq s_n > 0 \) and \(u_1, \ldots, u_n \in \mathbb{F} \) are nonzero numbers such that \(|u| \leq s \), then there exists \(A \in \text{GL}_n(\mathbb{F}) \) such that \(A \) has \(LU \) decomposition and \(u(A) = u \) and \(s(A) = s \).
\(a \text{ and } \lambda \)

Theorem 3.3. If \(A \in \text{GL}_n(\mathbb{C}) \), then
\[
a_1(A) \cdots a_n(A) = |\lambda_1(A) \cdots \lambda_n(A)|.
\]
Conversely, if \(a := (a_1, \cdots, a_n) \) and \(\lambda := (\lambda_1, \cdots, \lambda_n) \), where \(a_1, \cdots, a_n > 0 \) and \(\lambda_1, \cdots, \lambda_n \in \mathbb{C} \) are nonzero numbers such that \(a_1 \cdots a_n = |\lambda_1 \cdots \lambda_n| \), then there exists \(A \in \text{GL}_n(\mathbb{C}) \) such that \(a(A) = a \) and \(\lambda(A) = \lambda \). Moreover, \(A \) may be chosen to be real if the non-real numbers among \(\lambda_1, \ldots, \lambda_n \) appear in complex conjugate pairs.
\textbf{Theorem 3.4.} If \(A \in \text{GL}_n(\mathbb{C}) \), then \(\pm u_1(A) \cdots u_n(A) = \lambda_1(A) \cdots \lambda_n(A) \).

Conversely, when \(n \geq 2 \), if \(\pm u_1 \cdots u_n = \lambda_1 \cdots \lambda_n \neq 0 \), where \(u_1, \ldots, u_n \in \mathbb{C}, \lambda_1, \ldots, \lambda_n \in \mathbb{C} \) are nonzero, then there is \(A \in \text{GL}_n(\mathbb{C}) \) such that \(u(A) = u \) and \(\lambda(A) = \lambda \). Moreover \(A \) may be chosen so that

(a) if \(u_1 \cdots u_n = \lambda_1 \cdots \lambda_n \), then \(A \) has \(LU \) decomposition,

(b) if \(-u_1 \cdots u_n = \lambda_1 \cdots \lambda_n \), then \(A \) has \(L\omega U \) decomposition where \(\omega \) is the transposition \((n-1, n) \).

When \(n = 1 \), only (a) is true.
u and λ: Real case

If $A \in \text{GL}_n(\mathbb{R})$, the non-real eigenvalues of A appear in complex conjugate pairs. It turns out that this is the only additional requirement for the real case.

Theorem 3.5. If $A \in \text{GL}_n(\mathbb{R})$, then $\pm u_1(A) \cdots u_n(A) = \lambda_1(A) \cdots \lambda_n(A)$.

Conversely, when $n \geq 2$, if $\pm u_1 \cdots u_n = \lambda_1 \cdots \lambda_n \neq 0$, where $u_1, \ldots, u_n \in \mathbb{R}$, and the non-real numbers of $\lambda_1, \ldots, \lambda_n$ appear in complex conjugate pairs, then there exists $A \in \text{GL}_n(\mathbb{R})$ such that $u(A) = u$ and $\lambda(A) = \lambda$, where $u := (u_1, \ldots, u_n)$ and $\lambda := (\lambda_1, \ldots, \lambda_n)$. Moreover A may be chosen so that

(a) if $u_1 \cdots u_n = \lambda_1 \cdots \lambda_n$, then A has LU decomposition,

(b) if $-u_1 \cdots u_n = \lambda_1 \cdots \lambda_n$, then A has $L\omega U$ decomposition where ω is the transposition $(1, 2)$, provided that $n \geq 2$.

When $n = 1$, only (a) is true.
Conjecture 3.1. Let u_1, \cdots, u_n and $\lambda_1, \cdots, \lambda_n$ be given in the last theorem.

(a) If $u_1 \cdots u_n = \lambda_1 \cdots \lambda_n$, then for every even permutation ω, there exists $A \in \text{GL}_n(\mathbb{C})$ such that $\lambda(A) = \lambda$, $u(A) = u$, and A has the Gelfand-Naimark decomposition $A = L\omega U$.

(b) If $u_1 \cdots u_n = -\lambda_1 \cdots \lambda_n$, then for every odd permutation ω, there exists $A \in \text{GL}_n(\mathbb{C})$ such that $\lambda(A) = \lambda$, $u(A) = u$, and A has the Gelfand-Naimark decomposition $A = L\omega U$.
4. 3 parties

\(u, a \) and \(s \)

Theorem 4.1. Let \(\mathbb{F} = \mathbb{C} \) or \(\mathbb{R} \). Let \(A \in \text{GL}_n(\mathbb{F}) \). Then \(|u(A)| \leq a(A) \prec \log s(A) \).

Conversely, if \(a := (a_1, \ldots, a_n), s := (s_1, \ldots, s_n), u := (u_1, \ldots, u_n) \), where \(a_1, \ldots, a_n > 0, s_1 \geq \cdots \geq s_n > 0, u_1, \ldots, u_n \in \mathbb{C} \) are nonzero numbers such that \(|u| \leq a \prec \log s \), then there exists \(A \in \text{GL}_n(\mathbb{F}) \) such that \(u(A) = u, a(A) = a \) and \(s(A) = s \).
Theorem 4.2. If $A \in \text{GL}_n(\mathbb{C})$, then $a(A) \prec_{\log} s(A)$ and $|\lambda(A)| \prec_{\log} s(A)$.

Conversely, if $a := (a_1, \ldots, a_n)$, $s := (s_1, \ldots, s_n)$, $\lambda := (\lambda_1, \ldots, \lambda_n)$ where $a_1, \ldots, a_n > 0$, $s_1 \geq \cdots \geq s_n > 0$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are nonzero numbers such that $a \prec_{\log} s$ and $|\lambda| \prec_{\log} s$, then there exists $A \in \text{GL}_n(\mathbb{C})$ such that $a(A) = a$, $\lambda(A) = \lambda$ and $s(A) = s$. Moreover, A may be chosen to be real if the non-real numbers among $\lambda_1, \ldots, \lambda_n$ appear in complex conjugate pairs.
However the three pairwise conditions on u, λ, s

\[|u| \leq s, \quad |\lambda| < \log s \]

and

\[\pm u_1 \cdots u_n = \lambda_1 \cdots \lambda_n \]

do not suffice to ensure the existence of $A \in \text{GL}_n(F)$
such that $u(A) = u$, $\lambda(A) = \lambda$ and $s(A) = s$.
For example if we set \(\lambda = s, s_1 \geq \cdots \geq s_n > 0 \), then \(A \) with \(\lambda(A) = s(A) = s \) must be a positive definite matrix.

By **Cholesky decomposition**, \(A = T^*T \) for some upper triangular matrix \(T \in \text{GL}_n(\mathbb{F}) \) with positive diagonal entries. Notice that

\[
\begin{align*}
 u_i(A) &= |\lambda_i(T)|^2, \\
 s_i(A) &= s_i^2(T), \\
 i &= 1, \ldots, n
\end{align*}
\]

so that \(u(A) \prec_{\text{log}} s(A) \) by Weyl’s result. Clearly \(u(A) \prec_{\text{log}} s(A) \) is not necessarily implied by \(|u| \trianglelefteq s \).

For example

\[
 s = \lambda = (3, 2), \quad u = (1, 6).
\]
The pairwise conditions

\[\pm u_1 \cdots u_n = \lambda_1 \cdots \lambda_n \]

\[|u| \leq a, \quad |\lambda_1 \cdots \lambda_n| = a_1 \cdots a_n \]

are not sufficient to ensure the existence of an \(A \in \text{GL}_n(\mathbb{C}) \) such that \(u(A) = u, \lambda(A) = \lambda \) and \(a(A) = a \) (indeed the last condition \(|\lambda_1 \cdots \lambda_n| = a_1 \cdots a_n \) is implied by the first two).
Suppose $u_1 u_2 = \lambda_1 \lambda_2$. Choose u_1 such that $|u_1| = a_1$ (then $|u_2| = a_2$). If there is $A \in \text{GL}_2(\mathbb{C})$ such that $u(A) = u$, $\lambda(A) = \lambda$ and $a(A) = a$, then A would be of the form

$$A = \text{diag} (u_1, u_2)$$

and thus λ_1, λ_2 would be u_1, u_2.

It does not necessarily follow from $u_1 u_2 = \lambda_1 \lambda_2$, $(u_1, u_2) \trianglelefteq (a_1, a_2)$, say,

$$u = a = (3, 2) \quad \lambda = (1, 6).$$
Proposition 4.1. Suppose that $u_1, u_2, \lambda_1, \lambda_2 \in \mathbb{C}$ are nonzero numbers and $a_1, a_2 > 0$.

1. If $u_1 u_2 = \lambda_1 \lambda_2$ and $(|u_1|, |u_2|) \preceq (a_1, a_2)$ such that $|u_1| \neq a_1$, then

$$A = \begin{bmatrix} u_1 & \frac{u_1(\lambda_1 + \lambda_2 - u_1) - \lambda_1 \lambda_2}{\sqrt{a_1^2 - |u_1|^2}} \\ \sqrt{a_1^2 - |u_1|^2} & \lambda_1 + \lambda_2 - u_1 \end{bmatrix} \in \text{GL}_2(\mathbb{C})$$

satisfies $\lambda(A) = \lambda$, $u(A) = u$, $a(A) = a$. In addition, if $u_1, u_2 \in \mathbb{R}$ and if λ_1, λ_2 are real or are complex conjugate pair, then $A \in \text{GL}_2(\mathbb{R})$.

2. If $u_1 u_2 = \lambda_1 \lambda_2$ and $(|u_1|, |u_2|) = (a_1, a_2)$, then $A \in \text{GL}_2(\mathbb{C})$ satisfying $u(A) = u$, $\lambda(A) = \lambda$ and $a(A) = a$ must be of the form:

$$A = \begin{bmatrix} u_1 & 0 \\ 0 & u_2 \end{bmatrix}$$

so that λ_1, λ_2 are u_1, u_2.

3. If $-u_1 u_2 = \lambda_1 \lambda_2$ and $(|u_1|, |u_2|) \preceq (a_1, a_2)$, then $A \in \text{GL}_2(\mathbb{C})$ satisfying $u(A) = u$, $\lambda(A) = \lambda$ and $a(A) = a$ must be of the form:

$$A = \begin{bmatrix} 0 & u_2 \\ u_1 & \lambda_1 + \lambda_2 \end{bmatrix}$$

so that $(|u_1|, |u_2|) = (a_1, a_2)$. In addition, if $u_1, u_2 \in \mathbb{R}$ and if λ_1, λ_2 are real or are complex conjugate pair, then $A \in \text{GL}_2(\mathbb{R})$.
THANK YOU FOR YOUR ATTENTION