Check here if you want your grade posted on the web page by

 the last 4 digits of your SSN.Do not write below this line

1. \qquad 2. \qquad
2. \qquad 4. \qquad
3. \qquad 6. \qquad
\qquad 8. \qquad
4. \qquad

Total minus \qquad

Grade \qquad

1. Complete the following equations. Name all organic reactants and products. (40\%)
a.

b.

c.

d.

f.

g.

h.

2. Draw the structures of the compounds whose names are given below. (12\%)
a. 2,4-dinitrochlorobenzene
b. Trans-2-methyl-3-hexene
c. R-2-pentanol (Draw 3 dimensional structure)
d. S-methionine in it's zwitterionic form (Draw Fischer projection)
3. Start with cyclopentene and write an equation for the preparation of:
a. Cyclopentanol (5\%)
b. Trans-1,2-Dibromocyclopentane (5\%)
4. Draw the structure of the tripeptide Tyr-Leu-Asp that would be present at physiological pH. (7\%)
5. For the carbohydrate whose Fischer projection is given by \mathbf{A}, depict the β form of the cyclic hemiacetal by adding appropriate H or OH groups in cyclic sturcture B. (5\%)

A

B
6. Draw the structure of a trinucleotide of structure A-T-C (reading from 5^{\prime} to 3 ' end). (7\%)
7. Write the mechanism for the reaction shown below. (7\%)

8. Sucrose has D-glucose and D-fructose bonded by an α linkage to the 1 carbon of glucose and a β linkage to the 2 carbon of fructose (that is an $\alpha, \beta(1->2)$-glycosidic linkage. Draw sucrose. (7\%)
9. Below are depicted 4 base pairs of a DNA strand. Using these base pairs as an example show how this DNA strand could replicate itself to two identical strands. (5\%)

