\qquad
November 29, 2000 SSN \qquad Seat No \qquad
In solving problems, you must show all work. Little or no credit will be given for a correct answer with no work shown.

1. a. Given the following acids and their $\mathrm{K}_{\mathrm{a}} \mathrm{s}$, arrange the acids in order of increasing acidity. (5\%)

Acid K_{a}
HNO_{2}
4.47×10^{-4}
$\mathrm{H}_{2} \mathrm{CO}_{3}$
4.45×10^{-7}
HCOOH
b. Calculate the pK_{a} of HCOOH (5\%)
c. Write the equation for the acid-base reaction which occurs when HNO_{2} is dissolved in water. Identify the acids (A), bases (B), conjugate acids (CA), and conjugate bases (CB) by putting the appropriate symbol under the reactant or product. (5\%)
d. Write the equation for the acid-base reaction of HCOOH with excess KOH. (5\%)
e. $\mathrm{NO}_{2}{ }^{-}$is a base. Write the equation for its reaction with water. (5\%)
f. Write the expression for the K_{b} of $\mathrm{NO}_{2}{ }^{-}$. (5\%)
g. Calculate the K_{b} of $\mathrm{NO}_{2}{ }^{-}$. (5\%)
2. a. Calculate the pH of a $2.17 \times 10-3 \mathrm{M}$ solution of HCl in water. (5\%)
b. Calculate how many mL of .01 M KOH will be required to neutralize 100 mL of the above HCl solution. (5\%)
3. Draw 3 dimensional representations of all the isomeric dichlorocyclobutanes (don't forget cis and trans forms). (10\%)
4. a. Write the equation for the production of ozone in the stratosphere. (4\%)
b. Write the equations for the destruction of ozone by $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ in the stratosphere. (6\%)
5. Draw the 3 dimensional structure of cyclohexane showing all the carbon-hydrogen bonds. (5\%)
6. a. Calculate the molarity of a solution of 2.7 g of sodium acetate ($\mathrm{Na}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}$) in 1 L water. (5\%)
b. When 3.4 g of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is added to the above solution, what is the molarity of the acetic acid. (5\%)
c. A solution prepared in this way is a buffer solution. Given the fact that acetic acid has $\mathrm{pK}_{\mathrm{a}}=4.76$, calculate the pH of this buffer. (5\%)
7. a. Carbon-14 is a β emitter. Write the equation for this nuclear reaction. (5\%)
b. Carbon-14 has a half-life of 5730 years, Calculate the percent of carbon-14 remaining in a sample after 25,000 years. (10\%)

1. a-d \qquad 1. e-g \qquad
2. \qquad 3-5 \qquad
3. \qquad 7. \qquad
Total minus \qquad Grade

Name \qquad

