October 27, 2000 SSN \qquad Seat No \qquad
In solving problems, you must show all work. Little or no credit will be given for a correct answer with no work shown.

1. a. Pick a molecule that will show hydrogen bonding. Draw two of the molecules and show the hydrogen bonding interaction. (5\%)

Or similar interaction involving an H bound to a $\mathrm{O}, \mathrm{N}, \mathrm{F}$ and hydrogen bound to another $\mathrm{N}, \mathrm{O}, \mathrm{F}$.
b. Pick a molecule that will show dipole-dipole interaction. Draw two of the molecules and show the dipole-dipole interaction. (5\%)

2. a) A sample of gas in a 2.0 L vessel at $80 \circ \mathrm{C}$ has a pressure of 450 torr. What will its pressure be when the vessel is heated to $200{ }^{\circ} \mathrm{C}$? (10%)

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{(473 \mathrm{~K})(450 \text { Torr) }(2 \mathrm{~L})}{(2 \mathrm{~L})(353 \mathrm{~K})}=P_{2}=603 \text { Torr }
\end{gathered}
$$

b) How many moles of the above gas are present? (10\%)

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \quad \mathrm{P}=603 \mathrm{~T} \text { Orr/760 Torr }=0.79 \mathrm{Atm} \\
& \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(0.79 \mathrm{Atm})(2 \mathrm{~L})}{\left(0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(473 \mathrm{~K})}=0.041 \mathrm{~mol}
\end{aligned}
$$

3. Which of the two isomers below would you expect to have the higher boiling point? Briefly explain your answer. (5\%)

4. a) How many grams of KHCO_{3} must you add to 250 mL water to prepare 0.600% w/v solution? (10\%)

$$
0.6 \%=0.6 \mathrm{~g} / 100 \mathrm{~mL} \times 250 \mathrm{~mL}=1.5 \mathrm{~g}
$$

b) What is the molarity of the above solution? (Assume no volume change upon adding the KHCO_{3} to the water). (10%)

$$
\begin{aligned}
& \text { Formula mass }=39.1+1+12+(3 \times 16)=100.1 \mathrm{~g} / \mathrm{mol} \\
& \frac{1.5 \mathrm{~g}}{100.1 \mathrm{~g} / \mathrm{mol}}=0.015 \mathrm{~mol} \quad \frac{0.015 \mathrm{~mol}}{0.25 \mathrm{~L}}=0.059 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

5. What weight of AgNO_{3} would you need to prepare 1.0 L of a 2.5 ppm solution. (5\%)

$$
1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}
$$

$2.5 \mathrm{mg} / \mathrm{L}=2.5 \mathrm{ppm}$
6. For the reaction below
$\mathrm{C}_{5} \mathrm{H}_{10} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6} \quad \Delta \mathrm{H}=+22.4 \mathrm{kcal} / \mathrm{mo}$
a) Is this reaction exothermic or endothermic? (5\%)

Endothermic

b) Draw an energy diagram for the reaction. Label the activation energy and the $\Delta \mathrm{H}$. (10\%)

c) Write the expression for the equilibrium constant.

$$
\text { Keq }=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{C}_{3} \mathrm{H}_{6}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{10}\right]}
$$

d) If the reaction is heated, what happens to the position of equilibrium? (5\%)

$$
\text { Goes to right (more } \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6} \text {) }
$$

7. What volume of oxygen, at STP, will be required to react with hydrogen to produce 5.0 g of water according to the equation below? (15\%)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\frac{5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{18 \mathrm{~g} / \mathrm{mol}}=0.28 \mathrm{~mol}
$$

Since $1 \mathrm{~mol} \mathrm{O}_{2} \longrightarrow 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$, we need $0.14 \mathrm{~mol} \mathrm{O}_{2}$

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{~V}=\frac{(0.14 \mathrm{~mol})\left(0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273 \mathrm{~K})}{1 \mathrm{Atm}}=3.1 \mathrm{~L}
\end{aligned}
$$

1.
2. \qquad
3. \qquad 6.
4.
5. \qquad
\qquad
6. \qquad

Total minus \qquad Grade

Name \qquad

