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Matrices and Their Adjoints

An Inclusive Approach to Basic Linear Algebra

Jack W. Rogers, Jr.∗

January 7, 2008

The object of this talk is to show how to unify the treatment
of Rn with that of more general vector spaces, such as Pn,
the space of polynomials of degree ≤ n, and C [a, b], the
space of continuous functions defined on the interval [a, b],
in a standard first course in linear algebra. To this end, we
begin by generalizing the definition of a matrix.
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1 Matrices

Definition 1.1 A matrix is a 1× n array

V =
h
�v1 · · · �vn

i
∈ V 1×n

of vectors in a vector space Σ for some positive integer n.
For each �c ∈ Rn, the matrix-vector product V �c is the linear
combination

V �c = c1�v1 + · · ·+ cn�vn.

Examples of matrix-vector products are

h
�1 �t

−→
t2

i⎡⎢⎣ 12
1

⎤⎥⎦ = −−−−−−−→1 + 2t+ t2,

where
−−→
f(t) (a) = f(a), andh −−→
sin2 t

−−−→
cos2 t

i " 1
1

#
=
−−→
sin2 t+

−−−→
cos2 t = �1.

The array A ∈ Rm×n satisfies this definition if we consider
it to be the 1× n array of its columns,

A =

⎡⎢⎣
⎡⎢⎣ a11

...
am1

⎤⎥⎦ · · ·

⎡⎢⎣ a1n
...

amn

⎤⎥⎦
⎤⎥⎦ = h

�a1 · · · �an
i
.
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Note, however, that the n× 1 array of its rows⎡⎢⎢⎣
h
a11 · · · a1n

i
...h

am1 · · · amn

i
⎤⎥⎥⎦

is not a matrix under this definition. We will return to this
mathematical object later.

We usually speak of the image and kernel of a matrix, when
we mean the image and kernel of the associated linear trans-
formation TA. We extend this identification of a matrix with
its associated linear transformation, unless clarity demands
more care, as the following examples show.

Definition 1.2 .
1) The columns of the matrix V : Rn → Σ span Σ if and
only V is onto.
2) The columns of V are independent if and only if V is one-
to-one.
3) The columns of V form a basis for Σ if and only if V is an
isomorphism (i.e., both onto and one-to-one) or, equivalently,
the columns of V are independent and span Σ.

Each of these definitions relates attributes of a sequence of
vectors to attributes of the associated linear transformation.
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1.1 The matrix-matrix product

Definition 1.3 If A : Rn → Rk and V : Rk → Σ are ma-
trices, the matrix-matrix product V A is the matrix for the
functional composition V ◦A, with diagram

Rn A−→ Rk

V A & ↓V

Σ

The product satisfies

V A = V
h
�a1 · · · �an

i
=

h
V�a1 · · · V�an

i

For example,h −−→
sin2 t

−−−→
cos2 t

i " 1 −1
1 1

#

=
h −−→
sin2 t+

−−−→
cos2 t −

−−→
sin2 t+

−−−→
cos2 t

i
=
h
�1
−−−→
cos 2t

i

The standard treatments of dimension and coordinates rela-
tive to a basis work for these matrices, but there is no analog
for the LU decomposition. Instead, we have the following
decomposition.
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1.2 The BR decomposition

A BR decomposition of a matrix
V : Rn → Σ consists of a one-
to-one matrix B : Rk → Σ and
an onto matrix R : Rn → Rk

in reduced row echelon form such
that V = BR.

Rn R (onto)−→ Rk

V & ↓B (1-1)

imV ⊂ Σ

Since R is onto, imV = imB, so the columns of B form a
basis for imV . Hence the name of the decomposition.

Example 1.4
−−→
sin2 t and

−−−→
cos2 t are independent, since scalar

multiples have the same roots, but �1 = (1)
−−→
sin2 t+(1)

−−−→
cos2 t,

yielding the decomposition

V =
h −−→
sin2 t

−−−→
cos2 t �1

i
=
h −−→
sin2 t

−−−→
cos2 t

i
B

"
1 0 1
0 1 1

#
R

.

Clearly, the decomposition is unique. Also, since B is one-to-

one, ker V = kerR = span
h
−1 −1 1

iT
.
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For an array A ∈ Rm×n, reduction to reduced row echelon
form yields R̂. The matrix B consists of the pivot columns
of A, and the matrix R consists of the nonzero rows of R̂.

If W is a standard basis for Σ, then the matrix VW satis-
fying V = WVW is easily found, and Gaussian elimination
techniques yield VW = BR. Then V = WVW = (WB)R

is the BR decomposition of V , since both W and B are
one-to-one.

Example 1.5 The standard basis for P2 is W =
³
�1,�t

´
. If

V =
h −−−→
1 + 2t

−−−→
2 + 4t

−−−→
2 + 5t

−−→
1 + t

i
, then

VW =

"
1 2 2 1
2 4 5 1

#
∼ · · · ∼

"
1 2 0 3
0 0 1 −1

#
, so

VW =

"
1 2
2 5

#
B

"
1 2 0 3
0 0 1 −1

#
,

R

and

V =
h −−−→
1 + 2t

−−−→
2 + 5t

i
WB

"
1 2 0 3
0 0 1 −1

#
R

.
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2 Adjoints

From this point on, all spaces are inner product spaces, and
Rn and C [a, b] have the standard inner products defined by
h�v, �wiRn = �v · �w and hf, giC[a,b] =

R b
a f(t)g(t) dt. The

transpose of an array satisfies

(A�c) · �d = (A�c)T �d = �cT
³
AT �d

´
= �c ·

³
AT �d

´
.

The analog for general linear transformations between inner
product spaces is the adjoint.

Definition 2.1 If T : Θ → Σ is a linear transformation, the
linear transformation T ∗ : Σ → Θ is an adjoint for T if and
only if D

T
³
�t
´
, �s
E
Σ
=
D
�t, T ∗ (�s)

E
Θ

for all �s ∈ Σ and �t ∈ Θ.

As expected, the adjoint shares many of the properties of the
transpose, e.g., (T ∗)∗ = T , (TS)∗ = S∗T ∗, etc.
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2.1 The adjoint of a matrix

If V : Rn→ Σ is a matrix, then

hV �c,�siΣ = c1 h�v1, �siΣ + · · ·+ cn h�vn,�siΣ

=

⎡⎢⎣ c1
...
cn

⎤⎥⎦ ·
⎡⎢⎣ h�v1, �siΣ...
h�vn,�siΣ

⎤⎥⎦ = h�c, V ∗�siRn , where

V ∗ =

⎡⎢⎣ h�v1, ·iΣ...
h�vn, ·iΣ

⎤⎥⎦

Example 2.2 If V : R2 → C [0, 1] =
h
�1 �t

i
, and �s = �t2,

then V ∗�s =
h
�1 �t

i∗
�s =

⎡⎢⎢⎢⎣
�1∗
−→
t2

�t∗
−→
t2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

¿
�1,
−→
t2
À
C[0,1]¿

�t,
−→
t2
À
C[0,1]

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
R 1
0
�1
−→
t2 dt

R 1
0
�t
−→
t2 dt

⎤⎥⎥⎥⎦ =
"
1/3
1/4

#
.
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2.2 Products of matrices and matrix-adjoints

matrix-matrix V A adjoint-adjoint A∗V ∗

Rn A−→ Rk

V A & ↓V

Σ

Rn A∗←− Rk

A∗V ∗ - ↑V ∗

Σh
V�a1 · · · V�an

i ⎡⎢⎣ �a∗1V
∗

...
�a∗kV

∗

⎤⎥⎦
adjoint-matrix V ∗W matrix-adjoint VW ∗

Rn V ∗W−→ Rk

W & ↑V ∗

Σ

Rk

W ∗ % V ↓

Θ
VW ∗
−→ Σ⎡⎢⎣ �v∗1 �w1 · · · �v∗1 �wn

... ...
�v∗k �w1 · · · �v∗k �wn

⎤⎥⎦ �v1 �w
∗
1 + · · ·+ �vk �w

∗
k,

In each case, we multiply the rows of the first object with
the columns of the second object. However, all these forms
coalesce into different ways of computing the same product
only when all matrices are rectangular arrays of numbers.
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2.3 The four fundamental spaces

Throughout this section, T : Θ→ Σ is linear with an adjoint
T ∗ : Σ → Θ. There are four fundamental spaces associated
with T : imT and ker T ∗ in Σ, and ker T and imT ∗ in Θ.

Theorem 2.3 ker T = (imT ∗)⊥.

Proof.

�t ∈ ker T ⇐⇒ T�t = �0

⇐⇒
D
T�t,�s

E
Σ
= 0 for all �s ∈ Σ

⇐⇒
D
�t, T ∗�s

E
Θ
= 0 for all �s ∈ Σ

⇐⇒ �t ∈ (imT ∗)⊥

While many of the fundamental theorems involving images,
kernels and orthogonality do not hold for all linear transforma-
tions between inner product spaces, they do hold for matrices,

e.g., imV ∗ = (ker V )⊥ ,
³
(imV )⊥

´⊥
= imV , etc.
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2.4 A least-square fit

The treatment of discrete and continuous least-square fits
is the same. For example, the continuous first-degree least-

square fit in Σ = C [0, 1] to �s =
−→
t2 is the orthogonal projec-

tion of �s onto the image of V =
h
�1 �t

i
. As in the discrete

case, we first solve the normal equation V ∗V �n = V ∗�s for �n.

[V ∗V ... V ∗�s] = V ∗ [V ... �s] =

"
�1∗
�t∗

# h
�1 �t ...

−→
t2

i
=

⎡⎢⎣
R 1
0 1 dt

R 1
0 t dt

...
R 1
0 t
2 dt

R 1
0 t dt

R 1
0 t
2 dt ...

R 1
0 t
3 dt

⎤⎥⎦ =
⎡⎢⎢⎣ 1

1
2
... 1
3

1
2

1
3
... 1
4

⎤⎥⎥⎦

∼ · · · ∼
"
1 0 ... −16
0 1 ... 1

#
=⇒ �n =

"
−16
1

#
.

So

P
−→
t2 = V �n =

h
�1 �t

i " −16
1

#
=
−−−→
t− 1

6.

The algorithm is the same as in the discrete case; only the
computation of the inner product is different. Here are plots
of both the parabola and the continuous least square fit,
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Figure 1: A least square fit.

3 Matrix decompositions

We next show that several important decompositions of a
matrix V can be obtained from decompositions of V ∗V .

Theorem 3.1 SupposeO : Θ→ Γ,B : Γ→ Θ, and T : Θ→
Σ are linear transformations. If T ∗T = BO is a decomposi-
tion of T ∗T and O is onto, then there is a unique linear trans-
formation W which maps Γ onto imT so that the following
diagram commutes. If B : Γ → imT ∗T is an isomorphism,
so is W : Γ→ imT .

Γ
%O (onto) B &

Θ ↓W imT ∗T ⊂ Θ

&T T ∗ %
imT ⊂ Σ

(3.1)
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3.1 The BR decomposition

If V : Rn→ Σ is a matrix, then V ∗V ∈ Rn×n, so Gaussian
elimination yields V ∗V = BR, Diagram 3.1 becomes

Rk

%R (onto) B &
Rn ↓B̄ imV ∗V ⊂ Rn

&V V ∗ %
imV ⊂ Σ

B =
h
V ∗�vi1 · · · V ∗�vik

i
consists of the pivot columns of

V ∗V , and B̄ =
h
�vi1 · · · �vik

i
, consists of the columns of

V corresponding to the pivot columns of V ∗V .

The columns of RT form a basis for imV ∗, so the BR de-
composition provides a basis for three of the four fundamental
spaces for V . We only lack a basis for ker V ∗, which we are
not going to get in general, since ker V ∗ may be infinite di-
mensional.
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3.2 Isometries and orthogonal matrices

Definition 3.2 An isometry Q : Γ → Σ is a linear transfor-
mation from Γ onto Σ that preserves distances, i.e.

kQ (�v − �w)k = kQ�v −Q�wk = k(�v − �w)k
for all �v, �w ∈ Γ.

Theorem 3.3 Q is an isometry if and only if Q∗Q = idΓ.

Theorem 3.4 Suppose S : Rn → Rk and T : Θ → Σ are
linear with adjoints satisfying S∗S = T ∗T , and S is onto.
Then there is an isometry Q : Rk → imT that makes the
following diagram commutative.

Rk

%S (onto) S∗ &
Rn ↓Q imT ∗T ⊂ Rn

&T T ∗ %
imT ⊂ Σ

For the following two resulting decompositions, we plot the
columns of S to obtain a picture of the columns of V =h
sin2 t cos2 t

i
with hf, giΣ =

R π
−π f(t)g(t) dt.
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3.3 The QR decomposition

If V : Rn→ Σ is an isomorphism, then V ∗V : Rn→ Rn is
a positive definite array, so it has an LDLT decomposition,

V ∗V = LDLT =
³√

DLT
´T ³√

DLT
´
= RTR.

Theorem 3.4 applies to yield the isometryQ so that V = QR.

Rn

%
R=
√
DLT RT=L

√
D
&

Rn ↓Q Rn

&V V ∗ %

Σ

The columns of V .
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3.4 The singular value decomposition

If V : Rn → Σ is one-to-one, then V ∗V is symmetric and
positive definite, so it has an orthogonal diagonalization

(V ∗V ) = PDPT =
³
ΣPT

´T ³
ΣPT

´
,

where Σ =
√
D, yielding the diagram below. The resulting

orthogonal matrix Q satisfies V = QΣPT , which is called
the singular value decomposition of V .

Rn

%ΣPT (ΣPT)T
&

Rn ↓Q Rn

&V V ∗ %

Σ

Example 3.5 For V =
h −−→
sin2 t

−−−→
cos2 t

i
, the columns of

Q = V P−TΣ−1 turn out to be multiples of �1 and
−−−→
cos 2t.

Plotting the columns of ΣPT yields this figure.
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The geometry of four vectors in imV .

The standard identities, �1 =
−−−→
cos2 t +

−−→
sin2 t and

−−−→
cos 2t =−−−→

cos2 t−
−−→
sin2 t are evident in the figure.


