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Tensors: Low Rank, High Rank

Given a tensor space like Cn1×···×nk , how many rank-1 tensors fit in a sum?

T =
r∑

i=1

v
(i)
1 ⊗ · · · ⊗ v

(i)
k

1 If you insist all terms are completely independent?

2 If you just require identifiability?

For now, we think about skew-symmetric tensors, so ni = n for all i and the tensors
space is

∧kCn, and the basic rank-1 elements are square-free ordered monomials.

1 Things like e1e2e3 + e4e5e6 in
∧3C6.

2 Things like e2e3e4 + e1e3e5 + e1e2e6 in
∧3C6, or e1e2e3 + e1e4e5 + e1e6e7 in

∧3C7
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Grassmannians

Let V denote a finite dimensional vector space over a field F.

Indecomposable skew-symmetric tensors correspond to linear spaces.

For instance, e1e2e3 ∈
∧3V corresponds to the 3-plane spanned by e1, e2, e3 in V .

Similarly a ∧ b ∧ c might correspond to the span of a, b, c in V .

In general the points v1 ∧ · · · ∧ vk in
∧kV comprise the Grassmannian Gr(k ,V ) in

the Plücker embedding in P
∧kV .

Plücker: take a k × n matrix to its list of maximal minors (up to scale).

The points on the Grassmannian are the rank-1 tensors.
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Secant Varieties

Given a projective variety X ⊂ Pn, let σk(X ) denote the k-secant variety:

The closure of all points with X -rank ≤ k , i.e. those of the form

[v ] = [x1 + · · ·+ xk ] with all [xi ] ∈ X

An X -rank decomposition of [v ] might recover the information in the terms [xi ].

For coding theory, want to send messages (the elements of X , i.e. the rank-1
tensors as a sum and recover the summands on the other end.

“How many rank 1 tensors can you recover?” = channel capacity.

requiring all rank-1 elements to be independent it very limiting.
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r -Restricted Secant Varieties

Consider sums of monomials that have a mutual common factor, like
e1e2e3 + e1e4e5 + e1e6e7. The closure of such is a restricted secant variety.

Restricted secants of Grassmannians appeared in [Fulton and Harris]. In general

Definition

The r-restricted s-secant variety of Gr(k ,V ), is σr
s (Gr(k ,V )) =

cl{[E1 + · · ·+ Es ] | [Ei ] ∈ Gr(k ,V ), dim(
⋂s

i=1Ei) ≥ r} ⊂ P
∧kV .

The first question we ask is what is the dimension of this variety? i.e. how many
words can we pack into each message if they all share some letters?
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Past Work on Dimensions of Secant Varieties

Terracini’s lemma reduces the dimension of the secant variety of a variety X to a
dimension count for a sum of linear spaces. Defectivity is when this dimension
count is not what we expect.

Alexander and Hirshowitz settled the classification of defectivity for Veronese
re-embeddings of projective space.

Classifying defectivity for general tensors and for skew-symmetric tensors are still
open and involve a long list of works [Catalisano, Geramita, Gimigliano,
Abo,Ottaviani,Peterson, Vannieuwenhoven, Bernardi, Chiantini, Draisma...]

Why study r -restricted secants? Usual secants σs(Gr(k ,V )) start having
restrictions as soon as k · s ≥ dimV . Study this methodically in the first case.
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The Baur-Draisma-de Graaf Conjecture

Conjecture (BdDG 2007)

The secant varieties of Grassmannians σs(Gr(k ,Cn)) are all non-defective except:

Secant Variety actual codimension expected codimension

σs(Gr(2,Cn)) 2s(s − 1) 0

σ3(Gr(3,C7)) 1 0

σ3(Gr(4,C8)) 20 19

σ4(Gr(4,C8)) 6 2

σ4(Gr(3,C9)) 10 8
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Generating examples and Macaulay2

To compute the dimension of a parametrized variety we may:
1 Generate sufficiently many random points [p] of the source.
2 Compute the partial derivatives ∂ϕi

∂xj
(p) and populate the matrix dϕp.

3 Compute the rank of the matrix dϕp.
4 Try to use the structure of the points (like cofactor expansion) to improve efficiency

and generate a lot of examples to learn what’s true.

For points p = A+ B with A,B using some independent variables we can utilize
the block structure of the Jacobian to improve computations:


∂Am1

∂a00
+

∂Bm1

∂a00
· · · ∂Am1

∂a(r−1)(n−1)
+

∂Bm1

∂a(r−1)(n−1)

∂Am1

∂a(r−1)(n−1)+1
· · · ∂Am1

∂a(k−1)(n−1)

∂Bm1

∂b00
· · · ∂Bm1

∂b(k−r−1)(n−1)
...

. . .
...

...
. . .

...
...

. . .
...

∂Amd

∂a00
+

∂Bmd

∂a00
· · · ∂Amd

∂a(r−1)(n−1)
+

∂Bmd

∂a(r−1)(n−1)

∂Amd

∂a(r−1)(n−1)+1
· · · ∂Amd

∂a(k−1)(n−1)

∂Bmd

∂b00
· · · ∂Bmd

∂b(k−r−1)(n−1)


⊤

.

(1)
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Restricted Chordal Varieties

Skew-symmetric matrices of rank ≤ r corresponds to the secant variety
σr (Gr(2,V )), which is always defective.

Proposition (Bidleman-Oeding)

Let n = k + 2 and r = max(r , 2k − n). Then the expected and virtual dimensions are:

exp. dim(σr
2(Gr(k , n))) = min

{(
n

k

)
− 1, r(n − r) + 2((k − r)(n − k)) + 1

}
,

v. dim(σr
2(Gr(k , n))) = min

{(
n

k

)
− 1, r(n − r) + 2((k − r)(n − k))− 3

}
.

Further σr+1
2 (Gr(k , n))) = Gr(k , n).
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Abstract Secant Variety and Incidence Description

The abstract s-secant variety of X is denoted Σs(X ) ⊂ (X )×s × PV .
It always has the expected dimension.

Σs(X ) = cl{([x1], [x2], . . . , [xs ], [p]) | p ∈ span{x1, . . . , xs}} ⊂ PV×s × PV .

Projection to the last factor gives the embedded s-secant variety, σs(X ) ⊂ PV .

The abstract r -restricted s-secant variety is the incidence variety

I ⊂ Gr(r ,V )× Gr(k − r ,V )×s × P
∧kV ,

defined by

I := cl{([E ], [F1], . . . , [Fs ], [z ]) | z ∈ span{E ∧ F1, . . . ,E ∧ Fs}}.
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Main Results

Theorem (Bidleman-Oeding)

Let V = Cn with r , s,≥ 0 and 0 ≤ k ≤ n. The restricted secant variety σr
s (Gr(k ,V )) is

birationally isomorphic to the fiber bundle with base Gr(r ,V ) and whose fiber over a
point [E ] ∈ Gr(r ,V ) is σs(Gr(k − r ,V /E )).

Corollary (Bidleman-Oeding)

If the BDdG conjecture is true, then σr
s (Gr(k ,V )) has no additional defect other than

the defect coming from (usual) secant varieties of Grassmannians.
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The tautological sequence of bundles over the Grassmannian Gr(r ,V ):

0 // S // V // Q // 0

Over a point E ∈ Gr(r ,V ) the respective fibers are E , V and V /E .
Applying the Schur functor

∧k−r we obtain a vector bundle:∧k−rQ

��
Gr(r ,V )

the fiber over E is
∧k−r (V /E ). In each fiber we have (a copy of) σs(Gr(k − r ,V /E )).

Our fiber bundle is depicted as:

σs(Gr(k − r ,V /E )) �
� //

((

P
∧k−rV /E �

� // P
∧k−rQ

��
E ∈ Gr(r ,V )
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Applications to Coding Theory by Example

Binary codes of Gr(3,F6
2) ⊂ P

∧3F6
2. There are 1, 395 points in Gr(3,F6

2).
The linear code has a 20× 1 395 generator matrix, M : columns are the Plücker
coordinates of each of the 1 395 points. Encode a message b ∈ F1395

2 via Mb.

Here we can completely describe the SL6(F2)-orbits in
∧3F6

2.

X ◦ 0 Gr(3, 6)◦ σ1
2(Gr(3, 6))

◦ τ(Gr(3, 6))◦ σ2(Gr(3, 6))
◦ Z ◦

#X ◦ 1 1,395 54,684 468,720 357,120 166,656

Normal forms:
e0e1e2 ∈ Gr(3, 6)◦

e0e1e2 + e0e3e4 ∈ σ1
2(Gr(3, 6))

◦

e0e1e2 + e1e2e4 + e0e1e5 ∈ τ(Gr(3, 6))◦

e0e1e2 + e3e4e5 ∈ σ2(Gr(3, 6))
◦

e1e2e4+e0e3e4+e0e2e5+e0e3e5+e1e3e5 = (e1e2+e0e3)e4+(e0e2+(e0+e1)e3)e5 ∈ Z ◦

An identifiability over F2 for σ1
2(Gr(3, 6))

◦: points correspond uniquely to pairs of a
non-zero vector in F6

2 and a full rank skew-symmetric 5× 5 matrix over F2.
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