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Determine Membership

“Given” an algebraic variety X ⊂ Pn and point [z ] ∈ Pn, determine if [z ] ∈ X .
For example, given the n × n matrix multiplication tensor (algorithm) does it lie on
the border-rank R variety for some R = O(n2)?
Is the m ×m permanent polynomial pm a point of the orbit (closure) of the n × n
determinant polynomial for n = poly(m)?
What entanglement type is a sample quantum state?
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Determine Membership
“Given” an algebraic variety X ⊂ Pn and point [z ] ∈ Pn, determine if [z ] ∈ X .

If X = V(f1, . . . , ft) easy: just check if fi(z) = 0 for all i = 1..t.
If X is parametrized by a rational map ϕ : Pm 99K Pn, then for some open U ⊂ Pm,

X = ϕ(U)

Can try to learn the ideal I(X ): the polynomial equations that define X :
I By symbolic elimination? Ideals, Varieties, and Algorithms [Cox-Little-Oshea (1989)]
I By sampling? Can generate as many samples of X as we want via ϕ. Try to guess

the polynomial generators fi ∈ Q[x0, . . . , xn] from noisy samples. Learning Algebraic
varieties from samples, [Brieding-Kalǐsnik-Sturmfels-Weinstein (2018)]

I By interpolation? (with symmetry). Many examples, but shameless plugs:
F Equations for the fifth secant variety of Segre products of projective spaces,

[Oeding-Sam (2016)]
F and Hyperdeterminants from E8, [Holweck-Oeding (2021)]
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Complexity Issues

Elimination theory: If [ϕ(x)] = [ϕ0(x0, . . . xm) : · · · : ϕn(x0, . . . , xm)] form
zi − ϕi(x0, . . . xm), and try to eliminate the xi ’s using Gröbner basis algorithms -
worst case complexity is doubly exponential in n.
Interpolation: If X ⊂ Pn is a hypersurface of degree d , then it is defined by a
polynomial F with potentially N =

(
n+d

d

)
monomials, so N evaluations and linear

algebra with an N ×N matrix can find all coefficients, complexity is roughly O(N3).
Might reduce complexity by exploiting symmetry. What other ways?
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Entanglement types for 3 qubits
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given data T = ∑
I TI |I〉

determine which type
up to symmetry.

Three qubits can be entangled in two inequivalent ways [Dür-Vidal-Cirac (2000)]
Discriminants, resultants and multidimensional determinants,
[Gelfand-Kapranov-Zelevinsky (1994)]
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Pure States Formalism for QI and Algebraic Geometry AG
QI studies AG studies

Hilbert space H = Cn+1 projective space Pn

unit vectors are states (elements are lines thru 0).
|ϕ〉 with 〈ϕ, ϕ〉 = 1. [x ] = [λx ] for every λ ∈ C.

A measurement basis for H a basis of variables for Cn+1

|0〉 , . . . , |n〉 x0, . . . , xn
orthonormal basis [sometimes ignores this]

complex inner product 〈, 〉. [hates complex conjugation]
Measurement basis for H⊗m tensor product basis
|0 · · · 0〉, |0 · · · 01〉, . . ., |n · · · n〉 {xi1 ⊗ · · · ⊗ xim | I = (i1, . . . , im) ∈ {0, . . . n}m}

a state of an m-particle ensemble an element of a tensor product space
Φ ∈ H⊗m [x ] ∈ PN and N = (n + 1)m − 1

with 〈Φ,Φ〉 = 1 with [x ] = [λx ] for every λ ∈ C.
Separable State |ϕ〉1 |ϕ〉2 · · · |ϕ〉m tensor product [a1 ⊗ · · · ⊗ am], with ai ∈ H.
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Algebraic Stats (AS) interpretations:

AS studies AG studies
Probability Simplex ∆ ∈ Rn+1 projective space Pn

Multi-modal contingency tables tensors
P = (P00···0 · · ·P11···1) {xi1 ⊗ · · · ⊗ xim | I = (i1, . . . , im) ∈ {0, . . . n}m}

Independence Model Segre variety
P with deti ,j(P(i , j , ∗ · · · ∗)) = 0 Seg(Pm × · · ·Pm)

Hidden Markov Model Secant variety
Phylogenetic Invariants Defining Equations
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Entangled and Degenerate States
Definition
The state of an m-particle ensemble Φ ∈ H⊗m is unentangled if Φ = ϕ1 ⊗ · · · ⊗ ϕn for
some ϕi ∈ H.
Unentangled ensambles satisfy independence:
P(Φi = a | Φj = b) = P(Φi = a)P(Φj = b).

Example (Entangled States)
Take Φ = 1√

2 (|00〉+ |11〉). Measure one particle at a time (separate experiments):
The probabilities are: P(ϕ1 = |0〉) = P(ϕ1 = |1〉) = 50%,
P(ϕ2 = |0〉) = P(ϕ2 = |1〉) = 50%.
But, the conditional probabilities are: P(ϕ2 = |0〉 | ϕ1 = |0〉) = 100% and
P(ϕ2 = |0〉 | ϕ1 = |1〉) = 0%.
The independence condition P(ϕ2 = b | ϕ1 = a) = P(ϕ2 = b)P(ϕ1 = a) fails.

Remark
Invariants distinguish states: For 2-particle systems matrix rank completely classifies
entanglement type.
|00〉 → ( 1 0

0 0 ) and det ( 1 0
0 0 ) = 0 ⇒ unentangled.

1√
2(|00〉+ |11〉)→ 1√

2 ( 1 0
0 1 ) and det 1√

2 ( 1 0
0 1 ) = 1

2 ⇒ entangled.
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Example (Rank 1 Tensors)
For AG the set of rank 1 tensors is a projective variety called the Segre variety:

Seg(Pn×· · ·×Pn) = {[a⊗b⊗· · ·⊗c] | [a], [b], . . . [c] ∈ Pn} ⊂ PN , with N = (n+1)m−1.

QI calls these elements separable states, product states, or unentangled.

AS, QI and AG all know that the Segre variety (set of product states) is defined by all
2× 2 minors of flattenings of tensors, that this variety is actually a smooth manifold, it
is homogeneous for the action of SL(n + 1)×m, its cone has dimension m · n + 1 etc.
Higher secant varieties are quite mysterious.
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Hyperdeterminants detect highly entangled states

Our AG mantra is to use algebraic invariants to separate entanglement types.

AG likes to have polynomial expressions, also OK with evaluation methods (like SLPs).

The determinant is a polynomial that measures failure to be low rank (and hence failure
to be entangled), but only for 2-particle systems. Determinants have complicated
expressions (n! terms), but easy evaluations (via Gaussian Elimination).

Hyperdetermiants (and other invariants) play this role for multi-particle systems and
detect highly entangled states. Even more complicated than determinants, but maybe
also have easy evaluations?
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Determinant: Dual to Rank 1 Matrices (unentangled states)
A matrix has rank 1 if, up to Gaussian elimination it is of the form:

A =


∗ 0 0 . . . 0
0 0 0 . . . 0
... ... . . . . . .

...
0 0 0 . . . 0

 = column · row

Dually, a matrix is singular if up to Gaussian elimination it is of the form:

A∨ =


0 0 0 . . . 0
0 ∗ ∗ . . . ∗
... ... . . . . . .

...
0 ∗ ∗ . . . ∗

 = annihilates row and column

The set of all singular matrices is defined by the vanishing of a determinant.
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GKZ Hyperdeterminant: (Unentangled States)
Parametrized by the following geometric construction:

Rank 1 Tangent Hyperplanes ⊥
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Random arrays with zeros and change coordinates – get points on hyperdeterminant.
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Hyperdeterminants are Complicated

[Cayley (1850s)]: The 2× 2× 2 hyperdeterminant is a degree 4 polynomial on 8
variables with 12 terms.
[Huggins-Sturmfels-Yu-Yuster (2008)]: The 2× 2× 2× 2 hyperdeterminant is a
polynomial of degree 24 on 16 variables with 2, 894, 276 terms (about .012% of
the possible N = 2.5 ∗ 1010 monomials.
[GKZ] The 2× 2× 2× 2× 2 hyperdeterminant is a polynomial of degree 128 on 32
variables with ? terms. Here N = 3.7 ∗ 1033

This linear algebra seems completely out of reach at the moment.
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A new idea: use ML to study tensors (not the reverse)

Build an Artificial Neural Network (ANNs) classifier that takes the coordinates of a
tensor (quantum state / contingency table) and outputs its entanglement class.
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ML Basics
Goal: Given classified training data (xi , bi) with [xi ] ∈ Pn and bi ∈ {0, 1} select a
function F ∈ F = {Fλ | λ ∈ RN} so that F (xi) = bi for all i .
Model selection: Choose the family F depending on anticipated data features.
Training: Solve optimization problem:

F = min
λ
|Fλ(xi)− bi |

Use, say, 90% of data for training, and 10% for validation. May require many epochs.
Classification: Set a threshold, say θ = 0.5, and declare:

F (x) =

0 if |F (x)| < θ,

1 else.
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Artificial Neural Networks
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Figure: Illustration of an artificial neuron.

https://insights.sei.cmu.edu/sei_blog/2018/02/deep-learning-going-deeper-toward-meaningful-patterns-in-complex-data.html
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Artificial Neural Networks with power activations - interpolation
makes a comeback.
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Figure: A network for a ternary quadric.
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ANNs with power activations = polynomial interpolation.
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The output is a homogeneous polynomial
depending on parameters. Polynomial
Interpolation.
For multiple power function layers see
[Kileel-Trager-Bruna’19] On the expressive
power of deep polynomial neural networks.
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Universal Approximation Theorem(s)
Theorem
ANNs (with conditions on width, depth, activations, etc.)
can approximate any reasonable function

https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6
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Idea 1. Use a hybrid network with powers and ReLU’s:
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Figure: A network for binary classification for algebraic variety membership.
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Example results for degenerate / non-degenerate classification

Tensor size Architecture Training acc. Valid. acc. Testing acc. Loss
2× 2× 2 (100,50,25,16,1) 93.44% 92.53% 92.74% 0.1629

2×4 (200,100,50,16,1) 99.50% 95.95% 95.94% 0.01791
2×5 (100,50,25,16,1) 99.95% 98.74% 98.83% 0.001533

3× 3× 3 (100,50,25,16,1) 98.18% 96.78% 96.83% 0.04770
Table: LeakyReLU network architectures and accuracies for each tensor size, for degenerate
and non-degenerate states classification.

Oeding, Holweck Learning Entanglement Types December 13, 2023 21 / 23



Naively make use of symmetry: orbit recycling.

Suppose we trained the classifier F to accuracy 95%. Then we evaluate F (z) = b. How
sure are we that z is in class b?
What if we trained F to accuracy 60%?
Suppose data we trained on has symmetry, i.e. for g ∈ G (some group) if F (xi) = bi
then we know that F (g .xi) = bi even if we didn’t train on data point (g .xi , bi).
Idea: make a histogram of results for F (g .z) for randomly chosen g ∈ G .
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Some other things you might discover

13.4% of tensors (with norm 1) in R2×2×2 have rank 3, 86.6% have rank 2.
Might have expected over C that 100% of tensors have rank 2 (the generic rank).
Typical real ranks are separated by the hyperdeterminant.
Tensor rank and the ill-posedness of the best low-rank approximation problem [de Silva -
Lim 2006]
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Figure: Histogram of the border rank classifier predictions for 10000 points SLOCC equivalent
to the state |W5〉. The plot predicts that the state is of border rank 2 (class ‘1’).
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Figure: Histogram predictions for 1000 points SLOCC equivalent to |000〉 using our trained
classifiers for (in order, from left to right) separable states, degenerate states and tensor rank.
Being class ‘0’ in each plot respectively predicts that the state is separable, degenerate, and of
rank one.
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Figure: Histogram predictions for 1000 points that are SLOCC equivalent to
1√
2(|000〉+ |011〉) using our trained classifier for (in order, from left to right) separable states,

degenerate states and tensor rank classifiers. The plots predict the state is entangled (class ‘1’
on the left), degenerate (class ‘0’ in the middle), and of rank two (class ‘1’ on the right).
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Figure: Histogram predictions for points that are SLOCC equivalent to the W-state
1√
3(|001〉+ |010〉+ |100〉) using our trained classifiers for (in order, from left to right)

separable states, degenerate states and tensor rank. The left plot and middle plots use 1000
points and respectively predict that the state is entangled (class ‘1’) and degenerate (class ‘0’).
The right plot with 10000 equivalent points predicts that the state is of rank three (class ‘2’).
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Figure: Histogram predictions for points that are SLOCC equivalent to the GHZ-state
1√
2(|000〉+ |111〉) using our trained classifiers for (in order, from left to right) separable

states, degenerate states and tensor rank. The left plot and middle plots use 1000 points and
respectively predict that the state is entangled (class ‘1’) and non-degenerate (class ‘1’). The
right plot with 10000 equivalent points predicts that the state is of rank two (class ‘1’).
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Figure: Histograms for the degenerate states classifier for 10000 points respectively SLOCC
equivalent to the states |Φ1〉, |Φ2〉, |Φ3〉, and |Φ4〉, from left to right. Classes ‘0’ and ‘1’
respectively refer to degenerate and non-degenerate states. Here all states are predicted to be
degenerate.
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Figure: Histograms for the degenerate states classifier on 10000 points respectively SLOCC
equivalent to |δ1〉 (left) and |δ2〉 (right). Classes ‘0’ and ‘1’ respectively refer to degenerate
and non-degenerate states. Here both states are predicted to be non-degenerate.
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