Toward a Salmon Conjecture

Daniel J. Bates ${ }^{1}$ and Luke Oeding ${ }^{2}$
${ }^{1}$ Colorado State University, USA
${ }^{2}$ Universitá Degli Studi di Firenze, Italy \rightarrow UC Berkeley, USA

October 7, 2011
${ }^{1}$ partially supported by NSF grant DMS-0914674.
${ }^{2}$ supported by National Science Foundation grant Award No. 0853000:
International Research Fellowship Program (IRFP)

Toward a Salmon Conjecture

...and why even a vegetarian might care...

Daniel J. Bates ${ }^{1}$ and Luke Oeding ${ }^{2}$
${ }^{1}$ Colorado State University, USA
${ }^{2}$ Universitá Degli Studi di Firenze, Italy \rightarrow UC Berkeley, USA

October 7, 2011

[^0]
The salmon prize

In 2007, E. Allman offered a prize of Alaskan salmon (!) to whoever finds the defining ideal of

$$
\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)
$$

This algebraic variety may be viewed as a statistical model for evolution.

Nucleotides $\{A, C, G, T\}$
Independent extant species
Unknown (hidden) Ancestor Invariants of this statistical model

The salmon prize

In 2007, E. Allman offered a prize of Alaskan salmon (!) to whoever finds the defining ideal of

$$
\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)
$$

This algebraic variety may be viewed as a statistical model for evolution.

$\Delta \subset \mathbb{P}^{64} \subset \mathbb{P}^{64}$

Nucleotides $\{A, C, G, T\} \leftrightarrow \mathbb{P} \mathbb{C}^{4}$.
Independent extant species $\leftrightarrow \operatorname{Seg}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)$.
Unknown (hidden) Ancestor $\leftrightarrow 4^{\text {th }}$ secant variety. Invariants of this statistical model \leftrightarrow ideal of the algebraic variety.

The salmon prize

Allman's Motivation: Work of Allman-Rhodes'03 implies that solving the salmon problem would provide all phylogenetic invariants for a whole class of binary evolutionary tree models!

As in this example, nice varieties in spaces of tensors (like secant varieties) appear in several fields outside of mathematics, such as

- algebraic statistics (other problems like this one)
- computational complexity theory (bounding the complexity of algorithms via ranks of tensors)
- signal processing (CDMA protocol for mobile phones)
- physics (quantum information theory and measures of entanglement)
- computer vision (multi-view geometry)
- ... your favorite variety?

Recent history and current status

- [Landsberg-Manivel 2004]: Some equations of $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$ in degrees 5,6,9 in representation theoretic language.
- [Landsberg-Manivel 2008]: Reduced set-theoretic problem for $\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{n} \times \mathbb{P}^{m}\right), n, m \geq 3$ to $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$.
- October 2008 Sturmfels asked for explicit (M2) version of degree 6 equations. (Now an ancillary file on ArXiv [Bates-O. 2011]).
- December 2008 (O-) MSRI Algebraic Statistics Workshop: Conjecture about zero set of degree 6 equations, if confirmed would prove set-theoretic result.
- March 2010 (Friedland): set-theoretic result using degrees 5, 9, 16. Second version corrects proof of Landsberg-Manivel reduction.
- July 2010 (Bates): Numerical Algebraic Geometry (NAG) calculation in Bertini for deg. 6 equations, MSRI conjecture \Rightarrow numerical, set-theoretic result using degrees 5, 6, 9, [Bates-O 2011].
- April 2011 (Friedland-Gross): Explicit equations + previous proof of Friedland: confirm NAG result without numerical methods.
- Ideal theoretic problem is still open.

Secant varieties

Let $A=\left\{a_{i}\right\}, B=\left\{b_{j}\right\}, C=\left\{c_{k}\right\}$, be \mathbb{C}-vector spaces, then the tensor product is $A \otimes B \otimes C=\left\{a_{i} \otimes b_{j} \otimes c_{k}\right\}$, with coordinates $p_{i j k}$.

- Segre variety (rank 1 tensors): (Independence model) Defined by

$$
\begin{aligned}
\text { Seg : } \mathbb{P A} A \times \mathbb{P} B \times \mathbb{P} C & \longrightarrow \mathbb{P}(A \otimes B \otimes C) \\
([a],[b],[c]) & \longmapsto[a \otimes b \otimes c] .
\end{aligned}
$$

- The $r^{\text {th }}$ secant variety of a variety $X \subset \mathbb{P}^{n}:$ (Mixture model)

$$
\sigma_{r}(X)=\overline{\bigcup_{x_{1}, \ldots, x_{r} \in X} \mathbb{P}\left(\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}\right)} \subset \mathbb{P}^{n}
$$

A useful reduction

Theorem (Landsberg-Manivel '08, Friedland'10)

 $\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)$ is the zero set of:(1) $M_{5}=\{$ (Strassen's [1983] degree 5 commutation conditions) $\}$
(2) Equations inherited from $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$

- Key point: It remains to find the equations of $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$!
- Note: M_{5} is a 1728 dimensional irreducible G-module, for $G=G L(4) \times G L(4) \times G L(4) \rtimes \mathfrak{S}_{3}$ with a natural basis of polynomials with 180 or 360 or 540 monomials (see also [Allman-Rhodes '03]).

Symmetry

- The symmetry group of the salmon variety

$$
\sigma_{4}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)
$$

is change of coordinates in each factor,

$$
G L(A) \times G L(B) \times G L(C)
$$

(or $G L(A) \times G L(B) \times G L(C) \rtimes \mathfrak{S}_{3}$ when $\left.A \cong B \cong C\right)$.

- Good news: A large group acts and we can use tools from Representation Theory!
- This symmetry is a powerful tool and we should exploit it!

Representation Theory notation

- Module notation: $S^{d}(A \otimes B \otimes C)=\mathbb{C}\left[p_{i j k}\right]_{d}$.
- Fact: $S^{d}(A \otimes B \otimes C)$ is a $G L(A) \times G L(B) \times G L(C)$-module.
- The irreducible submodules of $S^{d}(A \otimes B \otimes C)$ are isomorphic to Schur modules indexed by certain partitions $\pi_{1}, \pi_{2}, \pi_{3}$ of d :

$$
S_{\pi_{1}} A \otimes S_{\pi_{2}} B \otimes S_{\pi_{3}} C
$$

and usually occur with multiplicity - this makes us work harder.

- Given $\pi_{1}, \pi_{2}, \pi_{3}$ and the multiplicity, there is a combinatorial algorithm for constructing polynomials!

An ideal membership test

Apply [Landsberg-Manivel'04] ideal membership test: For each d,

- decompose $S^{d}\left(A^{*} \otimes B^{*} \otimes C^{*}\right)$ as a $G L(A) \times G L(B) \times G L(C)$-module.
- for each module (isotypic component), test a highest weight vector (highest weight space) for vanishing on $\sigma_{4}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$.
- output: $\mathcal{I}_{d}\left(\sigma_{4}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)\right)$ as a list of modules.

Works well for small degree and produced the following results:

- $\mathcal{I}_{5}\left(\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)\right)=0$.
- $\mathcal{I}_{6}\left(\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)\right)=S_{2,2,2} \mathbb{C}^{3} \otimes S_{2,2,2} \mathbb{C}^{3} \otimes S_{3,1,1,1} \mathbb{C}^{4}$
$=\{$ ten degree 6 polynomials on 36 variables $\}$.

Inheritance via an example

Proposition (example of Proposition 4.4 Landsberg-Manivel'04)

$\tilde{M}_{6}:=S_{(2,2,2)} \mathbb{C}^{4} \otimes S_{(2,2,2)} \mathbb{C}^{4} \otimes S_{(3,1,1,1)} \mathbb{C}^{4} \subset \mathcal{I}\left(\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)\right)$ if and only if
$M_{6}:=S_{(2,2,2)} \mathbb{C}^{3} \otimes S_{(2,2,2)} \mathbb{C}^{3} \otimes S_{(3,1,1,1)} \mathbb{C}^{4} \subset \mathcal{I}\left(\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)\right)$.
Note: $\operatorname{dim}\left(\tilde{M}_{6}\right)=10^{3}$ but $\operatorname{dim}\left(M_{6}\right)=10$, and has basis of polynomials, each with 576 or 936 monomials.

At every stage we study the smallest module possible. This is a significant dimension reduction.

For $\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)$ we only need to consider $S_{\pi_{1}} A \otimes S_{\pi_{2}} B \otimes S_{\pi_{3}} C$ where $\pi_{1}, \pi_{2}, \pi_{3}$ have 4 parts, and those equations we get from inheritance.

What is a flattening?

Express a tensor $T=\sum_{i, j, k} p_{i j k} a_{i} \otimes b_{j} \otimes c_{k} \in A \otimes B \otimes C$ as a matrix:

$$
T=\sum_{i} a_{i} \otimes\left(\sum_{j, k} p_{i j k} b_{j} \otimes c_{k}\right) \in A \otimes(B \otimes C)
$$

For example: $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \cong \mathbb{C}^{3} \otimes\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right) \cong \mathbb{C}^{3} \otimes \mathbb{C}^{9}$.

$$
T=\left[p_{i j k}\right]=\sum_{i} a_{i} \otimes\left(\sum_{j, k} p_{i j k} b_{j} \otimes c_{k}\right)=\sum_{i} a_{i} \otimes X_{i}
$$

$$
\psi_{0, T}=\left(\begin{array}{lll|lll:lll}
p_{111} & p_{121} & p_{131} & p_{112} & p_{122} & p_{132} & p_{113} & p_{123} & p_{133} \\
p_{211} & p_{221} & p_{231} & p_{212} & p_{222} & p_{232} & p_{213} & p_{223} & p_{233} \\
p_{311} & p_{321} & p_{331} & p_{312} & p_{322} & p_{332} & p_{313} & p_{323} & p_{333}
\end{array}\right)
$$

$$
=\left(X_{1}\left|X_{2}\right| X_{3}\right)
$$

When they exist, $(r+1) \times(r+1)$ minors of $\psi_{0, T}$ are (some) equations of $\sigma_{r}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$.

Flattenings and subspace varieties

Tensors that can be written using fewer variables:

$$
\text { Sub }_{p, q, r}:=\left\{[T] \in \mathbb{P}(A \otimes B \otimes C) \left\lvert\, \begin{array}{ll}
\exists \mathbb{C}^{p} \subseteq A, \exists \mathbb{C}^{q} \subseteq B, \exists \mathbb{C}^{r} \subseteq C \\
& \text { and }[T] \in \mathbb{P}\left(\mathbb{C}^{p} \otimes \mathbb{C}^{q} \otimes \mathbb{C}^{r}\right)
\end{array}\right.\right\}
$$

Theorem (3.1, Landsberg-Weyman '07)

Sub $_{p, q, r}$ is normal with rational singularities. Its ideal is generated by the minors of flattenings;

$$
\begin{aligned}
\left(\bigwedge^{p+1} A \otimes \bigwedge^{p+1}(B \otimes C)\right) & \oplus\left(\bigwedge^{q+1} B \otimes \bigwedge^{q+1}(A \otimes C)\right) \\
& \oplus\left(\bigwedge^{r+1}(A \otimes B) \otimes \Lambda^{r+1} C\right)
\end{aligned}
$$

Fact: $S u b_{r, r, r} \supseteq \sigma_{r}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$
Key Point: The subspace varieties contain secant varieties, and therefore they give some of the equations of the secant varieties.

A result of Strassen

Theorem (Strassen 1988 (reinterpreted by Landsberg-Manivel))

The ideal of the hypersurface $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \mathbb{P}^{26}$ is generated in degree 9 by a nonzero vector in the 1 dimensional module

$$
S_{(3,3,3)} \mathbb{C}^{3} \otimes S_{(3,3,3)} \mathbb{C}^{3} \otimes S_{(3,3,3)} \mathbb{C}^{3}
$$

Since $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$, inheritance implies that $M_{9}:=S_{(3,3,3)} \mathbb{C}^{3} \otimes S_{(3,3,3)} \mathbb{C}^{3} \otimes S_{(3,3,3)} \mathbb{C}^{4} \subset \mathcal{I}\left(\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)\right)$

Strassen's polynomial only has 9,216 monomials on 27 variables. $\operatorname{dim}\left(M_{9}\right)=20$, with natural basis of polynomials with 9,216 or 25,488 or 43,668 monomials on 36 variables! 23 Mb file of polynomials... :-(

Strassen's equation: A useful reformulation by Ottaviani

$T=\left[p_{i j k}\right]=\sum_{i} a_{i} \otimes\left(\sum_{j, k} p_{i j k} b_{j} \otimes c_{k}\right)=\sum_{i} a_{i} \otimes X_{i}$
Strassen's equation is the determinant of the 9×9 matrix:

$$
\psi_{T}=\left(\begin{array}{ccc}
0 & x_{3} & -X_{2} \\
-X_{3} & 0 & x_{1} \\
X_{2} & -X_{1} & 0
\end{array}\right)
$$

Basic idea:

$$
\begin{array}{rr}
\psi_{1, T+T^{\prime}}=\psi_{T}+\psi_{T^{\prime}} & \text { construction is linear in } T \\
\operatorname{Rank}(T)=1 \Rightarrow \operatorname{Rank}\left(\psi_{T}\right)=2 & \text { base case } \\
\therefore \operatorname{Rank}(T)=r \Rightarrow \operatorname{Rank}\left(\psi_{T}\right) \leq 2 r & \text { upper bound on rank }
\end{array}
$$

Numerical Algebraic Geometry: Bertini

Theorem*

The zero set of M_{6} (ten polynomials on 36 variables) has precisely two components of codimensions 4 and 6 and degrees 345 and 84 respectively. $\mathcal{V}\left(M_{6}\right)=\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right) \cup$ Sub $_{3,3,3}$.

Using numerical homotopy continuation (Bertini):

- Original computation (July 2010) 2 weeks of computational time on 8 processors: $2.66 \mathrm{GHz} \times 8 p \times 336 h=7150 \mathrm{GHzh}$
- Regeneration -Hauenstein, Sommese \& Wampler, May 2011. $2.33 \mathrm{GHz} \times 65 p \times 20 h=3029 \mathrm{GHzh}$ - confirmed same result
- Small tracking and final tolerances $\left(10^{-10}\right.$ or smaller)
- Adaptive precision numerical methods
- Checks and error controls built into Bertini such as checking at $t=$ 0.1 that no paths have crossed.

Confirms conjecture from MSRI 2008.

Numerical Algebraic Geometry: Bertini

> Theorem *
> $\mathcal{V}\left(M_{6}+M_{9}\right)=\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$

Suppose $x \in \mathcal{V}\left(M_{6}\right)=\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right) \cup$ Sub $_{3,3,3}$.
If $x \notin \sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$, then use M_{9} and consider $x \in \operatorname{Sub}_{3,3,3} \cap \mathcal{V}\left(M_{9}\right)$
$\Rightarrow x$ is in some $\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right) \subset \sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{3}\right)$.
Theorem* (Corollary to Landsberg-Manivel 2008, Friedland 2010)
The salmon variety is cut out set-theoretically in degrees 5, 6, 9:

$$
\mathcal{V}\left(M_{5}+\tilde{M}_{6}+\tilde{M}_{9}\right)=\sigma_{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)
$$

Resolves the salmon problem set-theoretically.
Provides a more efficient set of equations than [Friedland 2010]. Sharpens the conjecture for the ideal-theoretic question. Friedland-Gross 2011 make Theorem* into Theorem.

A template for finding equations of varieties coming from applications

The salmon variety has been studied via the following:
(1) Start: statistical model, space of special tensors, etc.
(2) Find the corresponding algebraic variety X.
(3) Find the largest symmetry group G acting X.
(3) Study $\mathcal{I}(X)$ as a G-module using Representation Theory.
(5) Compute all modules in $\mathcal{I}_{d}(X)$ for small degree (nec. conditions).
(0) Use Numerical Algebraic Geometry to compute unknown zero-sets.
(Try to make geometric reductions to show that the known invariants suffice.
(3) Try to prove what you know* is true.

[^0]: ${ }^{1}$ partially supported by NSF grant DMS-0914674.
 ${ }^{2}$ supported by National Science Foundation grant Award No. 0853000:
 International Research Fellowship Program (IRFP)

