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The salmon prize

In 2007, E. Allman offered a prize of Alaskan salmon (!) to whoever finds
the defining ideal of σ4

(

P
3 × P

3 × P
3
)

.

This algebraic variety may be viewed as a statistical model for evolution.

•

• • •

ancestor

evolution

extant1 extant2 extant3

Nucleotides {A,C ,G ,T}
Independent extant species
Unknown (hidden) Ancestor
Invariants of this statistical model
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The salmon prize

In 2007, E. Allman offered a prize of Alaskan salmon (!) to whoever finds
the defining ideal of σ4

(

P
3 × P

3 × P
3
)

.

This algebraic variety may be viewed as a statistical model for evolution.

•

• • •
∆ ⊂ PR

64 ⊂ PC
64

σ4

P
3

P
3

P
3

Nucleotides {A,C ,G ,T} ↔ PC
4.

Independent extant species ↔ Seg(P3 × P
3 × P

3).
Unknown (hidden) Ancestor ↔ 4th secant variety.
Invariants of this statistical model ↔ ideal of the algebraic variety.
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The salmon prize

Allman’s Motivation: Work of Allman-Rhodes’03 implies that solving the
salmon problem would provide all phylogenetic invariants for a whole class
of binary evolutionary tree models!

As in this example, nice varieties in spaces of tensors (like secant varieties)
appear in several fields outside of mathematics, such as

algebraic statistics (other problems like this one)

computational complexity theory (bounding the complexity of
algorithms via ranks of tensors)

signal processing (CDMA protocol for mobile phones)

physics (quantum information theory and measures of entanglement)

computer vision (multi-view geometry)

... your favorite variety?
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Recent history and current status
[Landsberg–Manivel 2004]: Some equations of σ4(P

2 × P
2 × P

3) in
degrees 5,6,9 in representation theoretic language.
[Landsberg–Manivel 2008]: Reduced set-theoretic problem for

σ4(P
3 × P

n × P
m), n,m ≥ 3 to σ4(P

2 × P
2 × P

3).
October 2008 Sturmfels asked for explicit (M2) version of degree 6
equations. (Now an ancillary file on ArXiv [Bates–O. 2011]).
December 2008 (O–) MSRI Algebraic Statistics Workshop:
Conjecture about zero set of degree 6 equations, if confirmed would
prove set-theoretic result.
March 2010 (Friedland): set-theoretic result using degrees 5, 9, 16.
Second version corrects proof of Landsberg-Manivel reduction.
July 2010 (Bates): Numerical Algebraic Geometry (NAG) calculation
in Bertini for deg. 6 equations, MSRI conjecture ⇒ numerical,
set-theoretic result using degrees 5, 6, 9, [Bates–O 2011].
April 2011 (Friedland–Gross): Explicit equations + previous proof of
Friedland: confirm NAG result without numerical methods.
Ideal theoretic problem is still open.
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Secant varieties

Let A = {ai},B = {bj},C = {ck}, be C-vector spaces, then the tensor
product is A ⊗ B ⊗ C = {ai ⊗ bj ⊗ ck}, with coordinates pijk .

Segre variety (rank 1 tensors): (Independence model) Defined by

Seg : PA × PB × PC −→ P
(

A ⊗ B ⊗ C
)

([a], [b], [c]) 7−→ [a ⊗ b ⊗ c].

The r th secant variety of a variety X ⊂ P
n: (Mixture model)

σr (X ) =
⋃

x1,...,xr∈X

P(span{x1, . . . , xr}) ⊂ P
n.
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A useful reduction

Theorem (Landsberg–Manivel ’08, Friedland’10)

σ4

(

P
3 × P

3 × P
3
)

is the zero set of:

1 M5 = { (Strassen’s [1983] degree 5 commutation conditions) }

2 Equations inherited from σ4

(

P
2 × P

2 × P
3
)

Key point: It remains to find the equations of σ4(P
2 × P

2 × P
3)!

Note: M5 is a 1728 dimensional irreducible G -module, for
G = GL(4) × GL(4) × GL(4) ⋊ S3 with a natural basis of polynomials
with 180 or 360 or 540 monomials (see also [Allman-Rhodes ’03]).
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Symmetry

The symmetry group of the salmon variety

σ4

(

PA × PB × PC
)

is change of coordinates in each factor,

GL(A) × GL(B) × GL(C )

(or GL(A) × GL(B) × GL(C ) ⋊ S3 when A ∼= B ∼= C ).

Good news: A large group acts and we can use tools from
Representation Theory!

This symmetry is a powerful tool and we should exploit it!
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Representation Theory notation

Module notation: Sd(A ⊗ B ⊗ C ) = C[pijk ]d .

Fact: Sd(A ⊗ B ⊗ C ) is a GL(A) × GL(B) × GL(C )-module.

The irreducible submodules of Sd(A ⊗ B ⊗ C ) are isomorphic to
Schur modules indexed by certain partitions π1, π2, π3 of d :

Sπ1A ⊗ Sπ2B ⊗ Sπ3C ,

and usually occur with multiplicity - this makes us work harder.

Given π1, π2, π3 and the multiplicity, there is a combinatorial
algorithm for constructing polynomials!
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An ideal membership test

Apply [Landsberg–Manivel’04] ideal membership test:
For each d ,

decompose Sd(A∗ ⊗ B∗ ⊗ C ∗) as a GL(A) × GL(B)× GL(C )-module.

for each module (isotypic component), test a highest weight vector
(highest weight space) for vanishing on σ4(PA × PB × PC ).

output: Id(σ4(PA × PB × PC )) as a list of modules.

Works well for small degree and produced the following results:

I5(σ4(P
2 × P

2 × P
3)) = 0.

I6(σ4(P
2 × P

2 × P
3)) = S2,2,2C

3 ⊗ S2,2,2C
3 ⊗ S3,1,1,1C

4

= { ten degree 6 polynomials on 36 variables }.
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Inheritance via an example

Proposition (example of Proposition 4.4 Landsberg–Manivel’04)

M̃6 := S(2,2,2)C
4 ⊗ S(2,2,2)C

4 ⊗ S(3,1,1,1)C
4 ⊂ I

(

σ4(P
3 × P

3 × P
3)

)

if and only if

M6 := S(2,2,2)C
3 ⊗ S(2,2,2)C

3 ⊗ S(3,1,1,1)C
4 ⊂ I

(

σ4(P
2 × P

2 × P
3)

)

.

Note: dim(M̃6) = 103 but dim(M6) = 10, and has basis of polynomials,
each with 576 or 936 monomials.

At every stage we study the smallest module possible. This is a significant
dimension reduction.

For σ4(P
3 × P

3 × P
3) we only need to consider Sπ1A⊗ Sπ2B ⊗ Sπ3C where

π1, π2, π3 have 4 parts, and those equations we get from inheritance.
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What is a flattening?

Express a tensor T =
∑

i ,j ,k pijkai ⊗ bj ⊗ ck ∈ A ⊗ B ⊗ C as a matrix:

T =
∑

i ai ⊗ (
∑

j ,k pijkbj ⊗ ck) ∈ A ⊗ (B ⊗ C )

For example: C
3 ⊗ C

3 ⊗ C
3 ∼= C

3 ⊗ (C3 ⊗ C
3) ∼= C

3 ⊗ C
9:

T = [pijk ] =
∑

i ai ⊗ (
∑

j ,k pijkbj ⊗ ck) =
∑

i ai ⊗ Xi

ψ0,T =





p111 p121 p131 | p112 p122 p132 | p113 p123 p133

p211 p221 p231 | p212 p222 p232 | p213 p223 p233

p311 p321 p331 | p312 p322 p332 | p313 p323 p333





= (X1 | X2 | X3)

When they exist, (r + 1) × (r + 1) minors of ψ0,T are (some) equations of
σr (PA × PB × PC ).
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Flattenings and subspace varieties
Tensors that can be written using fewer variables:

Subp,q,r :=

{

[T ] ∈ P(A ⊗ B ⊗ C ) |
∃C

p ⊆ A,∃C
q ⊆ B ,∃C

r ⊆ C ,
and [T ] ∈ P(Cp ⊗ C

q ⊗ C
r )

}

Theorem ( 3.1, Landsberg–Weyman ’07)

Subp,q,r is normal with rational singularities. Its ideal is generated by the
minors of flattenings;

(

∧p+1A ⊗
∧p+1(B ⊗ C )

)

⊕
(

∧q+1B ⊗
∧q+1(A ⊗ C )

)

⊕
(

∧r+1(A ⊗ B) ⊗
∧r+1C

)

Fact: Subr ,r ,r ⊇ σr (PA × PB × PC )

Key Point: The subspace varieties contain secant varieties, and therefore
they give some of the equations of the secant varieties.
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A result of Strassen

Theorem (Strassen 1988 (reinterpreted by Landsberg–Manivel))

The ideal of the hypersurface σ4(P
2 × P

2 × P
2) ⊂ P

26 is generated in
degree 9 by a nonzero vector in the 1 dimensional module

S(3,3,3)C
3 ⊗ S(3,3,3)C

3 ⊗ S(3,3,3)C
3

Since σ4(P
2 × P

2 × P
2) ⊂ σ4(P

2 × P
2 × P

3), inheritance implies that
M9 := S(3,3,3)C

3 ⊗ S(3,3,3)C
3 ⊗ S(3,3,3)C

4 ⊂ I(σ4(P
2 × P

2 × P
3))

Strassen’s polynomial only has 9,216 monomials on 27 variables.
dim(M9) = 20, with natural basis of polynomials with 9,216 or 25,488 or
43,668 monomials on 36 variables! 23 Mb file of polynomials... :-(

Bates–Oeding (CSU–UNIFI) Toward a Salmon Conjecture October 7, 2011 13 / 17



Strassen’s equation: A useful reformulation by Ottaviani

T = [pijk ] =
∑

i ai ⊗ (
∑

j ,k pijkbj ⊗ ck) =
∑

i ai ⊗ Xi

Strassen’s equation is the determinant of the 9 × 9 matrix:

ψT =





0 X3 −X2

−X3 0 X1

X2 −X1 0





Basic idea:

ψ1,T+T ′ = ψT + ψT ′ construction is linear in T

Rank(T ) = 1 ⇒ Rank(ψT ) = 2 base case

∴ Rank(T ) = r ⇒ Rank(ψT ) ≤ 2r upper bound on rank
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Numerical Algebraic Geometry: Bertini

Theorem∗

The zero set of M6 (ten polynomials on 36 variables) has precisely two
components of codimensions 4 and 6 and degrees 345 and 84 respectively.
V(M6) = σ4

(

P
2 × P

2 × P
3
)

∪ Sub3,3,3.

Using numerical homotopy continuation (Bertini):

Original computation (July 2010) 2 weeks of computational time on 8
processors: 2.66GHz × 8p × 336h = 7150GHzh

Regeneration -Hauenstein, Sommese & Wampler, May 2011.
2.33GHz × 65p × 20h = 3029GHzh – confirmed same result

Small tracking and final tolerances (10−10 or smaller)

Adaptive precision numerical methods

Checks and error controls built into Bertini such as checking at t =
0.1 that no paths have crossed.

Confirms conjecture from MSRI 2008.
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Numerical Algebraic Geometry: Bertini

Theorem∗

V(M6 + M9) = σ4(P
2 × P

2 × P
3).

Suppose x ∈ V(M6) = σ4

(

P
2 × P

2 × P
3
)

∪ Sub3,3,3.
If x 6∈ σ4

(

P
2 × P

2 × P
3
)

, then use M9 and consider x ∈ Sub3,3,3 ∩ V(M9)
⇒ x is in some σ4

(

P
2 × P

2 × P
2
)

⊂ σ4

(

P
2 × P

2 × P
3
)

.

Theorem∗ (Corollary to Landsberg–Manivel 2008, Friedland 2010)

The salmon variety is cut out set-theoretically in degrees 5, 6, 9:

V
(

M5 + M̃6 + M̃9

)

= σ4

(

P
3 × P

3 × P
3
)

Resolves the salmon problem set-theoretically.
Provides a more efficient set of equations than [Friedland 2010].
Sharpens the conjecture for the ideal-theoretic question.
Friedland–Gross 2011 make Theorem∗ into Theorem.
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A template for finding equations of varieties coming from

applications

The salmon variety has been studied via the following:

1 Start: statistical model, space of special tensors, etc.

2 Find the corresponding algebraic variety X .

3 Find the largest symmetry group G acting X .

4 Study I(X ) as a G -module using Representation Theory.

5 Compute all modules in Id(X ) for small degree (nec. conditions).

6 Use Numerical Algebraic Geometry to compute unknown zero-sets.

7 Try to make geometric reductions to show that the known invariants
suffice.

8 Try to prove what you know∗ is true.
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