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Abstract

Exploiting the homogeneous structure of a wedge in the complex plane, we
compute the spectrum of the anti-linear Ahlfors–Beurling transform acting on
the associated Bergman space. Consequently, the similarity equivalence between
the Ahlfors–Beurling transform and the Neumann–Poincaré operator provides the
spectrum of the latter integral operator on a wedge. A localization technique and
conformal mapping lead to the first complete description of the essential spectrum
of the Neumann–Poincaré operator on a planar domain with corners, with respect
to the energy norm of the associated harmonic field.

1. Introduction

Exactly a hundred years ago Torsten Carleman defended his doctoral disserta-
tion titled “Über das Neumann–Poincarésche Problem für ein Gebiet mit Ecken”
[8]. The double-layer potential singular integral operator associated with a domain
� ⊂ R

2, known also as the Neumann–Poincaré (NP) operator, was at that time
a central object of study, first for its role in solving boundary value problems in
mathematical physics, but also as the main example in the emerging abstract spec-
tral theories proposed by Hilbert, Fredholm and F. Riesz. While the NP operator
is compact on smooth boundaries, the presence of corners produces continua in its
essential spectrum. For the modern reader these concepts make no sense without a
well defined, complete functional space where the operator NP acts, not to mention
also the current definitions of essential spectrum, spectral resolution, approximate
or generalized eigenvalues, etc. In a tour de force Carleman did solve the singu-
lar integral equation governed by the NP operator and analyzed the (asymptotic)
structure of its solutions in a domain with corners. He made use of elementary and
very ingenious geometric transformations together with the, at his time new, the-
ory of Fredholm determinants combined with the canonical factorization of entire
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functions of Hadamard. Carleman’s work did not attract the visibility it deserves,
nor did the results of his predecessors, among whom we mention Zaremba [25].

Only a few years after Carleman’s defense, Radon [21] developed the theory
of measures of bounded variation, and applied it to study the NP operator on the
space of continuous functions C(∂�). He computed the essential spectral radius
for boundaries ∂� of bounded rotation, extending Carleman’s work. Note that we
now understand that for non-smooth boundaries, the spectrum of the NP operator
depends drastically on the underlying space. For instance, when the NP operator
is considered on L p(∂�), p � 2, � a curvilinear polygon, the complete spectral
picture is available [16]—and it is entirely different from what appears in the work
of Carleman and Radon.

The Hilbert space on which we will perform a spectral analysis is the energy
space of potential fields with sources carried by ∂�. The energy space was advo-
cated by Poincaré in his foundational and novel approach to the Dirichlet problem.
It stands out as a natural setting for theNP operator for at least two reasons. First, the
invertibility properties of the NP operator acting on the energy space lead to finite
energy solutions of boundary value problems for the Laplacian, and such solutions
often carry a physical interpretation. Second, due to a symmetrization property, the
NP operator has real spectrum on the energy space even when the boundary ∂� is
non-smooth (this is not true for example on L2(∂�)). The recent survey [23] treats,
among other things, qualitative aspects of the essential spectrum of the NP operator
on various spaces of interest, for domains with corners. However, the case of the
physically motivated energy space is noted for the lack of information concerning
the structure of the essential spectrum.

Ahlfors [2] observed a connection between the spectral radius of the NP
operator (the largest Fredholm eigenvalue of �) and the quasiconformal reflection
coefficient of ∂�. The reflection coefficient is notoriously difficult to compute
for general domains which do not have any special geometric structure [14], yet,
Ahlfors’ inequality provides, to date, nearly all known spectral bounds of the NP
operator in the energy norm.

Very recently, the NP operator has received a resurgence of interest arising
from the mathematical theory of newmaterials and its need to solve various inverse
problems. In particular, spectral analysis questions of the NP operator on non-
smooth domains are central in the penetrating works of Ammari, Kang, Milton
and their enthusiastic collaborators [3–6]. Again, a century after Carleman’s work,
estimates of the location of the essential spectrum of the NP operator and the
asymptotic behavior of its generalized eigenfunctions turn out to be highly sought
results. The preprint [12] contains a detailed description of the spectral resolution
of the NP operator acting on a lens domain, with respect to the energy space. In a
previous work [19] we have obtained bounds for the spectrum of the NP operator,
in the same energy space, on domains with corners, via distortion theorems of
conformalmappings. In the same setting, a detailed numerical study of the spectrum
has been done in [11]. Some interesting geometric analysis questions pertaining to
the NP operator also appear in [17].

The present note contains a new approach to the spectral analysis of the NP
operator in a wedge in two variables. We exploit the similarity between the NP
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operator acting on the energy space (identifiable with a fractional Sobolev space
on the boundary) and the Ahlfors–Beurling singular integral operator [7] acting
on the Bergman space of the underlying domain. The homothetic action of the
commutative group of positive real numbers on the wedge turns out to simplify, at
least conceptually, the computation. We then generalize, via a standard localization
procedure and a conformal mapping technique, the wedge computation to domains
with finitelymany corners. The outcome is an exact picture of the essential spectrum
of the NP operator, in the energy norm.

A few comments on the nature of the singular integral transformations we deal
with are in order: the NP operator is not symmetric, but only symmetrizable in a
norm which is equivalent to a fractional Sobolev space norm on the boundary, see
[19] for details. Therefore the NP operator is only scalar in the sense of Dunford,
and any spectral resolution has to be understood in this generalized sense [9]. The
spectral analysis of the anti-linear Ahlfors–Beurling operator can today be naturally
understood within the abstract theory of complex symmetric operators [10]. While
our localization and conformalmapping argument shows that the essential spectrum
is a continuum, it does not control the possible singular continuous part of the
spectrum. Recall that the absolute continuity of the spectrum of an operator can
be altered by a Hilbert–Schmidt perturbation (according to the classical Weyl–von
Neumann theorem). Conversely, for a self-adjoint operator it is preserved by a trace
class perturbation (according to the Kato–Rosenblum theorem). Let us therefore
clarify that our localizations,whileDunford scalar, cannot be jointly put on a normal
form.On the other hand, it is known [24] that as a rectangle is elongated, the spectral
radius of the associated Ahlfors–Beurling operator changes. When combined with
the results on the essential spectrum of the present article, it follows that isolated
eigenvalues of the NP operator depend on the non-local geometry of the domain.
The eigenvalues are thus very unlikely to be given a simple description.

2. Preliminaries

Let � ⊂ C be a bounded Lipschitz domain with connected boundary. The
Sobolev space of order 1/2 along the boundary, H1/2(∂�), is defined in the usual
way, using a bi-Lipschitz atlas to view ∂� as a manifold. A Hilbert space norm on
H1/2(∂�) is given by the Besov norm

‖ f ‖2H1/2(∂�)
∼ ‖ f ‖2L2(∂�)

+
∫

∂�×∂�

| f (x) − f (y)|2
|x − y|2 dσ(x) dσ(y), (1)

whereσ is the naturalHausdorffmeasure on ∂�. See, for instance [22,Appendix II].
H−1/2(∂�) is then defined by duality with respect to the pairing of L2(∂�), and
H−1/2
0 (∂�) is its subspace of elements f ∈ H−1/2(∂�) such that 〈 f, 1〉L2(∂�) = 0.
The Neumann–Poincare operator K : H1/2 (∂�) → H1/2 (∂�) is defined by

K f (x) = 2

π
p. v.

∫
∂�

∂ny log |x − y| f (y) dσ(y), x ∈ ∂�, (2)
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where ny is the outward normal derivative of ∂� at y. K is always a bounded
operator. When evaluating the integral for x /∈ ∂�, we obtain the harmonic double-
layer potential D f ,

D f (x) = 1

π

∫
∂�

∂ny log |x − y| f (y) dσ(y), x ∈ C\∂� = � ∪ �
c
.

Yet another characterization of H1/2(∂�) is that it consists precisely of the functions
f such that D f ∈ H1(C\∂�), that is, such that

‖D f ‖H1(C\∂�) =
∫

�∪�
c
|∇D f |2 dx < ∞.

In other words, H1/2(∂�) is the space of charges which yield potentials of finite
energy. As an element of H1(�), D f has an (interior) trace Tr D f ∈ H1/2(∂�).
D f and K f are related by the jump formula

Tr D f = 1

2
( f + K f ). (3)

In the case that ∂� is a C2-curve, [13, Ch. 8] offers a very readable and self-
contained introduction to the Neumann–Poincaré operator and its use in construct-
ing finite energy solutions to theDirichlet andNeumann problems for theLaplacian.

By K ∗ : H−1/2(∂�) → H−1/2(∂�) we mean the adjoint of K with respect to
the L2 (∂�)-pairing. In [19] the authors showed, for a general Lipschitz domain,
that K ∗ : H−1/2

0 (∂�) → H−1/2
0 (∂�) is similar to a self adjoint operator. The only

effect of considering the action of K ∗ on H−1/2
0 (∂�) rather than on H−1/2(∂�) is

that it loses its isolated eigenvalue λ = 1 of multiplicity 1.
One realization of such a self adjoint operator is the anti-linearAhlfors–Beurling

operator T� acting on the Bergman space L2
a(�),

T� f (z) = 1

π
p. v.

∫
�

f (ζ )

(ζ − z)2
dA(ζ ), f ∈ L2

a(�), z ∈ �. (4)

Here theBergman space L2
a(�) consists of the holomorphic square-integrable func-

tions in �. To be precise, K ∗ : H−1/2
0 (∂�) → H−1/2

0 (∂�) and T� : L2
a(�) →

L2
a(�) are similar as R-linear operators.
From the similarity we have the following equality of spectra:

σ(K ) = σR(T�) ∪ {1}.
Note that if λ is in the spectrum of T�, then by anti-linearity so is eiθλ for any
θ ∈ R. However, we are interested only in the real spectrum, K : H1/2(∂�)/C →
H1/2(∂�)/C being similar to a self-adjoint operator over the complex field. There-
fore, to determine the spectrum of K using T� we consider only λ � 0 in the
spectrum of T�, and note that the spectrum of K consists of ±λ, for all such points
λ, in addition to the simple eigenvalue 1.
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The Neumann–Poincaré operator (2) may be written more explicitly as

K f (x) = 2

π
p. v.

∫
∂�

〈y − x, ny〉
|y − x |2 f (y) dσ(y), x ∈ ∂�,

In this articlewe shall consider the casewhere� ⊂ C is aC2-smooth curvilinear
polygon. By this wemean that� is a bounded and simply connected domain whose
boundary is curvilinear polygonal: there are a finite number of counter-clockwise
consecutive vertices (a j )

N
j=1 ⊂ C, 1 � N < ∞, connected by C2-smooth arcs

γ j : [0, 1] → C with starting point a j and end point a j+1 (indices modulo N ),
such that ∂� = ∪ jγ j and γ j and γ j+1 meet at the interior angle α j+1 at a j+1,
0 < α j+1 < 2π . Note that if γ ⊂ ∂� is a C2 subarc, then the kernel

k(x, y) = 〈y − x, ny〉
|y − x |2 (5)

is actually bounded and continuous for y ∈ γ ′, x ∈ ∂�, where γ ′ is any strict
subarc of γ . Similarly, k(x, y) is bounded and continuous for x ∈ γ1 and y ∈ γ2 if
γ1 and γ2 are compact and disjoint subsets of ∂� (regardless of smoothness). From
these observations we obtain the compactness of certain cut-offs which we shall
later use to localize the operator K . We roughly follow the proof from [13] that
K is compact if ∂� is C2, in addition to a trivial observation about multiplication
operators.

Lemma 1. Let ρ be a smooth function on ∂�. Then Mρ , the operator of multipli-
cation by ρ, is a bounded operator on H1/2(∂�).

Proof. This is a straightforward consequence of the Besov norm expression (1) for
H1/2(∂�). ��
Lemma 2. Let � be a C2-smooth curvilinear polygon with vertices (a j )

N
j=1. For

each j , 1 � j � N, let ρ j be a smooth function on ∂� such that ρ j (x) = 1 for
all x in a neighborhood of a j . Furthermore, suppose that the supports of ρ j are
pairwise disjoint (at a positive distance apart). Let ρN+1 = 1 − ∑N

j=1 ρ j .

If j �= k or j = k = N + 1, then Mρ j K Mρk : H1/2(∂�) → H1/2(∂�) is a
compact operator.

Proof. Let d
dσ denote (tangential) differentiation along ∂�, extended in the dis-

tributional sense to an operator d
dσ : H1/2(∂�) → H−1/2(∂�). We will actually

show that Mρ j K Mρk is bounded as a map from H1/2(∂�) into H1(∂�), where

H1(∂�) is the space of functions f such that d
dσ f ∈ L2(∂�). Since the embedding

H1(∂�) ↪→ H1/2(∂�) is compact this is sufficient.
For f ∈ H1/2(∂�), let D f ∈ H1(�) denote the double-layer potential of f

in the interior of �. The tangential derivative is associated with the classical jump
formula [15]

d

dσ
Tr D f = 1

2

(
d

dσ
f − K ∗ d

dσ
f

)
.
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The validity of this formula for all f ∈ H1/2(∂�) follows from the classical consid-
erations by approximation and the continuity of all operators involved. Combined
with the jump formula (3) we conclude that

d

dσ
K f (x) = −K ∗ d

dσ
f (x) = − 2

π
p. v.

∫
∂�

∂nx log |x − y| d

dσ
f (y) dσ(y)

= 2

π
p. v.

∫
∂�

d

dσ(y)
∂nx log |x − y|( f (y) − f (x)) dσ(y),

where the last equality follows from integration by parts. Note that if x, y ∈
supp ρN+1, then ∣∣∣∣ d

dσ(y)
∂nx log |x − y|

∣∣∣∣ � 1

|x − y| .

If instead x ∈ supp ρ j and y ∈ supp ρk , k �= j , then d
dσ(y)

∂nx log |x −y| is bounded.
Hence, ∣∣∣∣ d

dσ
Mρ j K Mρk f (x) −

[
d

dσ
ρ j (x)

]
K (ρk f )(x)

∣∣∣∣
� |ρ j (x)|

∫
∂�

|ρk(x) f (x) − ρk(y) f (y)|
|x − y| dσ(y). (6)

It is clear that the term
[ d
dσ ρ j (x)

]
K (ρk f )(x) is in L2(∂�), by Lemma 1 and the

boundedness of K on H1/2(∂�). It remains to show that the right-hand side of
(6) is in L2(∂�). However, this follows from the Cauchy–Schwarz inequality and
Lemma 1:

∫
∂�

∣∣∣∣ρ j (x)

∫
∂�

|ρk(x) f (x) − ρk(y) f (y)|
|x − y| dσ(y)

∣∣∣∣
2

dσ(x)

�
∫

∂�

∫
∂�

|ρk(x) f (x) − ρk(y) f (y)|2
|x − y|2 dσ(y) dσ(x)

� ‖Mρk f ‖2H1/2(∂�)
� ‖ f ‖2H1/2(∂�)

.

��

3. The Wedge

Let Wα = {z ∈ C : | arg z| < α/2} be a wedge of aperture α, 0 < α < 2π .
Consider any linear fractional transformation L which maps Wα ∪ {∞} onto a
bounded domain. Since T� is unitarily equivalent to TL(�) for any domain � [19],
it follows that the spectrum of the Neumann–Poincaré operator K associated with
L(Wα)may be determined by considering TWα .

1 This section is devoted to proving
the following.

1 We avoid considering K directly on H1/2(∂Wα), since Wα is an unbounded domain.
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Theorem 3. The spectrum of K : H1/2 (∂L(Wα)) → H1/2 (∂L(Wα)) is given by

σ(K ) =
{

x ∈ R : |x | �
∣∣∣1 − α

π

∣∣∣
}

∪ {1}.

1 is a simple eigenvalue. The remainder of the spectrum is essential, of uniform
multiplicity 2.

Remark. This result, stated somewhat differently, also appears in the preprint [12].
Our proof is rather different and we include it with full details below.

It is sufficient to consider α < π , because the spectrum of TWα is the same as that
of TW2π−α , since W2π−α is a rotation of Wα

c
. We begin with the following simple

proposition about the kernels of L2(Wα).

Proposition 4. [20] L2(Wα) is a reproducing kernel Hilbert space. The reproducing
kernel at the point z ∈ Wα is given by

kz(w) = 1

α2

wπ/α−1zπ/α−1

(wπ/α + zπ/α)2
. (7)

Now let R± = {z ∈ C : | arg z| = ±α/2} be the two rays of the boundary ∂Wα .
We consider the holomorphic Schwarz functions S± on Wα such that S±(ζ ) = ζ̄

on R±,

S±(ζ ) = e∓iαζ.

By first applying Stokes’ theorem and then Cauchy–Goursat’s theorem to each of
the rays R+ and R−, we find for functions f with sufficient decay that for z ∈ Wα

TWα f (z) = lim
ε→0

i

2π

[∫
∂Wα

f (ζ )

ζ̄ − z̄
dζ − 1

ε2

∫
|ζ−z|=ε

f (ζ )(ζ − z) dζ

]

= i

2π

[∫
R−

f (ζ )

S−(ζ ) − z̄
dζ −

∫
R+

f (ζ )

S+(ζ ) − z̄
dζ

]

= i

2π

∫ ∞

0
f (y)

[
1

eiα y − z̄
− 1

e−iα y − z̄

]
dy

= sin α

π

∫ ∞

0
f (y)

y

(eiα y − z̄)(e−iα y − z̄)
dy.

For instance, this formula is valid for linear combinations of kernels (7). Hence, it
follows for x > 0 that

TWα f (x) = sin α

π

∫ ∞

0
f (y)

y

|eiα y − x |2 dy

= sin α

π

∫ ∞

−∞
et f (et x)

et

|eiαet − 1|2 dt,

(8)

motivating the following lemma:
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Lemma 5. For t ∈ R, let Ut : L2
a(Wα) → L2

a(Wα) be the operator

Ut f (z) = et f (et z).

Then (Ut )t∈R is a strongly continuous group of unitary operators with generator
i A, Ut = eit A, where

A f (z) = −i( f (z) + z f ′(z)).

A is a (densely defined) self-adjoint operator with full spectrum, σ(A) = R. Fur-
thermore, its spectrum has uniform multiplicity 1.

Proof. The verification that Ut is a strongly continuous group of unitaries is
straightforward. The formula for A follows immediately from the fact that i A
is the strong limit of t−1(Ut − I ) as t → 0. For t real, zit is bounded from below
and above in Wα . Hence the operator Mt of multiplication by zit is bounded and
invertible on L2

a(Wα). A computation shows that

M−1
t AMt = A + t I.

Hence A is similar to A + t for every t ∈ R. Since the spectrum of A is not empty,
it must therefore be full.

To show that the spectrum of A has multiplicity 1, we prove that for every
z ∈ Wα , the reproducing kernel kz of L2(Wα) at z, see (7), is a cyclic vector of
A. Suppose that f ∈ L2(Wα) is orthogonal to span{Ankz : n � 0}. Clearly every
function gn(w) = wnk(n)

z (w) is in this linear span. Note that

gn(w) =
(

d

dρ

)n

kz(ρw)

∣∣∣
ρ=1

,

and that for ρ > 0

kz(ρw) = 1

ρ2 kz/ρ(w).

Hence we have that

0 = 〈 f, gn〉L2(Wα) =
(

d

dρ

)n

ρ−2 f (z/ρ)

∣∣∣
ρ=1

.

Evaluating for n = 0, 1, 2, . . . we find that f (n)(z) = 0 for every n � 0, proving
that f = 0. ��

Let J : L2
a(Wα) → L2

a(Wα) be the (anti-linear) conjugation given by J f (z) =
f (z̄). Then TWα J is a self-adjoint operator on L2

a(Wα) which additionally is J -
symmetric [10] in the sense that TWα J = J (TWα J )J = J TWα .

Lemma 6. For 0 < α < π , TWα J is a positive operator, with spectrum

σ(TWα J ) =
{

x ∈ R : 0 � x � 1 − α

π

}

of uniform multiplicity 2.
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Proof. For z with |�z| < 1, let

F(z) = sin α

π

∫ ∞

−∞
eitz et

|eiαet − 1|2 dt.

Then F(A) is the operator on L2
a(Wα) such that

F(A) f (z) = sin α

π

∫ ∞

−∞
eit A f (z)

et

|eiαet − 1|2 dt

= sin α

π

∫ ∞

−∞
et f (et z)

et

|eiαet − 1|2 dt.

Comparing with (8) it is now clear that F(A) = TWα J .
We already know that F(A) = TWα J is a self-adjoint operator. The change of

variable s = eit gives us that

F(x) =
∫ ∞

0
six s

s2 − 2s cosα + 1

ds

s
, x ∈ R.

This Mellin transform can be computed by “partial fractions” (see also [16], p.
453), which yields

F(x) = sin(i(π − α)x)

sin(iπx)
, x ∈ R.

Thus F is a smooth, even, and positive function onR, such that F(0) = 1−α/π , F
is decreasing for x � 0 and F(x) → 0 as x → ∞. The statement of the lemma now
follows in view of Lemma 5 and the spectral theorem for unbounded self-adjoint
operators with its associated multiplicity theory. See [18] for a remarkably clear
presentation of themultiplicity theory, and [1] for its application to the pushforward
measure μ ◦ F−1, μ a scalar spectral measure for A. ��
We can now prove the theorem by a comparison of TWα and TWα J .

Proof of Theorem 3. Since TWα J is self-adjoint and J -symmetric, it holds that
J TWα J = TWα . Therefore (TWα J )2 = (TWα )2. Hence the theorem follows from
Lemma 6, the spectral theorem, and the symmetry of the spectrum of TWα .

4. General Curvilinear Polygons

In this section we shall completely determine the essential spectrum of the
Neumann–Poincaré operator associated with a curvilinear polygon � ⊂ C.

Theorem 7. Let K : H1/2(∂�) → H1/2(∂�) be the Neumann–Poincaré operator
of a C2-smooth curvilinear polygon � ⊂ C with angles α1, . . . , αN . Then

σess(K ) =
{

x ∈ R : |x | � max
1� j�N

∣∣∣1 − α j

π

∣∣∣
}

.
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For an operator T : H1/2(∂�) → H1/2(∂�), denote by σea(T ) the essential
spectrum of T in the sense of approximate eigenvalues. That is, λ ∈ σea(T ) if and
only if there is a bounded sequence ( fn)∞n=1 ⊂ H1/2(∂�) having no convergent
subsequence, such that (T − λ) fn → 0. We call ( fn) a singular sequence. Note
that if S : H1/2(∂�) → H1/2(∂�) is another operator such that S − T is compact,
then σea(S) = σea(T ).

Lemma 8. For the Neumann–Poincaré operator K : H1/2(∂�) → H1/2(∂�) it
holds that

σess(K ) = σea(K ).

Proof. Consider first K acting on H1/2(∂�)/C, which only eliminates the simple
isolated eigenvalue λ = 1 from the spectrum of K (K1 = 1). Since we also know
that K is similar to a self-adjoint operator on H1/2(∂�)/C, we have that

σess(K ) = σess
(
K |H1/2(∂�)/C

) = σea
(
K |H1/2(∂�)/C

) ⊂ σea(K ).

The reverse inclusion is obvious. ��
We now begin the proof of Theorem 7 with a localization lemma. Recall that for a
smooth function ρ on ∂�, we denote by Mρ the operator of multiplication by ρ on
H1/2(∂�).

Lemma 9. Let � be a C2-smooth curvilinear polygon with vertices (a j )
N
j=1. For

each j , 1 � j � N, let ρ j be a smooth function on ∂� such that ρ(x) = 1 for all x
in a neighborhood of a j . Furthermore, suppose that the supports of ρ j are pairwise
disjoint (at a positive distance apart). Then, letting K : H1/2(∂�) → H1/2(∂�)

be the Neumann–Poincaré operator,

K −
N∑

j=1

Mρ j K Mρ j is compact. (9)

Furthermore,

σess(K ) =
N⋃

j=1

σea(Mρ j K Mρ j ). (10)

Proof. We construct a smooth partition of unity of ∂� by letting ρN+1 = 1 −∑N
j=1 ρ j . We then have that

K =
N+1∑
j=1

N+1∑
k=1

Mρ j K Mρk .

If j �= k or j = k = N + 1, then, by Lemma 2, Mρ j K Mρk is compact. This gives
us the validity of (9), and hence that

σess(K ) = σea(K ) = σea

⎛
⎝ N∑

j=1

Mρ j K Mρ j

⎞
⎠ .
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Note that λ = 0 clearly belongs to both sides of (10). Suppose now that 0 �=
λ ∈ σea(Mρk K Mρk ) for some k. Let ( fn)n be a corresponding singular sequence,
so that (Mρk K Mρk − λ) fn → 0 as n → ∞. Multiplying on the left by Mρ j it
follows that Mρ j fn → 0 for every j �= k, so that ( fn) is a singular sequence also
for

∑
j Mρ j K Mρ j , proving that

N⋃
j=1

σea(Mρ j K Mρ j ) ⊂ σea

⎛
⎝ N∑

j=1

Mρ j K Mρ j

⎞
⎠ .

Conversely, suppose that

N∑
j=1

Mρ j K Mρ j fn − λ fn → 0 (11)

as n → ∞, for a sequence ( fn) with no convergent subsequence. Let χ be a
smooth function which is 1 on the support of ρ1, 0 on the support of ρ j for every
j �= 1. Multiplying (11) with χ and noting that Mχ Mρ1 = Mρ1 Mχ = Mρ1 and
that Mχ Mρ j = 0 for every other j , it follows that Mρ1 K Mρ1 Mχ fn −λMχ fn → 0.
Hence Mχ fn is a singular sequence for Mρ1 K Mρ1 , unless (Mχ fn) has a conver-
gent subsequence (Mχ fk). In the latter case M1−χ fk is a singular sequence for∑N

j=2 Mρ j K Mρ j . Now the argument of this paragraph may be repeated until one
finds a singular sequence for Mρ j K Mρ j , for some j . Hence we have proved that

σea

⎛
⎝ N∑

j=1

Mρ j K Mρ j

⎞
⎠ ⊂

N⋃
j=1

σea(Mρ j K Mρ j ).

��
Let L(z) = (z + 1)/(z − 1), and let Vα = L(Wα), where Wα is the wedge of
the preceding section, 0 < α < 2π . Then Vα is a lens domain, symmetric around
the real and imaginary axis, with corners of angle α at −1 and 1. The next lemma
says that the two corners have equal contribution to the essential spectrum of K :
H1/2(∂Vα) → H1/2(∂Vα).

Lemma 10. Let ρ be a smooth function on ∂Vα , compactly supported in the left
half-plane, such that ρ(x) = 1 for all x in a neighborhood of −1. Then

σea(Mρ K Mρ) = σess(K ) =
{

x ∈ R : |x | �
∣∣∣1 − α

π

∣∣∣
}

.

Proof. Let ρ2 be the function obtained by reflecting ρ1 in the imaginary axis. Then,
by symmetry, Mρ1 K Mρ1 is unitarily equivalent to Mρ2 K Mρ2 , and hence the two
operators have the same spectrum. Applying Lemma 9 and Theorem 3 we obtain
the desired conclusion. ��
Using results on perturbations by conformalmappings from [19] allows us to handle
a general corner of opening α, not only the one coming from the wedge.
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Lemma 11. Let � be a C2-smooth curvilinear polygon, and let one of its vertex
points be a j , with corresponding angle α j . Let ρ be a smooth function on ∂�

such that ρ(x) = 1 for all x in a neighborhood of a j . Then, if the support of ρ is
sufficiently small, it holds that

σea(Mρ K Mρ) =
{

x ∈ R : |x | �
∣∣∣1 − α j

π

∣∣∣
}

, (12)

where K : H1/2(∂�) → H1/2(∂�) is the Neumann–Poincaré operator of �.

Proof. Due to the local nature of the operator Mρ K Mρ we may clearly assume,
without loss of generality, that � only has a single corner a, of angle α. Similarly,
let Uα be a smooth domain with only one corner. We suppose that this corner is
at −1, and that Uα is identical to Vα in a neighborhood of −1. Lemma 10 then
produces a function χ on ∂Uα such that

σea(Mχ KUα Mχ ) = σess(KVα ) =
{

x ∈ R : |x | �
∣∣∣1 − α

π

∣∣∣
}

.

On the other hand, the difference KUα − Mχ KUα Mχ is compact in this case, since
there is only one corner. Hence,

σess(KUα ) = σea(KUα ) =
{

x ∈ R : |x | �
∣∣∣1 − α

π

∣∣∣
}

.

Let ϕ : � → Uα be a Riemann map such that ϕ(a) = −1. Lemma 4.3 of [19] then
shows thatϕ isC1,b-smooth in�, for 0 < b < 1, and [19, Lemma4.4] then says that
σess(K ) = σess(KUα ). The proof is finishedbynoting thatσess(K ) = σea(Mρ K Mρ)

by Lemma 9 applied to �. ��
Proof of Theorem 7. The statement follows immediately from Lemmas 9, 10
and 11.

4.1. Final Remarks

Since K : H1/2(∂�)/C → H1/2(∂�)/C is similar to a self-adjoint operator, it
is completely describedby a spectral resolution. In otherwords, it is aDunford scalar
operator [9]. In the absence of a multiplicity theory (and hence classification) of
Dunford scalar operators modulo compact operators, we gather a few observations
which might lead to a better framework to explain the phenomena unveiled by the
computations specific to the NP operator. We keep the notation of the previous
sections, but keep in a mind a more general situation.

Let K denote the Neumann–Poincaré operator acting in the complex Hilbert
space H = H1/2(∂�)/C and let K j denote its localizations (in our case K j =
Mρ j K Mρ j ). We can assume that the supports Fj of the cut-off functions ρ j are
separated, so that the operator K j acts on the closed subspace Hj of elements of H
having support contained in Fj , for every j . Let Pj denote the orthogonal projection
of H onto Hj .

The subspaces Hj are not mutually orthogonal due to the non-locality of H , but
their operator angles are almost perpendicular in the sense that Pj Pk is compact
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for every j �= k. Denote by T̃ the class of an operator in the Calkin algebra
L(H)/K(H). Thus P̃j are mutually orthogonal projections and

K̃ j = P̃j K̃ P̃j .

Moreover,

K̃ = K̃1 + K̃2 + · · · K̃N .

From here we infer that for every polynomial q ∈ C[z] we have
q(K̃ j ) = P̃j q(K̃ )P̃j .

As K itself is a Dunford scalar operator with real spectrum, contained in the
compact set σ ⊂ R, we infer

‖q(K̃ j )‖ � ‖q(K̃ )‖ � C‖q‖∞,σ ,

where C is a constant. By the Stone-Weierstrass theorem, we find that every com-
ponent K̃ j admits a continuous functional calculus with continuous functions on σ .
In this sense, every K̃ j is a scalar operator in the Calkin algebra, with real spectrum.
Their direct orthogonal sum is the class K̃ of the Neumann–Poincaré operator, and
in this manner the essential spectra of the components K̃ j stack on top of each
other.
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