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We derive the formulas for the resonance frequencies and their sensitivity when the nano-slit structures are
used in the detection of thin layers. For a thin layer with a thickness of H deposited over the nanostructure,
we show quantitatively that for both single and periodic slit structures with slit aperture size δ, the
sensitivity of resonance frequency reduces as H increases. Specifically, the sensitivity is of order O(δ/H)

if H > δ and of order O(1 + ln H/δ) otherwise. The evanescent wave modes are present along the
interface between the thin dielectric film and ambient medium above. From the mathematical derivations,
it is observed that the sensitivity of the resonance frequency highly depends on the effect of evanescent
wave modes on the tiny slit apertures.
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1. Introduction

The resonances induced by subwavelength holes etched in a slab of noble metal can trigger the so-called
extraordinary optical transmission (EOT) (Ebbesen et al., 1998; Garcia-Vidal et al., 2010). This allows
for the detection of a variety of biomolecular events in a label-free and highly sensitive manner from the
shifts of sharp transmission peaks. We refer the reader to Blanchard-Dionne & Meunier (2017); Brolo
et al. (2004); Cetin (2015); Dhawan 2008; Gomez-Cruz (2018); Li (2017); Oh & Altug (2018); Rodrigo
et al. (2016); Willets & Van Duyne (2007) and the references therein for detailed discussions. One
fundamental question in such applications is the sensitivity of resonance frequencies, or equivalently,
how the transmission peaks shift with respect to the refractive index change or the profile change of
the biochemical samples. There have been both experimental and numerical studies concerning the
resonance spectral sensitivity (Brolo et al., 2004; Dahlin et al., 2013; Lee, 2012). However, so far
rigorous analytical formulas have been limited to the bulk sensitivity only when the refractive index
of the entire surrounding medium changes; see, for instance, Pang et al. (2007). In this paper, we aim
to derive analytically the resonances frequencies and their sensitivity for the thin film detection, where
refractive index only changes locally over the surface of nanostructures. This occurs in many realistic
biosensing applications such as detection of molecular binding and bacterial infections, analysis of live
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2 J. LIN ET AL.

cell secretion, etc. The mathematical derivations are built upon our recent work on the quantitative
analysis of the EOT phenomenon for various nanostructures in Lin et al. (2014); Lin & Reitich (2015)
and Lin & Zhang (2017, 2018a,b, 2019a,b). Our approach is based on the application of layer potential
technique and the Gohberg–Sigal theory on meromorphic operator-valued functions. The method has
been used to study the perturbations of eigenvalues or resonances due to the changes to domains or
boundary conditions in a wide class of problems; see the monograph (Ammari et al., 2018a) and the
references therein. The reader is also referred to Kato (1976); Maz’ya et al. (2000) for the studies of
spectral perturbation for differential or integral operators in more general settings.

We point out that other than subwavelength hole structures, plasmonic nanoparticles have also been
widely used for bio-chemical sensing, due to their ability to trigger localized surface plasmon resonance
(LSPR) as well as strong electromagnetic field enhancement. In the presence of local changes in the
environment induced by surface-bound molecules, the corresponding resonant frequencies will also be
shifted, which encodes the information about the local refractive index changes. We refer the readers
to the review papers (Anker et al., 2008; Soler, 2017) and the references therein for nanoparticle-based
LSPR biosensors, and Ammari et al. (2009, 2018b,c) for the mathematical treatment of sensing by
nanoparticles.

In this paper, we consider the configuration where a thin dielectric film (as a simplified model for
surface-adsorbed molecules) is deposited on top of the single nano-slit structure or periodic structure as
shown in Fig. 1. The thin layer attains a thickness of H and occupies the domain ΩH . With a suitable
scaling of the mathematical model, we may assume that each of the rectangular nano slits arranged
in the metallic slab attains the height L = 1 and the width δ � 1. The sensing wavelength is of the
order O(1) and the thickness parameter H is smaller than the wavelength. In the idealized case where
the metal is a perfect conductor, and without the deposited thin layer, it was rigorously established
in Lin & Zhang (2017, 2018a,b) that the slit structure in both settings (single slit and periodic slits)
can induce Fabry–Perot-type resonances. The resonant frequencies correspond to the peak values of
the spectral transmission line, which is measured by spectrometers. In the more realistic configuration
when the metal is not perfect conducting, the electromagnetic fields can penetrate through the metals
and this may induce shift or widening to the Fabry–Perot resonances depending on the skin depth. The
associated analysis is much more complicated. We refer to Lin & Zhang (2019a,b) for the mathematical
and numerical treatment in this direction. In this paper, we will focus on the case when the metal is
perfect conducting. This is a good starting point to allow us to focus on the main ideas of sensing
using the resonant structures. With the presence of the thin layer, the Fabry–Perot resonance frequencies
obtained from the transmission data will be shifted due to the near field interactions of the slit structure
and the dielectric material in the thin layer. The shift depends on the permittivity and the thickness of
the thin layer. In typical sensing applications, one is interested in monitoring the change of thickness
from the measured spectral shift, which corresponds to finding the explicit dependence of the shift on
the thickness and its sensitivity, as is investigated here.

To be more specific, we assume that the relative permittivity ε(x) takes the value of εs and ε� in
the slits and the thin layer, respectively. The corresponding refractive indices are given by ns = √

εs
and n� = √

ε�. The ambient medium is assumed to be vacuum with the relative permittivity value
ε(x) = ε0 = 1. We also set the ratios

η1 := ε�/εs and η2 := ε0/εs (1.1)

and assume that both η1 and η2 are of order O(1) throughout the paper. The assumption that η1 = O(1)

and H is smaller than the wavelength excludes possible resonances induced by the thin layer in the
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SENSITIVITY OF RESONANCE FREQUENCY 3

Fig. 1. Setup for the sensing of a thin layer using a single nano-slit or a peirodic array of nano-slits.

frequency regime under consideration. Note that such resonances may occur when the scaling of the
problem geometry or physical parameters vary, see for instance Kaplunov & Markushevich (1993) for
the discussion of the resonances in a thin layer in a fluid–structure interaction problem. We consider the
transverse magnetic (TM) polarized scattering when a time-harmonic electromagnetic wave impinges
from below the slab (Ω2 in Fig. 1). The third component of the incident magnetic field is given by
uinc = eik(x1 sin θ + x2 cos θ) in which k is free-space wave number, and θ is the incident angle. The total
field u consists of the incident field uinc and the diffracted field udiff in the lower domain Ω2, and only
the diffracted field udiff in the upper domain Ω1 above the thin layer. Let Ωδ be the slit region and Γδ

be the union of the slit apertures. We denote by Ω be the region exteior to the metal, which consists of
the slit domain Ωδ and the top and bottom domains Ω1, Ω2 and ΩH . Then for both configurations, the
total field satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(

1

ε(x)
u

)
+ k2u = 0 in Ω ,

∂u

∂ν
= 0 on ∂Ω ,

[u] = 0,

[
1

ε

∂u

∂ν

]
= 0 on ∂Ω1 ∪ Γδ .

(1.2)

In the above, [·] denotes the jump of the quantity when the limit is taken along the positive and negative
unit normal direction ν. In addition, the diffracted field udiff satisfies outgoing radiation conditions at
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4 J. LIN ET AL.

infinity, which will be enforced naturally by the Green’s functions in the integral formulations in this
paper.

Our goal is to provide analytical formulas for the resonance frequencies in both configurations and
investigate their sensitivity with respect to the change of the layer thickness H. Asymptotic expansions
of resonances are obtained via an equivalent boundary integral equation formulation for the scattering
problem (1.2) and its asymptotic analysis. The sensitivity analysis then boils down to the perturbation
analysis of the underlying layered Green’s function. The studies for the single nano-slit and the periodic
nano-slits case will be carried out in Sections 2 and 3, respectively.

2. Sensitivity of resonance frequency for the single nano-slit configuration

2.1 Boundary integral formulation and asymptotic analysis

We choose the origin of the coordinate to be the lower left corner of the slit so that the upper and lower
slit aperture can be expressed as Γ1,δ := {(x1, 1) ; 0 < x1 < δ} and Γ2,δ := {(x1, 0) ; 0 < x1 < δ},
respectively. Let g1(x, y) be the layered Green’s function in Ω1 ∪ ΩH with the Neumann boundary
condition along metallic slab boundary. Applying the Green’s formula in ΩH gives1

u(x) =
∫

Γ1,δ

g1(x, y)
∂u(y+)

∂ν
dy1, x ∈ ΩH .

Similarly, using the Green’s function g2(x, y) in Ω2 with the Neumann boundary condition, one obtains

u(x) =
∫

Γ2,δ

g2(x, y)
∂u(y−)

∂ν
dy1 + uinc(x) + uref(x), x ∈ Ω2,

where urefl(x) = eik(x1 sin θ − x2 cos θ) is the reflected field of the lower slab boundary at the absence of the
slit. The solution inside the slit can be expressed as

u(x) = −
∫

Γ1,δ

gi(x, y)
∂u(y−)

∂ν
dy1 −

∫
Γ2,δ

gi(x, y)
∂u(y+)

∂ν
dy1 for x ∈ Ωδ ,

in which gi(x, y) is the Green’s function inside the slit Ωδ with Neumann boundary condition. Therefore,
by taking the limit of the above integral to the slit apertures and imposing the continuity condition of
the electromagnetic field, we obtain the following system of boundary integral equations for ϕ̃1 :=

1 For a function ϕ(x) defined in Ω , ϕ(x+) and ϕ(x−) denote the limit of the function when x approaches the aperture from the
above and below, respectively.
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SENSITIVITY OF RESONANCE FREQUENCY 5

∂u(y−)
∂ν

∣∣∣ Γ1,δ
and ϕ̃2 := ∂u(y+)

∂ν

∣∣∣ Γ2,δ
:

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

η1

∫
Γ1,δ

g1(x, y)ϕ̃1(y)dy1 +
2∑

j=1

∫
Γj,δ

gi(x, y)ϕ̃j(y)dy1 = 0 on Γ1,δ ,

η2

∫
Γ2,δ

g2(x, y)ϕ̃2(y)dy1 +
2∑

j=1

∫
Γj,δ

gi(x, y)ϕ̃j(y)dy1 + uinc + uref = 0 on Γ2,δ .

Recall that the parameters η1 and η2 are defined by η1 = ε�/εs and η2 = ε0/εs in (1.1). Moreover, due
to the symmetry of the structure, the slit Green’s function satisfies the following over the slit apertures:

gi(x1, 1; y1, 1) = gi(x1, 0; y1, 0) and gi(x1, 1; y1, 0) = gi(x1, 0; y1, 1).

If one rescales the slit aperture to an interval of size 1 by a change of the variable x = δX and
y = δY , and introduce the following quantities for X ∈ (0, 1):

ϕ1(X) := ϕ̃1(δX), ϕ2(X) := ϕ̃2(δX), f (X) := uinc(δX, 0) + uref(δX, 0),

G1(X, Y) := g1(δX, 1; δY , 1), G2(X, Y) := g2(δX, 0; δY , 0);

Gi(X, Y) := gi(δX, 0; δY , 0), G̃i(X, Y) := gi(δX, 1; δY , 0),

the above system of integral equation reads

[
η1T1 + Ti T̃i

T̃ i η2T2 + Ti

] [
ϕ1
ϕ2

]
=
[

0
f /δ

]
, (2.1)

where T1, T2, Ti and T̃ i are integral operators defined for X ∈ (0, 1) with the kernels G1(X, Y), G2(X, Y),
Gi(X, Y) and G̃i(X, Y), respectively.

A scattering resonance of (1.2) refers to a complex-valued k such that (1.2) attains a nontrivial
solution when the incident field is zero. The real part of k is called resonance frequency, which is shifted
when the thickness of thin film H changes. From the above discussions, this boils down to solving for
the characteristic values of the operator integral operators in (2.1) when f = 0. To this end, we perform
the asymptotic analysis of the integral operators for δ � 1.

The explicit expressions of the Green’s functions G1 and G2 are given by

G1(X, Y) = − i

2
H(1)

0 (kn�|X − Y|) + GH(k; X, Y), G2(X, Y) = − i

2
H(1)

0 (k|X − Y|), (2.2)

where H(1)
0 is the zero-order Hankel’s function of the first type, and

GH(k; X, Y) = −2i

π

∫ ∞

0

A−(k, ξ)ei2ρ(kn�,ξ)H cos(δξ(X − Y))

ρ(kn�, ξ)
(
A+(k, ξ) − A−(k, ξ)ei2ρ(kn�,ξ)H

) dξ , (2.3)
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6 J. LIN ET AL.

A±(k, ξ) = ρ(kn�, ξ) ± ρ(k, ξ)ε�, ρ(k, ξ) =
√

k2 − ξ2. (2.4)

The slit Green’s function is given by

Gi(X, Y) =
∞∑

m,n=0

cmnαmn

δ
cos(mπX) cos(mπY), (2.5)

G̃i(X, Y) =
∞∑

m,n=0

(−1)ncmnαmn

δ
cos(mπX) cos(mπY), (2.6)

where

cmn = 1

k2εs − (mπ/δ)2 − (nπ)2
, αmn =

⎧⎨
⎩

1 m = n = 0,
2 m = 0, n ≥ 1 or n = 0, m ≥ 1,
4 m ≥ 1, n ≥ 1.

Using the expansion of the Hankel function, it follows that (cf. Lemma 3.1 in Lin & Zhang, 2017)

G1(X, Y) = βe(kn�) + 1

π
ln |X − Y| + GH(X, Y) + r1(X, Y), (2.7)

G2(X, Y) = βe(k) + 1

π
ln |X − Y| + r2(X, Y), (2.8)

where

βe(k) = 1

π
(ln k + γ0) + 1

π
ln δ, r1 = O(δ2| ln δ|), r2 = O(δ2| ln δ|).

In the above, γ0 = c0 − ln 2 − iπ/2, with c0 as the Euler constant. In addition, it can be shown that (cf.
Lemma 3.1 in Lin & Zhang, 2017)

Gi(X, Y) = βi(kns) + Gi
0(X, Y) + ri(X, Y), (2.9)

G̃i(X, Y) = β̃(kns) + r̃i(X, Y), (2.10)

where

βi(k) = cot k

kδ
+ 2 ln 2

π
, β̃i(k) = 1

(k sin k)δ
,

Gi
0(X, Y) = 1

π

[
ln

(∣∣∣∣sin

(
π(X + Y)

2

)∣∣∣∣
)

+ ln

(∣∣∣∣sin

(
π(X − Y)

2

)∣∣∣∣
) ]

,

ri = O(δ2), r̃i = O(e−1/δ).

Let us introduce the following quantities of order O(1):

β1(k) = δ · (η1βe(kn�) + βi(kns)
)
, β2(k) = δ · (η2βe(k) + βi(kns)

)
, β̃(k) = δβ̃i(kns).
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SENSITIVITY OF RESONANCE FREQUENCY 7

For a given function ϕ, we define the operator P such that Pϕ(X) = 〈ϕ, 1〉. We also introduce the integral
operators SH and S over the interval (0, 1) with the kernel

sH(k; X, Y) = η1

π
ln |X − Y| + Gi

0(X, Y) + η1GH(X, Y), (2.11)

s(X, Y) = η2

π
ln |X − Y| + Gi

0(X, Y) (2.12)

respectively. Then by applying the expansions (2.7)–(2.10), the integral operator in the system (2.1) can
be expanded as

[
η1Te

1 + Ti T̃i

T̃ i η2Te
2 + Ti

]
= 1

δ

[
β1P β̃P
β̃P β2P

]
+
[

SH 0
0 S

]
+
[

SH,∞ S̃∞
S̃∞ S∞

]
=: P + S0 + S∞,

where S∞, SH,∞ and S̃∞ are the integral operators with kernels given by the corresponding high-order
terms of the expansions (2.7)–(2.10). It is clear that

∥∥S∞
∥∥ = O(δ2| ln δ|), ∥∥SH,∞

∥∥ = O(δ2| ln δ|) and∥∥∥S̃∞
∥∥∥ = O(e−1/δ). As such, the homogeneous version of (2.1) is recast as

(P + S0 + S∞)ϕ = 0 where ϕ = [ϕ1, ϕ2]T . (2.13)

2.2 Sensitivity of resonance frequency

2.2.1 Asymptotic expansion of resonances. We first derive the resonance frequency based on the
homogeneous equation (2.13). It can be shown that S0 is invertible. Let S = S0 + S∞, then due to
the smallness of S∞, the operator S is also invertible, and there holds S

−1 = S
−1
0 + O(δ2| ln δ|). Set

e1 = [1, 0]T and e2 = [0, 1]T . By applying δS−1 on both sides of (2.13) and projecting on the subspace
spanned by e1 and e2, respectively, one obtains the following system of equations:

M

[ 〈ϕ1, 1〉
〈ϕ2, 1〉

]
= 0, where M =

[ 〈S−1e1, e1〉 〈S−1e2, e1〉
〈S−1e1, e2〉 〈S−1e2, e2〉

] [
β1 β̃

β̃ β2

]
+
[

δ 0
0 δ

]
.

Therefore, the resonances are those k such that detM(k) = 0.
To this end, we introduce an approximate matrix

M̃ =
[

αH 0
0 α

] [
β1 β̃

β̃ β2

]
+
[

δ 0
0 δ

]
,

where

αH(k) = 〈S−1
H 1, 1〉, α = 〈S−11, 1〉. (2.14)

Using the relations

〈S−1e1, e1〉 = αH + O(δ2| ln δ|), 〈S−1e1, e2〉 = O(δ2| ln δ|),
〈S−1e2, e1〉 = O(δ2| ln δ|), 〈S−1e2, e2〉 = α + O(δ2| ln δ|),
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8 J. LIN ET AL.

a sensitivity analysis leads to the relation

detM = det M̃ · (1 + O(δ2| ln δ|))+ O(δ3| ln δ|). (2.15)

From Rouche’s theorem, we deduce that the leading orders of resonances are the roots of det M̃(k) = 0.
A direct calculation yields

det M̃(k) = αHα
(
β1(k)β2(k) − β̃2(k)

)+ (αHβ1(k) + αβ2(k))δ + δ2, (2.16)

which can be further decomposed as

det M̃(k) = f̃ (k) + r̃(k), (2.17)

where

f̃ (k) =
[
αH

(
β1 + β2

2
− β̃

)
+ δ

]
·
[
α

(
β1 + β2

2
+ β̃

)
+ δ

]
+ (αH − α)β̃δ,

r̃(k) = −αHα

(
β1 − β2

2

)2

+ αH − α

2
(β1 − β2)δ = O(δ2 ln2 δ).

Therefore, the leading order of resonances can be obtained by solving for the roots of f̃ (k) = 0.
A close examination of f̃ (k) reveals that its roots lie close to mπ/ns (m = 1, 2, 3, · · · ), when β1+β2

2 −
β̃ = 0 or β1+β2

2 + β̃ = 0. For odd m, let us rewrite the equation f̃ (k) = 0 as

α

(
β1 + β2

2
+ β̃

)
+ δ + (αH − α)β̃

αH

(
β1+β2

2 − β̃
)

+ δ
· δ = 0,

which takes the following explicit form:

cos(kns) + 1

kns sin(kns)
+ η1 + η2

2π
· δ ln δ + cH(k) · δ + O(δ2) = 0, (2.18)

where

cH(k) = 1

2π
(η1 ln(kn�) + η2 ln(k)) + η1 + η2

2π
γ0 + 2

π
ln 2 + 1

α
+
(

1

α
− 1

αH(k)

)
· 1

cos(kns) − 1
.

(2.19)

By performing the expansion of above equation at mπ/ns and noting that the leading-order term
cos(mπ)+1
kns sin(mπ)

= 0, we obtain the asymptotic expansion of its roots k(m)
H (m = 1, 3, 5 · · · ) for mδ � 1:

k(m)
H · ns = mπ + m(η1 + η2) · δ ln δ + 2mπcH(mπ/ns) · δ + O(δ2 ln2 δ). (2.20)

In view of the relations (2.15) and (2.17), the above expansion also holds for the roots of detM(k) = 0,
or equivalently, the resonances of the scattering problem.
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SENSITIVITY OF RESONANCE FREQUENCY 9

Fig. 2. Accuracy of the asymptotic expansion formulas for the resonances k(1)
H and k(2)

H . The dash lines represent the error

|k(1)
H − k(1)

H,0| and |k(2)
H − k(2)

H,0|, respectively, in which k(1)
H,0 and k(2)

H,0 are the values obtained from the asymptotic formulas with

the high-order terms O(δ2 ln2 δ) being dropped. We set ε� = 2 and εs = 1 in the calculations, and k(1)
H and k(2)

H are obtained
numerically with high-order accuracy.

Similarly, for even m, by rewriting f̃ (k) = 0 as

αH

(
β1 + β2

2
− β̃

)
+ δ + (αH − α)β̃

α
(

β1+β2
2 + β̃

)
+ δ

· δ = 0,

the Taylor expansion at mπ/ns leads to the expansion of its roots km (m = 2, 4, 6 · · · ):

k(m)
H · ns = mπ + m(η1 + η2) · δ ln δ + 2mπcH(mπ/ns) · δ + O(δ2 ln2 δ), (2.21)

where

cH(k) = 1

2π
(η1 ln(kn�) + η2 ln(k)) + η1 + η2

2π
γ0 + 2

π
ln 2 + 1

αH(k)
+
(

1

α
− 1

αH(k)

)
· 1

cos(kns) + 1
.

(2.22)

Thus (2.21) gives the expansion of resonances for even m. Figure 2 demonstrates the accuracy of the
asymptotic expansions (2.20) and (2.21) for the resonance frequencies. The plot confirms the order
O(δ2 ln2 δ) obtained in the asymptotic expansions.

2.2.2 Sensitivity analysis of resonance frequency. The sensitivity of the resonance k(m)
H with respect

to the thickness of the thin layer is defined as
∂k(m)

H
∂H = limΔH→0

k(m)
H+ΔH−k(m)

H
ΔH . From the expansion of k(m)

H

in (2.20) and (2.21), this boils down to the sensitivity analysis of the coefficient αH , namely ∂αH
∂H . Recall

that αH = 〈S−1
H 1, 1〉, and the kernel of the operator SH is given in (2.11), thus we have

∂αH

∂H
=
〈

∂S−1
H

∂H
1, 1

〉
=
〈
S−1

H
∂SH

∂H
S−1

H 1, 1

〉
=
〈
∂SH

∂H
ϕH , ϕH

〉
,
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10 J. LIN ET AL.

where ϕH is the solution for the integral equation SHϕH = 1. In view of the expression (2.3) for
GH(X, Y), the kernel of ∂SH

∂H is given explicitly by

∂GH

∂H
= 4

π

∫ ∞

0

A+A−ei2ρ(kn�,ξ)H · cos(δξ(X − Y))(
A+ − A−ei2ρ(kn�,ξ)H

)2 dξ , (2.23)

where A+ = A+(k, ξ), A− = A−(k, ξ) and ρ(kn�, ξ) are defined in (2.4).
To compute ∂αH

∂H , we divide the whole Sommerfeld integral frequency band as

Λ1 = {ξ ; 0 ≤ ξ ≤ kn� + 1} and Λ2 = {ξ ; ξ > kn� + 1},

and decompose ∂GH
∂H as ∂GH

∂H = ∂G1,H
∂H + ∂G2,H

∂H , where

∂Gj,H

∂H
= 4

π

∫
Λj

A+A−ei2ρ(kn�,ξ)H · cos(δξ(X − Y))(
A+ − A−ei2ρ(kn�,ξ)H

)2 dξ , j = 1, 2.

Correspondingly, ∂αH
∂H is decomposed into

∂α1,H

∂H
=
〈
∂S1,H

∂H
ϕH , ϕH

〉
and

∂α2,H

∂H
=
〈
∂S2,H

∂H
ϕH , ϕH

〉
,

in which
∂Sj,H
∂H is the integral operator with the kernel

∂Gj,H
∂H . Since Λ1 has finite bandwidth, it is clear

that ∂G1,H
∂H = O(1) and hence

∂α1,H

∂H
= O(1).

We now compute ∂α2,H
∂H by investigating the kernel of ∂S2,H

∂H , which consists of all evanescent wave modes
with the momentum ξ in the frequency band Λ2. Note that for ξ ∈ Λ2, there hold

A+ = iξ

⎛
⎝
√

1 − k2n2
l

ξ2
+
√

1 − k2

ξ2
ε�

⎞
⎠ ,

A− = iξ

⎛
⎝
√

1 − k2n2
l

ξ2
−
√

1 − k2

ξ2
ε�

⎞
⎠ ,

ei2ρ(kn�,ξ)H = e
−2ξH

√
1− k2n2

l
ξ2 .

Let

F(ξ) = A+A−(
A+ − A−ei2ρ(kn�,ξ)H

)2 b(ξ),
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SENSITIVITY OF RESONANCE FREQUENCY 11

where

b(ξ) = e
2ξH−2ξH

√
1− k2n2

l
ξ2 = e

2k2n2
l H

ξ

(√
1−k2n2

l /ξ2+1
)

.

Then

∂G2,H

∂H
=
∫

ξ>knl+1
F(ξ)e−2ξH · cos(δξ(X − Y))dξ = Re

∫
ξ>knl+1

F(ξ)e−ξ(2H+iδ(X−Y))dξ . (2.24)

Using the expansions

A+ = iξ

(
1 + εl + O(

1

ξ2 )

)
, A− = iξ

(
1 − εl + O(

1

ξ2 )

)
, b(ξ) = 1 + O

(
1

ξ

)
,

we can decompose F(ξ) as

F(ξ) = F0(ξ) + F1(ξ) =:
a

(1 − ae−2ξH)2 + O

(
1

ξ

)
,

where

a = 1 − εl

1 + εl
.

We now estimate
∫
ξ>knl+1 Fj(ξ)e−ξ(2H+iδ(X−Y))dξ for j = 0, 1. Since∫

ξ>knl+1

1

ξ
e−2Hξ dξ = O(ln H),

it follows that ∫
ξ>knl+1

F1(ξ)e−ξ(2H+iδ(X−Y))dξ = O(ln H). (2.25)

On the other hand, note that

1

(1 − ae−2ξH)2 =
∞∑

n=0

(n + 1)ane−2nξH ,

we obtain∫
ξ>knl+1

F0(ξ)e−ξ(2H+iδ(X−Y))daξ = a
∞∑

n=0

∫
ξ>knl+1

(n + 1)ane−2nξHe−ξ(2H+iδ(X−Y))dξ

= a
∞∑

n=0

(n + 1)an e(−2(n+1)H−iδ(X−Y))(knl+1)

2(n + 1)H + iδ(X − Y)

= O

(
1√

H2 + δ2(X − Y)2

)
. (2.26)
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12 J. LIN ET AL.

By substituting (2.25) and (2.26) into (2.24), we obtain the sensitivity for ∂G2,H
∂H :

∂G2,H

∂H
= O(ln H) + O

(
1√

H2 + δ2(X − Y)2

)
.

It follows that for H > δ,

∂G2,H

∂H
= O(ln H) + O(1/H) = O(1/H), (2.27)

and for 0 < H ≤ δ,

∂G2,H

∂H
= O(ln H) + O

(
1

δ

1√
(H/δ)2 + (X − Y)2

)
. (2.28)

We now estimate

∂α2,H

∂H
=
〈
∂S2,H

∂H
ϕH , ϕH

〉
=
∫ 1

0

∫ 1

0

∂G2,H

∂H
(X, Y)ϕH(X)ϕH(Y)dXdY .

Since H � 1, it follows that

∂α2,H

∂H
≈
∫ 1

0

∫ 1

0

∂G2,H

∂H
(X, Y)ϕ0(X)ϕ0(Y)dXdY , (2.29)

where ϕ0 is the unique solution to the integral equation S0ϕ0 = 1. It is known that ϕ0 is a smooth
function over the interval (0, 1) , and it attains the singularity of the type 1√

X
and 1√

1−X
near X = 0 and

X = 1, respectively (see, for instance, Costabel et al., 2003). Hence we may write ϕ0 as

ϕ0(X) = O

(
1√
X

)
+ O

(
1√

1 − X

)
. (2.30)

Inserting (2.27) and (2.30) into (2.29), we obtain that for H > δ,

∂α2,H

∂H
= O

(
1

H

)
.

On the other hand, for 0 < H ≤ δ, by substituting (2.28) and (2.30) into (2.29) and using the estimate

∫ 1

0

∫ 1

0

1√
t2 + (X − Y)2

1√
X

1√
Y

dXdY = O(ln t + 1), 0 < t ≤ 1,

we obtain

∂α2,H

∂H
= O(ln H) + 1

δ
· O (1 + ln(H/δ)) = 1

δ
· O (1 + ln(H/δ)) .
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SENSITIVITY OF RESONANCE FREQUENCY 13

Fig. 3. The resonance frequencies Rek(1)
H and Rek(2)

H for various thickness H ∈ [10−5, 0.2] when δ = 0.05. Here ε� = 2 and
εs = 1.

Finally, by inserting the sensitivity of αH = α1,H + α2,H into the expansions in (2.20) and (2.21) for

the resonances, it follows that the sensitivity of the resonance frequency is given by
∂k(m)

H
∂H = O(δ/H) if

H > δ and
∂k(m)

H
∂H = O(1 + ln(H/δ)) if 0 < H < δ. We observe that the spectral sensitivity decreases

if H increases. This is illustrated in Fig. 3 where k(1)
H and k(2)

H are depicted for various thickness H ∈
[10−5, 0.2] when δ = 0.05.

3. Sensitivity of resonance frequency for the periodic nano-slit structure

Denote the period of the metallic structure by d and the reciprocal lattice constant by b = 2π/d. Let
κ = k sin θ be the Bloch wave number. Due to the periodicity of the structure, we impose that the
solution u is the quasi-periodic such that u(x1 + d, x2) = eiκdu(x1, x2). By applying the Green’s formula
in the ΩH and Ω2 using the quasi-period Green’s functions with the momentum κ and taking the limit
to the slit apertures, one obtains a similar integral formulation to the single nano-slit case:

[
η1Tp

1 + Ti T̃i

T̃ i η2Tp
2 + Ti

] [
ϕ1
ϕ2

]
=
[

0
f /δ

]
, (3.1)

where Tp
1 and Tp

2 , Ti are integral operators defined for X ∈ (0, 1) with quasi-periodic kernels Gp
1(X, Y)

and Gp
2(X, Y). Let κn = κ + 2πn

d
, then the explicit expression of quasi-periodic Green’s functions

Gp
1(X, Y) and Gp

2(X, Y) are given by

Gp
1(X, Y) = − i

d

∞∑
n=−∞

1

ρ(kn�, κn)
eiκnδ(X−Y) + Gp

H(k; X, Y) for X, Y ∈ Γ1,δ ,

Gp
2(X, Y) = − i

d

∞∑
n=−∞

1

ρ(k, κn)
eiκnδ(X−Y) for X, Y ∈ Γ2,δ ,
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14 J. LIN ET AL.

in which

Gp
H(k; X, Y) = −2i

d

∞∑
n=−∞

A−(k, κn)e
i2ρ(kn�,κn)Heiκnδ(X−Y)

ρ(kn�, κn)
(
A+(k, κn) − A−(k, κn)e

i2ρ(kn�,κn)H
) , (3.2)

and A± and ρ are defined in (2.4).
If δ � 1 and k is away from the Rayleigh anomaly frequencies satisfying k = κn or kn� = κn for

certain n, then it can be shown that Green’s functions admit the following asymptotic expansions (cf.
Lemma 3.1 in Lin & Zhang, 2018a):

Gp
1(X, Y) = βp

e (kn�, κ) + 1

π
ln |X − Y| + Gp

H(k; X, Y) + r1(X, Y), (3.3)

Gp
2(X, Y) = βp

e (k, κ) + 1

π
ln |X − Y| + r2(X, Y), (3.4)

where

βp
e (k, κ) = 1

π

(
ln δ + ln 2 + ln

π

d

)
− i

d

1

ρ(k, κ)
+
∑
n �=0

(
1

2π

1

|n| − i

d

1

ρ(k, κn)

)
,

and r1 = O(δ), r2 = O(δ). By decomposing the integral operators Tp
1 , Tp

2 and Ti according to the
expansions of their kernels Gp

1, Gp
2 and Gi, a decomposition parallel to (2.13) of the single slit case can

be obtained for the homogeneous version of integral formulation (3.1). Note that for the periodic case,
the operator S0 takes the form of

S0 =
[

Sp
H 0
0 S

]
,

where the integral operator S remains the same, while the integral operator Sp
H attains the kernel

sp
H(k; X, Y) = η1

π
ln |X − Y| + Gi

0(X, Y) + η1Gp
H(k; X, Y).

Therefore, by projecting on the subspace spanned by e1 and e2 as the single nano-slit configuration, the
resonances reduce to the roots of certain nonlinear function given by the determinant of a 2 × 2 matrix
M

p(k, κ).
To solve for detMp(k, κ) = 0, we define

α
p
H = 〈(Sp

H)−11, 1〉, α = 〈S−11, 1〉,

and

β
p
1 (k, κ) = δ · (η1β

p
e (kn�, κ) + βi(kns)

)
, β

p
2 (k) = δ · (η2β

p
e (k, κ) + βi(kns)

)
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxaa041/5983112 by Auburn U

niversity user on 21 D
ecem

ber 2020



SENSITIVITY OF RESONANCE FREQUENCY 15

Then following the same calculations as the single slit case, the leading order of roots near to mπ/ns
(m = 1, 3, 5 · · · ) satisfies

α

(
β

p
1 + β

p
2

2
+ β̃

)
+ δ + (α

p
H − α)β̃

α
p
H

(
β1+β2

2 − β̃
)

+ δ
· δ = 0.

From the above equation, we obtain the asymptotic expansion of the roots k(m)
H (κ) for each κ when m is

odd:

k(m)
H (κ) · ns = mπ + m(η1 + η2) · δ ln δ + 2mπcp

H(mπ/ns, κ) · δ + O(δ2 ln2 δ), (3.5)

where

cp
H(k, κ) = 1

2π

(
(η1 + η2 + 4) ln 2 + (η1 + η2) ln

π

d

)
+ η1

2
γ (kn�, κ) + η2

2
γ (k, κ)

+ 1

α
+
(

1

α
− 1

α
p
H

)
· 1

cos(kns) − 1
,

γ (k, κ) = − i

d

1

ρ(k, κ)
+
∑
n �=0

(
1

2π

1

|n| − i

d

1

ρ(k, κn)

)
.

For even m such that mδ � 1, it can be obtained that

k(m)
H (κ) · ns = mπ + m(η1 + η2) · δ ln δ + 2mπcp

H(mπ/ns, κ) · δ + O(δ2 ln2 δ), (3.6)

where

cp
H(k, κ) = 1

2π

(
(η1 + η2 + 4) ln 2 + (η1 + η2) ln

π

d

)
+ η1

2
γ (kn�, κ) + η2

2
γ (k, κ)

+ 1

α
p
H

+
(

1

α
− 1

α
p
H

)
· 1

cos(kns) + 1
.

In view of the expansions (3.5) and (3.6) for the resonances, the sensitivity of k(m)
H now reduces to the

sensitivity analysis of the coefficient α
p
H , namely

∂α
p
H

∂H . This boils down to the following inner product:

∂α
p
H

∂H
=
〈

∂(Sp
H)−1

∂H
1, 1

〉
=
〈
(Sp

H)−1 ∂Sp
H

∂H
(Sp

H)−11, 1

〉
=
〈

∂Sp
H

∂H
ϕ

p
H , ϕp

H

〉
,

where ϕ
p
H is the solution for the integral equation Sp

Hϕp = 1. The derivation can be proceeded by
following the lines of the single slit configuration.
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16 J. LIN ET AL.

Fig. 4. Accuracy of the asymptotic expansion formulas for the resonances k(1)
H and k(2)

H . The dash lines represent the error

|k(1)
H − k(1)

H,0| and |k(2)
H − k(2)

H,0|, respectively, in which k(1)
H,0 and k(2)

H,0 are the values obtained from the asymptotic formulas with

the high-order terms O(δ2 ln2 δ) being dropped. The period d = 1.2, the Bloch wave number κ = 0 and the permittivity values
ε� = 2, εs = 1.

First, using the expression (3.2), we obtain the kernel of
∂Sp

H
∂H :

∂Gp
H

∂H
= 4

d

∞∑
n=−∞

A+A−ei2ρ(kn�,κn)H · eiκnδ(X−Y)(
A+ − A−ei2ρ(kn�,κn)H

)2 , (3.7)

where A+ = A+(k, ξ), A− = A−(k, ξ) and ρ(kn�, ξ) are defined in (2.4). Let N be the smallest integer

satisfying Nb > kn� + |κ|. We decompose
∂Gp

H
∂H as

∂Gp
H

∂H = ∂Gp
1,H

∂H + ∂Gp
2,H

∂H , where

∂Gp
1,H

∂H
= 4

d

∑
|n|≤N

A+A−ei2ρ(kn�,κn)H · eiκnδ(X−Y)(
A+ − A−ei2ρ(kn�,κn)H

)2 ,

∂Gp
2,H

∂H
= 4

d

∑
|n|>N

A+A−ei2ρ(kn�,κn)H · eiκnδ(X−Y)(
A+ − A−ei2ρ(kn�,κn)H

)2 .

It is clear that
∂Gp

1,H
∂H consists of finitely many propagating modes, while

∂Gp
2,H

∂H consists of infinitely many

evanescent modes, which will be dominant in the resonance sensitivity analysis. Correspondingly, ∂αH
∂H

is decomposed into

∂α1,H

∂H
=
〈
∂S1,H

∂H
ϕH , ϕH

〉
and

∂α2,H

∂H
=
〈
∂S2,H

∂H
ϕH , ϕH

〉
,

in which
∂Sj,H
∂H is the integral operator with the kernel

∂Gj,H
∂H . A parallel argument as in Section 2.2.2 by

replacing the integration over the frequency band Λ1 and Λ2 with the sum of the series correspondingly
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SENSITIVITY OF RESONANCE FREQUENCY 17

Fig. 5. The resonance frequencies Rek(1)
H and Rek(2)

H for various thickness H ∈ [10−5, 0.2] when δ = 0.05. The period d = 1.2,
the Bloch wave number κ = 0 and the permittivity values ε� = 2, εs = 1.

shows that

∂Gp
1,H

∂H
= O(1),

∂G2,H

∂H
= O(ln H) + O

(
1√

H2 + δ2(X − Y)2

)
.

As such we obtain the sensitivity for α
p
1,H and α

p
2,H as follows:

∂α
p
1,H

∂H
= O(1),

∂α
p
2,H

∂H
= O(1/H), H > δ,

∂α
p
2,H

∂H
= 1

δ
· O (1 + ln(H/δ)) , 0 < H ≤ δ.

By inserting the sensitivity of α
p
H = α

p
1,H + α

p
2,H into the resonance expansions (3.5) and (3.6), it

follows that for each κ , the sensitivity of the resonance frequency is given by
∂k(m)

H (κ)

∂H = O(δ/H) if

H > δ and
∂k(m)

H (κ)

∂H = O(1 + ln(H/δ)) if 0 < H < δ. This is similar to the sensitivity of the single
slit case studied in Section 2.2, where the spectral sensitivity is reduced when H increases. Figure 5
plots the first two resonance frequencies for various thickness H ∈ [10−5, 0.2], which confirm such an
assertion.

4. Conclusions

In this paper, we have derived the formulas for the resonance frequencies and their sensitivity when the
nano-slit structures are used in the detection of thin layers. The configurations for both of a single slit and
a periodic array of slits are considered. Our results show that the shift of resonant frequency is mainly
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18 J. LIN ET AL.

due to the near field interaction between the thin sample layer and the slit apertures. The evanescent
wave modes, which are present along the interface between the thin dielectric film and ambient medium,
act on the tiny slit aperture that is away from the interface with a distance of H. These modes decay
exponentially away from the interface and their effect on the slit aperture is weakened as the layer
thickness increases. Specifically, the resonance frequency sensitivity decreases in both configurations
from O(1 + ln H/δ) to O(δ/H) when the layer thickness H is above the threshold order O(δ). While
these results are obtained using the explicit formulas of the resonant frequencies for rectangular shape
holes, we expect that similar resonance sensitivity also holds for other geometries.
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