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SCATTERING BY A PERIODIC ARRAY OF SUBWAVELENGTH
SLITS II: SURFACE BOUND STATES, TOTAL TRANSMISSION,

AND FIELD ENHANCEMENT IN HOMOGENIZATION REGIMES∗

JUNSHAN LIN† AND HAI ZHANG‡

Abstract. This is the second part in a series of two papers that are concerned with the quan-
titative analysis of the electromagnetic field enhancement and anomalous diffraction by a periodic
array of subwavelength slits in a perfect conducting slab. In this part, we explore the scattering
problem in the homogenization regimes, where the period of the structure is much smaller than the
incident wavelength. In particular, two homogenization regimes are investigated: in the first regime,
the width of the slits is comparable to the period, while in the second regime, the width of the slits
is much smaller than the period. By presenting rigorous asymptotic analysis, we demonstrate that a
surface plasmonic effect mimicking that of plasmonic metals occurs in the first regime. In addition,
for incident plane waves, we discover and justify a novel phenomenon of total transmission which
occurs either at certain frequencies for all incident angles or at a special incident angle but for all
frequencies. For the second regime, the nonresonant field enhancement is investigated. It is shown
that the fast transition of the magnetic field in the slits induces strong electric field enhancement.
Moreover, the enhancement becomes stronger when the coupling between the slits is weaker.

Key words. electromagnetic field enhancement, total transmission, subwavelength structure,
surface bound states, surface plasmon, homogenization
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1. Introduction. This is the second part in a series of two papers that are
concerned with the electromagnetic scattering and field enhancement for a perfect
conducting slab patterned with a periodic array of subwavelength slits. In the first
part [24], we investigated the field enhancement in the diffraction regime, where the
period of the metallic structure is of the same order as the incident wavelength. In
this paper, we explore the scattering problem in the homogenization regime, where
the size of the period is much smaller than the incident wavelength. We shall consider
two homogenization regimes. In the first regime, the width of the pattered slits has
the same order as the period of the slab (see Figure 2, top), while in the second
regime, the width is much smaller than the period (see Figure 2, bottom). The
studies are motivated by recent growing interest in extraordinary optical transmission
and strongly enhanced electromagnetic fields in subwavelength apertures or holes,
which could lead to potentially significant applications in biological and chemical
sensing, near-field spectroscopy, etc. [11, 13, 14, 15, 19, 28]. We remark that a similar
homogenization regime has been investigated for periodically arranged subwavelength
resonators such as plasmonic particles and bubbles in [4, 5], where the mechanism of
metasurface is explained. The reader is also referred to [23] for scattering and field
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Fig. 1. Setup of the scattering problem. The slits Sε are arranged periodically with the size of
the period d, and each slit has a rectangular shape of length ` and width ε, respectively. The domains
above and below the perfect conductor slab are denoted as Ω+ and Ω−, respectively, and the domain
exterior to the perfect conductor is denoted as Ωε, which consists of Sε, Ω+, and Ω−.

enhancement for a single narrow slit and [8, 10] for a closely related problem of
scattering by subwavelength cavities.

We now present the setup of the scattering problem. Figure 1 depicts the geometry
of the cross section for the metallic structure under consideration. The slab occupies
the domain {(x1, x2) | 0 < x2 < `} on the x1x2 plane, where ` is the thickness of the
metallic slab. The slits, which are invariant along the x3 direction, occupy the region

Sε =
⋃∞
n=−∞(S

(0)
ε + nd), where d is the size of the period, and S

(0)
ε := {(x1, x2) | 0 <

x1 < ε, 0 < x2 < `}. We denote the semi-infinite domains above and below the slab
by Ω+ and Ω−, respectively, and the domain exterior to the perfect conductor by Ωε,
i.e., Ωε = Ω+ ∪ Ω− ∪ Sε. We also denote by ν the unit outward normal pointing to
the exterior domain Ω+ or Ω−.

The width of slit ε is assumed to be much smaller than the thickness of the slab
`. For clarity of exposition, we shall set ` = 1 in all technical derivations. The general
case for ` 6= 1 follows by a normalization process and a scaling argument. Furthermore,
we assume that the size of the period d is much smaller than the wavelength λ such
that the problem under consideration is in the homogenization regime. The following
two homogenization regimes are investigated here:

(H1) The scale of geometrical parameters are given by ` = 1, ε ∼ d � 1, and the
incident wavelength λ ∼ O(1) or λ � 1. That is, ε ∼ d � λ. A schematic
plot of the geometry is shown in Figure 2 (top).

(H2) The scale of geometrical parameters are given by ` = 1, ε � 1, d ∼ 1 or
1 � d � λ, and λ � 1. That is, ε � d � λ. A schematic plot of the
geometry is shown in Figure 2 (bottom).

Assume that a polarized time-harmonic electromagnetic wave impinges upon the
perfect conductor from above. We consider the transverse magnetic (TM) case where
the incident magnetic field is perpendicular to the x1x2 plane, and its x3 component
is given by the scalar function ui = ei(κx1−ζ(x2−1)). Here κ = k sin θ, ζ = k cos θ, k is
the wavenumber, and θ is the incident angle. Throughout the paper, we assume that
|θ| < θ0 <

π
2 for some θ0 to exclude the case of grazing incidence angle. The total

field uε, which consists of the incident wave ui and the scattered field usε, satisfies the
Helmholtz equation

∆uε + k2uε = 0 in Ωε(1.1)
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Fig. 2. Geometry of slits in two homogenization regimes. Top: ` = 1, ε ∼ d � 1, Bottom:
` = 1. ε� 1, d ∼ 1, or d� 1 but d� λ.

and the boundary condition

∂uε
∂ν

= 0 on ∂Ωε.(1.2)

We look for quasi-periodic solutions such that uε(x1, x2) = eiκx1 ũε(x1, x2), where ũε
is a periodic function with ũε(x1 + d, x2) = ũε(x1, x2), or equivalently,

uε(x1 + d, x2) = eiκduε(x1, x2).(1.3)

Define

κn = κ+
2πn

d
and ζn(k) =

√
k2 − κ2

n,

where the function f(z) =
√
z is understood as an analytic function defined in the

domain C\{−it : t ≥ 0} by √
z = |z| 12 e 1

2 i arg z

throughout the paper. Then it can be shown that the outgoing scattered field adopts
the following Rayleigh–Bloch expansion in Ω+ and Ω−, respectively (cf. [6, 7, 31]):

usε(x1, x2) =

∞∑
n=−∞

us,+n eiκnx1+iζnx2 and usε(x1, x2) =

∞∑
n=−∞

us,−n eiκnx1−iζnx2 ,

(1.4)

where us,±n are constants. The expansion (1.4) is usually referred to as the outgoing
radiation condition and is imposed for the scattered field in the two semi-infinite
domains. In sum, the mathematical model for the scattering problem is defined in
the domain Ωε and given by (1.1)–(1.4). Due to the quasi periodicity of the solution,
we will restrict κ to the first Brillouin zone (−π/d, π/d]. Such κ is called the reduced
wave vector component [7, 31].

In this paper, based upon a combination of layer potential techniques and asymp-
totic analysis, we present quantitative analysis of field enhancement and anomalous
transmission behavior for the scattering problem in the above mentioned two homog-
enization regimes:

D
ow

nl
oa

de
d 

05
/2

5/
18

 to
 1

31
.2

04
.2

36
.1

56
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCATTERING BY SLITS IN HOMOGENIZATION REGIME 957

(i) In the homogenization regime (H1), the asymptotic expansions of the dis-
persion relation and the associated eigenmodes of the structure are derived,
which demonstrate the existence of surface plasmonic effect mimicking that
of plasmonic metals. More precisely, the dispersion curve, which lies below
the light line with k(κ) < |κ|, resembles that of surface plasmon polaritons of
metallic slabs made of noble metals, and the eigenmodes, which are surface
bound states along the boundaries of the perfect conducting slab, resemble
the plasmonic waves of noble metals. Therefore, the specific configuration
with ε ∼ d � λ in this regime extends the frequency band for the surface
plasmon, which is originally supported on noble metals in an optical and near-
infrared regime, to the lower frequency regime where metals can be viewed as
perfect conductors. This is the so-called spoof surface plasmon in the physics
literature and has the potential for openning new opportunities to control
radiation at surfaces over a wide spectral range [14, 28].
We further derive the asymptotic expansion of the scattered wave field when
an incident plane wave impinges on the periodic structure. In such a scenario,
|κ| = |k sin θ| < k and the solution to the scattering problem (1.1)–(1.4) is
unique. Interestingly, it is shown that total transmission through the slab
structure can be achieved either at certain frequencies for all incident angles
or for all frequencies at a specific incident angle. We clarify that such perfect
transmission is not due to a plasmonic resonant effect or scattering resonance.
Instead, the former is related to as Fabry–Perot resonance associated with
the homogenized homogeneous slab, where all reflected waves from the slab
boundaries interfere destructively [33], while the latter can be attributed to
the Brewster angle effect [2, 3].

(ii) In the homogenization regime (H2), we show that there exists no complex
resonance or real eigenvalue, and the scattering problem (1.1)–(1.4) attains
a unique solution. We derive the asymptotic expansion of the wave fields
and show that although no enhancement is gained for the magnetic field, a
strong electric field is induced in the slits and on the slit apertures. Such field
enhancement is induced not by resonances but due to the fast transition of
the magnetic field in the slits. In addition, we discuss the enhancement with
varying period d. We show that as the period d decreases and the coupling
between the slits is stronger, the field enhancement becomes weaker.

The rest of the paper is organized as follows. We begin by introducing layer po-
tentials for the scattering problem and presenting the asymptotic expansion for the
solution to the scattering problem in section 2 for both homogenization regimes. The
quantitative analysis of anomalous transmission and field enhancement behaviors is
presented in sections 3 and 4 for the homogenization regimes (H1) and (H2), respec-
tively. The paper is concluded with some remarks about ongoing and future works
along this direction in section 5.

2. Boundary integral equations and the solution to the scattering
problem.

2.1. Layer potentials and boundary integral formulations. In this section,
we collect some preliminaries on the layer potentials and boundary integral formula-
tions for the scattering problem. The reader is referred to the first part of this series
[24] for the proof. For a given κ ∈ (−π/d, π/d], let

gd(x, y) = gd(x, y;κ) = − i

2d

∞∑
n=−∞

1

ζn(k)
eiκn(x1−y1)+iζn(k)|x2−y2|,(2.1)
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958 JUNSHAN LIN AND HAI ZHANG

where

κn = κ+
2πn

d
and ζn(k) =

{√
k2 − κ2

n, |κn| < k,

i
√
κ2
n − k2, |κn| > k.

It is clear that gd(x, y, κ) is the quasi-periodic Green function which solves the fol-
lowing equation:

∆gd(x, y;κ) + k2gd(x, y;κ) = eiκ(x1−y1)
∞∑

n=−∞
δ(x1 − y1 − nd)δ(x2 − y2), x, y ∈ R2.

The exterior Green function ge(x, y) = ge(x, y, κ) in domain Ω+ ∪ Ω− with the

Neumann boundary condition ∂ge(x,y,κ)
∂νy

= 0 on {y2 = 1} and {y2 = 0} is then given

by ge(x, y) = gd(x, y, κ) + gd(x′, y, κ), where

x′ =

{
(x1, 2− x2) if x, y ∈ Ω+,
(x1,−x2) if x, y ∈ Ω−.

The Green function giε(x, y) that solves

∆giε(x, y) + k2giε(x, y) = δ(x− y), x, y ∈ S(0)
ε ,

with the Neumann boundary condition may be expressed as

giε(x, y) =

∞∑
m,n=0

cmnφmn(x)φmn(y),

where cmn = 1
k2−(mπ/ε)2−(nπ)2 , φmn =

√
amn
ε cos(mπx1

ε ) cos(nπx2) with the coefficient

amn =

 1 m = n = 0,
2 m = 0, n ≥ 1, or n = 0,m ≥ 1,
4 m ≥ 1, n ≥ 1.

To formulate the boundary integral equations, we consider the reference cell
Ω(0) := {x ∈ R2 | 0 < x1 < d} as shown in Figure 3. Denote the upper and

lowers apertures of the slit S
(0)
ε in Ω(0) by Γ+

ε and Γ−ε , respectively (see Figure 3).
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Fig. 3. Problem geometry in one reference period Ω(0).
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Lemma 2.1 (see [24]). Let uε(x) be the solution of the scattering problem
(1.1)–(1.4); then

uε(x) =

∫
Γ+
ε

ge(x, y)
∂uε(y)

∂y2
dsy + ui + ur for x ∈ Ω(0) ∩ Ω+,

uε(x) = −
∫

Γ−
ε

ge(x, y)
∂uε(y)

∂y2
dsy for x ∈ Ω(0) ∩ Ω−,

uε(x) =

∫
Γ−
ε

giε(x, y)
∂uε(y)

∂y2
dsy −

∫
Γ+
ε

giε(x, y)
∂uε(y)

∂y2
dsy for x ∈ S(0)

ε .

Here ur = ei(κx1+ζ(x2−1)) is the reflected field by the ground plane {x2 = 1} without
slits.

Based upon Lemma 2.1 and the continuity of the single layer potential, we obtain
the following boundary integral equations defined over the slit apertures Γ±ε .

Lemma 2.2. The following hold for the solution of the scattering problem
(1.1)–(1.4):

uε(x) =

∫
Γ+
ε

ge(x, y)
∂uε(y)

∂y2
dsy + ui + ur for x ∈ Γ+

ε ,(2.2)

uε(x) = −
∫

Γ−
ε

ge(x, y)
∂uε(y)

∂y2
dsy for x ∈ Γ−ε ,(2.3)

uε(x) =

∫
Γ−
ε

giε(x, y)
∂uε(y)

∂y2
dsy −

∫
Γ+
ε

giε(x, y)
∂uε(y)

∂y2
dsy for x ∈ Γ+

ε ∪ Γ−ε .(2.4)

An application of the above lemma leads to the following system of integral equa-
tions: 

∫
Γ+
ε

ge(x, y)
∂uε(y)

∂y2
dsy +

∫
Γ+
ε

giε(x, y)
∂uε(y)

∂y2
dsy

−
∫

Γ−
ε

giε(x, y)
∂uε(y)

∂y2
dsy + ui + ur = 0 on Γ+

ε ,

−
∫

Γ−
ε

ge(x, y)
∂uε(y)

∂y2
dsy +

∫
Γ+
ε

giε(x, y)
∂uε(y)

∂y2
dsy

−
∫

Γ−
ε

giε(x, y)
∂uε(y)

∂y2
dsy = 0, on Γ−ε .

(2.5)

Proposition 2.3. The scattering problem (1.1)–(1.4) is equivalent to the system
of boundary integral equations (2.5).

It is clear that

∂uε
∂ν

∣∣∣∣
Γ+
ε

=
∂uε
∂y2

(y1, 1),
∂uε
∂ν

∣∣∣∣
Γ−
ε

= −∂uε
∂y2

(y1, 0), (ui + ur)|Γ+
ε

= 2eiκx1 .

The above functions are defined over the slit apertures with width ε � 1. We
rescale these functions by introducing X = x1/ε and Y = y1/ε, and we define

ϕ1(Y ) := −∂uε
∂y2

(εY, 1);

ϕ2(Y ) :=
∂uε
∂y2

(εY, 0);

f(X) := (ui + ur)(εX, 1) = 2eiκεX ;
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960 JUNSHAN LIN AND HAI ZHANG

Geε(X,Y ) = Geε(X,Y, κ) := ge(εX, 1; εY, 1) = ge(εX, 0; εY, 0)

= − i
d

∞∑
n=−∞

1

ζn(k)
eiκnε(X−Y );

Giε(X,Y ) := giε(εX, 1; εY, 1) = giε(εX, 0; εY, 0)

=

∞∑
m,n=0

cmnamn
ε

cos(mπX) cos(mπY );

G̃iε(X,Y ) := giε(εX, 1; εY, 0) = giε(εX, 0; εY, 1)

=

∞∑
m,n=0

(−1)ncmnamn
ε

cos(mπX) cos(mπY ).

We also define three boundary integral operators:

(T eϕ)(X) =

∫ 1

0

Geε(X,Y )ϕ(Y )dY X ∈ (0, 1);(2.6)

(T iϕ)(X) =

∫ 1

0

Giε(X,Y )ϕ(Y )dY X ∈ (0, 1);(2.7)

(T̃ iϕ)(X) =

∫ 1

0

G̃iε(X,Y )ϕ(Y )dY X ∈ (0, 1).(2.8)

By a change of variable x1 = εX and y1 = εY in (2.5), the following proposition
follows.

Proposition 2.4. The system of equations (2.5) is equivalent to the following
one: [

T e + T i T̃ i

T̃ i T e + T i

] [
ϕ1

ϕ2

]
=

[
f/ε
0

]
.(2.9)

2.2. Asymptotic expansion of the boundary integral operators. We in-
troduce several function spaces that are used throughout the paper; see also [24]. Let
Hs(R) be the standard fractional Sobolev space for s ∈ R. For a bounded open
interval I, define the Hilbert spaces

Hs(I) := {u = U |I
∣∣ U ∈ Hs(R)}

and
H̃s(I) := {u = U |I

∣∣ U ∈ Hs(R) and suppU ⊂ Ī}.

Then H̃s(I) is the dual of Hs(I). For simplicity of notation, we denote V1 = H̃−
1
2 (0, 1)

and V2 = H
1
2 (0, 1). The duality between V1 and V2 will be denoted by 〈u, v〉 for any

u ∈ V1, v ∈ V2.
Let us define the operator P : V1 → V2 by

Pϕ(X) = 〈ϕ, 1〉1,(2.10)

where 1 is a function defined on the interval (0, 1) and is equal to one therein. Then
1 ∈ V2 and the above definition is valid.

To obtain the solution of the scattering problem, we begin with the asymptotic
expansion of the integral operators T e, T i, and T̃ i. First, the kernels Giε(X,Y ) and
G̃iε(X,Y ) attain the following asymptotic expansions.
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Lemma 2.5. Let

βi(k, ε) =
cot k

kε
+

2 ln 2

π
, β̃(k, ε) =

1

(k sin k)ε
,(2.11)

ρi(X,Y ) =
1

π

[
ln

(∣∣∣∣sin(π(X + Y )

2

)∣∣∣∣)+ ln

(∣∣∣∣sin(π(X − Y )

2

)∣∣∣∣)] .(2.12)

If kε� 1, then

Giε(X,Y ) = βi(k, ε) + ρi(X,Y ) + riε(X,Y ),

G̃iε(X,Y ) = β̃(k, ε) + r̃ε(X,Y ).

Here riε(X,Y ) and r̃ε(X,Y ) are bounded functions with

riε ∼ O((kε)2) and r̃ε ∼ O(e−1/ε)

for all X,Y ∈ (0, 1).

The proof of the lemma can be found in [23, 24].

Lemma 2.6. Assume that κ ∈ (−π/d, π/d] and κ ∼ O(1) satisfying |κ/
√
k2 − κ2|

≤ C, where C is a positive constant. Then the kernel Geε(X,Y ) attains the following
asymptotic expansion in both homogenization regimes (H1) and (H2):

Geε(X,Y ) = βe(k, κ, d, ε) + ρe(X,Y ; k, κ) + reε(X,Y ; k, κ),(2.13)

where βe(k, κ, d, ε) is independent of X and Y , ρe(X,Y ; k, κ) is a function independent
of ε, and reε(X,Y ) is a bounded function with reε ∼ O(r(ε)). In addition,

r(ε)→ 0 as ε→ 0.

(1) In the homogenization regime (H1),

βe(k, κ, d, ε) =
1

π
ln 2− iη√

k2 − κ2 ε
,(2.14)

ρe(X,Y ; k, κ) =
1

π
ln | sin(πη(X − Y ))|+ κη√

k2 − κ2
(X − Y ),(2.15)

where η = ε/d. In addition, r(ε) = ε if κ 6= 0 and r(ε) = ε2 if κ = 0.
(2) In the homogenization regime (H2),

βe(k, κ, d, ε) =
1

π

(
ln ε+ ln 2 + ln

π

d

)
+

 1

2π

∑
n6=0

1

|n|
− i

d

∞∑
n=−∞

1

ζn(k)


(2.16)

and

ρe(X,Y ; k, κ) =
1

π
ln(|X − Y |).(2.17)

In addition, r(ε) = ε if κ 6= 0 and r(ε) = ε2 ln ε if κ = 0.

Remark 2.1. In the above, the expression

1

2π

∑
n 6=0

1

|n|
− i

d

∞∑
n=−∞

1

ζn(k)
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is understood as ∑
n 6=0

(
1

2π

1

|n|
− i

d

1

ζn(k)

)
− i

d

1

ζ0(k)
,

where the series is convergent. Hence, the scalar function βe(k, κ, d, ε) is well defined.

Proof. We derive the asymptotic expansion for the kernel Geε when κ = 0. In the
homogenization regime (H1), we have kd� 1. Therefore,∑
n 6=0

1

ζn(k)
eiκnε(X−Y ) = − id

2π

∑
n 6=0

1

|n|
√

1− (kd/2πn)2
ei

2πn
d ε(X−Y )

= − id
2π

∑
n 6=0

1

|n|

(
1+

∞∑
m=1

1 · 3 · · · (2m−1)

2mm!

(
kd

2πn

)2m
)
ei

2πn
d ε(X−Y )

= − id
2π

∑
n 6=0

1

|n|
ei

2πn
d ε(X−Y )

− id
2π

∞∑
m=1

1 · 3 · · · (2m− 1)

2mm!

∑
n 6=0

(
kd

2πn

)2m
1

|n|
ei

2πn
d ε(X−Y )

=
id

2π
ln
(
4 sin2(πη(X − Y ))

)
+O(k2ε3),

where we have used the formula (cf. [18])∑
n 6=0

1

|n|
ei

2πn
d ε(X−Y ) = ln

(
4 sin2 πε(X − Y )

d

)
.

Therefore,

Geε(X,Y ) = − i
d

∞∑
n=−∞

1

ζn(k)
eiκnε(X−Y )

= − i

ζ0(k)d
+

1

2π
ln
(
4 sin2(πη(X − Y ))

)
+O(k2ε2).

The desired asymptotic expansion follows.
In the homogenization regime (H2), we have k � 1 and ε � 1. Applying the

Taylor expansion yields∑
n 6=0

1

ζn(k)
eiκnε(X−Y ) = − id

2π

∑
n 6=0

1

|n|
√

1− (kd/2πn)2
ei

2πn
d ε(X−Y )

= − id
2π

∑
n 6=0

1

|n|

(
1+

∞∑
m=1

1 · 3 · · · (2m−1)

2mm!

(
kd

2πn

)2m
)
ei

2πn
d ε(X−Y ).

By the formula

−
∑
n 6=0

1

|n|
ei

2πn
d ε(X−Y ) = ln

(
4 sin2 πε(X − Y )

d

)
,

and noting that for m ≥ 1 (cf. [20]),∑
n 6=0

1

|n|2m+1
ei

2πn
d ε(X−Y ) =

∑
n 6=0

1

|n|2m+1
+O(ε2m(X − Y )2m) ln(ε(X − Y )),D
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we obtain∑
n 6=0

1

ζn(k)
eiκnε(X−Y )

=
id

2π
ln

(
4 sin2 πε(X − Y )

d

)
− id

2π

∞∑
m=1

1 · 3 · · · (2m− 1)

2mm!

∑
n6=0

(
kd

2π

)2m
1

|n|2m+1
+O(ε2 ln ε).

=
id

2π
ln

(
4 sin2 πε(X − Y )

d

)
− id

2π

∑
n 6=0

1

|n|
√

1− (kd/2πn)2
− 1

|n|

+O(ε2 ln ε)

=
id

2π
ln

(
4 sin2 πε(X − Y )

d

)
+
id

2π

∑
n6=0

1

|n|
+
∑
n 6=0

1

ζn(k)
+O(ε2 ln ε).

The desired asymptotic expansion follows by noting that ε� d and using the expan-
sion

Geε(X,Y ) = − i
d

∞∑
n=−∞

1

ζn(k)
eiκnε(X−Y ) = − i

d

 1

ζ0(k)
+
∑
n 6=0

1

ζn(k)
eiκnε(X−Y )

 .

Following similar procedures as above, the asymptotic expansion of the kernel for
κ 6= 0 in both homogenization regimes can be obtained, by noting that

− i
d

1

ζ0(k)
eiκε(X−Y ) = − i√

k2 − κ2d

(
1 + iκε(X − Y ) + κ2 ·O(ε2)

)
.

Let

β = βi + βe,(2.18)

where βi is defined in (2.11), and βe is defined by (2.14) and (2.16) for two homoge-
nization regimes, respectively. Set

ρ(X,Y ; k, κ) = ρi(X,Y ) + ρe(X,Y ; k, κ),

ρ∞(X,Y ; k, κ) = riε(X,Y ) + reε(X,Y ; k, κ),

ρ̃∞(X,Y ) = r̃ε(X,Y ),

where ρi is given by (2.12), ρe is given by (2.15) and (2.17) for two homogenization
regimes, respectively, and riε, r̃ε, and reε are the high-order terms as specified in
Lemmas 2.5 and 2.6. We define three integral operators K, K∞, K̃∞ by letting

(Kϕ)(X) =

∫ 1

0

ρ(X,Y ; k, κ)ϕ(Y )dY, X ∈ (0, 1);(2.19)

(K∞ϕ)(X) =

∫ 1

0

ρ∞(X,Y ; k, κ)ϕ(Y )dY, X ∈ (0, 1);(2.20)

(K̃∞ ϕ)(X) =

∫ 1

0

ρ̃∞(X,Y )ϕ(Y )dY, X ∈ (0, 1).(2.21)
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964 JUNSHAN LIN AND HAI ZHANG

Remark 2.2. Note that in the above, the function β and the kernels of the integral
operators ρ, ρ∞, and ρ̃∞ take different forms in the homogenization regimes (H1) and
(H2). Here and henceforth, we adopt the same notation for the sake of presenting a
unified asymptotic framework for the scattering problem (see section 2.3). However,
their values should be clear from the context.

Lemma 2.7. Let the assumption in Lemma 2.6 hold; then in both homogenization
regimes, the operator K is bounded from V1 to V2 with a bounded inverse. Moreover,

α(k, κ) := 〈K−11, 1〉 is a real number and α(k, κ) 6= 0.

Remark 2.3. α takes different values in the two homogenization regimes. It de-
pends on k, κ in the former homogenization regime, and is independent of k and κ in
the latter. For ease of notation, we will simply denote it as α in the rest of the paper.

Proof. The proof for the homogenization regime (H1) is postponed to the ap-
pendix. For the homogenization regime (H2), recall the kernel of the K takes the
form

ρ(X,Y ; k, κ) =
1

π
ln |X−Y |+ 1

π

[
ln

(∣∣∣∣sin(π(X +Y )

2

)∣∣∣∣)+ ln

(∣∣∣∣sin(π(X−Y )

2

)∣∣∣∣)] ,
which is independent of k, κ. The proof can be found in Theorem 4.1 and Lemma 4.2
of [8].

Lemma 2.8. Let the assumption in Lemma 2.6 hold; then the following holds for
(H1) and (H2):

(1) The operator T e + T i admits the following decomposition:

T e + T i = βP +K +K∞.

Moreover, K∞ is bounded from V1 to V2 with the operator norm ‖K∞‖ . r(ε)
uniformly for bounded k.

(2) The operator T̃ i admits the following decomposition:

T̃ i = β̃P + K̃∞,

Moreover, K̃∞ is bounded from V1 to V2 with the operator norm ‖K∞‖ .
e−1/ε uniformly for bounded k.

Proof. From the definition of T e and T i, the kernel of T e + T i is Geε(X,Y ) +
Giε(X,Y ). By the asymptotic expansions of the kernels in Lemmas 2.5 and 2.6, it is
clear that

Geε(X,Y ) +Giε(X,Y ) = βe +βi + ρe(X,Y ; k, κ) + ρi(X,Y ) + reε(X,Y ; k, κ) + riε(X,Y )

= β+ ρ(X,Y ; k, κ) + ρ∞(X,Y ).

The assertion (1) then follows from (2.19) and (2.20). The proof of (2) follows by
using the decomposition

G̃iε(X,Y ) = β̃(k, ε) + r̃ε(X,Y ) = β̃(k, ε) + ρ̃∞(X,Y ).D
ow

nl
oa

de
d 

05
/2

5/
18

 to
 1

31
.2

04
.2

36
.1

56
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCATTERING BY SLITS IN HOMOGENIZATION REGIME 965

2.3. Asymptotic expansion of the solution to the scattering problem.
For both homogenization regimes, we define

P =

[
βP β̃P

β̃P βP

]
, K∞ =

[
K∞ K̃∞
K̃∞ K∞

]
, f =

[
f/ε
0

]
, and L = KI + K∞.

Then from the decomposition of the operators in Lemma 2.8, we may rewrite the
system of the integral equations (2.9) as

(P + L)ϕ = f .(2.22)

Next, we derive the asymptotic expansion of the solution ϕ. By Lemma 2.7, it is also
easy to see that L is invertible for sufficiently small ε. Applying the Neumann series
yields

L−1 = (KI + K∞)
−1

=

 ∞∑
j=0

(−1)j
(
K−1K∞

)jK−1 = K−1I +O (r(ε)) .

Therefore, the following lemma follows immediately.

Lemma 2.9. Let e1 = [1, 0]T and e2 = [0, 1]T . Then

L−1e1 = K−11 · e1 +O(r(ε)), L−1e2 = K−11 · e2 +O(r(ε)),(2.23)

and

〈L−1e1, e1〉 = α+O(r(ε)), 〈L−1e1, e2〉 = O(r(ε)).(2.24)

Here α is defined in Lemma 2.7.

Lemma 2.10. Let e1 = [1, 0]T and e2 = [0, 1]T . Then

〈L−1e1, e1〉 = 〈L−1e2, e2〉, 〈L−1e1, e2〉 = 〈L−1e2, e1〉.

Proof. Let L−1e1 = (a, b)T . Then L(a, b)T = e1. More precisely,

Ka+K∞a+ K̃∞b = 1,

Kb+ K̃∞a+K∞b = 0.

It follows that L(b, a)T = e2, or equivalently,

L−1e2 = (b, a)T ,

hence the two identities hold.

By applying L−1 on both sides of (2.22), we see that

L−1 P ϕ + ϕ = L−1f .(2.25)

Note that

P ϕ = β〈ϕ, e1〉e1 + β〈ϕ, e2〉e2 + β̃〈ϕ, e2〉e1 + β̃〈ϕ, e1〉e2;

the above operator equation can be written as

β〈ϕ, e1〉L−1e1 + β〈ϕ, e2〉L−1e2 + β̃〈ϕ, e2〉L−1e1 + β̃〈ϕ, e1〉L−1e2 + ϕ = L−1f .

(2.26)D
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966 JUNSHAN LIN AND HAI ZHANG

By taking the inner product of (2.26) with e1 and e2, respectively, it follows that

(M + I)
[
〈ϕ, e1〉
〈ϕ, e2〉

]
=

[
〈L−1f , e1〉
〈L−1f , e2〉

]
,(2.27)

where the matrix M is defined as

M := β

[
〈L−1e1, e1〉 〈L−1e2, e1〉
〈L−1e1, e2〉 〈L−1e2, e2〉

]
+ β̃

[
〈L−1e2, e1〉 〈L−1e1, e1〉
〈L−1e2, e2〉 〈L−1e1, e2〉

]
.(2.28)

From Lemma 2.10, it is observed that

M =

(
β + β̃

[
0 1
1 0

])[
〈L−1e1, e1〉 〈L−1e1, e2〉
〈L−1e1, e2〉 〈L−1e1, e1〉

]
.

A straightforward calculation shows that the eigenvalues of M + I are

λ1(k;κ, d, ε) = 1 + (β + β̃)
(
〈L−1e1, e1〉+ 〈L−1e1, e2〉

)
,(2.29)

λ2(k;κ, d, ε) = 1 + (β − β̃)
(
〈L−1e1, e1〉 − 〈L−1e1, e2〉

)
,(2.30)

and the associated eigenvectors are [1 1]T and [1 −1]T , respectively. For simplicity
of notation, let us define

p(k;κ, d, ε) := ελ1(k;κ, d, ε) and q(k;κ, d, ε) := ελ2(k;κ, d, ε),(2.31)

which will be used throughout the rest of the paper.
Solving (2.27) leads to[

〈ϕ, e1〉
〈ϕ, e2〉

]
= (M + I)−1

[
〈L−1f , e1〉
〈L−1f , e2〉

]
.(2.32)

By substituting into (2.25), we obtain the solution to the integral equation system
(2.9):

ϕ = L−1f −
[
L−1e1 L−1e2

] [ β β̃

β̃ β

]
(M + I)−1

[
〈L−1f , e1〉
〈L−1f , e2〉

]
.(2.33)

Lemma 2.11. Assume that k ∈ R+ is not a singular frequency. Let κ = k sin θ,
where θ is the incident angle. Then the following asymptotic expansion holds for the
solution ϕ to (2.9) in V1 × V1 in both homogenization regimes:

ϕ = K−11·
[
κ ·O(1) · e1 +

α

p
(e1 + e2) +

α

q
(e1−e2)

]
+

(
α

p
+
α

q

)
·O(r(ε)) +O(r(ε)).

Moreover, [
〈ϕ, e1〉
〈ϕ, e2〉

]
= [α+O(r(ε))]

(
1

p

[
1
1

]
+

1

q

[
1
−1

])
.(2.34)

Here α is defined in Lemma 2.7, and p and q are defined by (2.31).

Proof. For given k and κ, we see that ζ :=
√
k2 − κ2 = k cos θ. Thus κ/ζ = tan θ

is bounded and the assumption in Lemmas 2.6 and 2.8 holds. Note that the matrix
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M+ I has two eigenvalues λ1 and λ2 given by (2.29) and (2.30), which are associated
with the eigenvectors [1 1]T and [1 − 1]T , respectively. Therefore

(M + I)−1 =
1

2λ1

[
1 1
1 1

]
+

1

2λ2

[
1 −1
−1 1

]
.

Substituting into (2.32) and (2.33) yields[
〈ϕ, e1〉
〈ϕ, e2〉

]
=

1

2λ1
〈L−1f , e1 + e2〉

[
1
1

]
+

1

2λ2(k, ε)
〈L−1f , e1 − e2〉

[
1
−1

]
and

ϕ = L−1f +
1− λ1/〈L−1e1, e1 + e2〉

2λ1
〈L−1f , e1 + e2〉 · (L−1e1 + L−1e2)

+
1− λ2(k, ε)/〈L−1e1, e1 + e2〉

2λ2(k, ε)
〈L−1f , e1 − e2〉 · (L−1e1 − L−1e2).(2.35)

From the Taylor expansion of f and the asymptotic expansion of the operator
L−1 in Lemma 2.9, we can obtain the desired asymptotic expansions for ϕ, 〈ϕ, e1〉,
〈ϕ, e2〉. This derivation is similar to Lemma 3.5 of the first part of this series [24],
and we omit here.

2.4. An overview of diffraction anomaly and field enhancement. From
Lemma 2.11, we see that the solution ϕ to the system of integral equations (2.9)
depends on the two functions p and q. In the rest of the paper, we investigate their
properties in both homogenization regimes and explore the anomalous behaviors and
field enhancement for the scattering problem.

In the homogenization regime (H1), we will shown that for each κ, there exist
roots for p(k;κ, d, ε) = 0 and q(k;κ, d, ε) = 0 such that the homogeneous scattering
problem attains nontrivial solutions. These roots give the dispersion relation of the
surface modes of the underling periodic structure. Very interestingly, the first branch
of the dispersion curve k(κ) and the corresponding surface modes resemble those of
surface plasmon polaritons of metallic slabs made of noble metals. This is the so-
called spoof surface plasmon [14, 28]. It extends the frequency band for the surface
plasmon, which is originally supported on a flat noble metal in an optical and near-
infrared regime, to the terahertz or lower frequency regime where metals are nearly
perfect conductors. We will derive the asymptotic expansions for the dispersion curve
and the associated eigenmodes in section 3. A discussion of the surface plasmonic
effect will also be presented. It is also demonstrated that total transmission can be
achieved. More precisely, for an incident plane wave, there exist certain frequencies
such that no wave is reflected, and all electromagnetic energy passes through the slab
in the limit of ε→ 0. Such a phenomenon also occurs for all frequencies at a specific
incident angle. These results will also be reported in section 3.

In the homogenization regime (H2), it will be shown that no roots exist for
p(k;κ, d, ε) = 0 and q(k;κ, d, ε) = 0, and the periodic structure supports no sur-
face modes or resonance modes. However, significant electric field enhancement still
occurs in and near the slits. These will be investigated in section 4.

3. Homogenization regime (H1): Surface bound states and total trans-
mission. In the homogenization regime (H1), the scale of parameters is given by
ε ∼ d � 1 (Figure 2, top). We adopt the notation η := ε/d for the ratio between
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the slit width and the size of the period. We derive the asymptotic expansions of
the dispersion relation and the corresponding eigenmodes of the periodic structure
in sections 3.1 and 3.2. The effective medium theory for the periodic structure as
ε → 0 is presented in section 3.3, which recovers the leading order of the dispersion
relation given in section 3.1. A brief discussion on the surface plasmon effect of the
perfect conducting slab with slits and that of the plasmonic metallic slab is given in
section 3.4.

The other phenomenon induced by the given periodic structure is the total trans-
mission through the small slits when an incident plane wave impinges on the slab.
This occurs either at certain frequencies for all incident angles or for all frequencies at
a specific incident angle. More precisely, no wave is reflected, and all electromagnetic
energy passes through the slab in the limiting case of ε → 0. We derive the field
pattern above and below the slab for the scattering problem in section 3.3 and discuss
the total transmission phenomenon in section 3.5.

3.1. Asymptotic expansions of the dispersion relation. To obtain the dis-
persion relation, we consider the homogeneous scattering problem with incident wave
ui = 0. By (2.22), the homogeneous problem is equivalent to the operator equation

(P + L)ϕ = 0.

In light of (2.27), this reduces to

(M + I)
[
〈ϕ, e1〉
〈ϕ, e2〉

]
= 0,

where the matrix M is defined by (2.28). Therefore, the characteristic values of the
operator-valued function P+L, or equivalently the singular frequencies, are the roots
of λ1(k;κ, d, ε) and λ2(k;κ, d, ε), the eigenvalues of M + I. Then one only needs to
solve p(k;κ, d, ε) = 0 and q(k;κ, d, ε) = 0 to obtain the singular frequencies.

In light of (2.29), and the definition of β in (2.18), and Lemma 2.9, we may
explicitly express p as follows:

p(k;κ, d, ε) = ε+

[(
cot k

k
+

1

k sin k
− iη√

k2 − κ2

)
+

3 ln 2

π
ε

](
〈L−1e1, e1〉+ 〈L−1e1, e2〉

)
= ε+

[(
cot k

k
+

1

k sin k
− iη√

k2 − κ2

)
+

3 ln 2

π
ε

]
(α+ s(ε)) ,(3.1)

where s(ε) ∼ O(r(ε)). Similarly,

q(k;κ, d, ε) = ε+

[(
cot k

k
− 1

k sin k
− iη√

k2 − κ2

)
+

3 ln 2

π
ε

]
(α+ t(ε)),(3.2)

where t(ε) ∼ O(r(ε)). First, we investigate the roots for the leading-order terms of p
and q.

Lemma 3.1. For each κ,

c±(k, κ) =
cot k

k
± 1

k sin k
− iη√

k2 − κ2
= 0

attains real roots k±m,0(κ) (m = 0, 1, 2, . . . ,M±). In addition,
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κ

Fig. 4. Root of c+(k, κ) = 0: κ = φ+(k) = k
√

1 + η2 tan2(k/2) (left), and root of c−(k, κ) = 0:

κ = φ−(k) = k
√

1 + η2 cot2(k/2) (right).

(i) 0 ≤ k±0,0(κ) < k±1,0(κ) < · · · < k±M±,0(κ) ≤ |κ|,
(ii) for each m, k±m,0(κ) is a continuous and monotonic function of κ,

(iii) as |κ| → ∞, k+
m,0(κ) → mπ and k−m,0(κ) → (m + 1)π if m is odd, and

k+
m,0(κ)→ (m+ 1)π and k−m,0(κ)→ (m+ 2)π if m is even.

Proof. Solving c+(k, κ) = 0 yields

κ = ±φ+(k) := ± k
√

1 + η2 tan2(k/2), k ≥ 0.

Without loss of generality, we consider κ ≥ 0 and κ = φ+(k).
Decompose the domain of the definition for φ+(k) as nonoverlapping intervals:

D(φ+) =

∞⋃
m=0

([
2mπ, (2m+ 1)π

)⋃(
(2m+ 1)π, (2m+ 2)π

))
.

Then for k ∈
[
2mπ, (2m + 1)π

)
, φ+(k) is monotonic increasing and its range is[

2mπ,+∞
)

(cf. Figure 4). Therefore, the inverse

(φ+)−1 :
[
2mπ,+∞

)
→
[
2mπ, (2m+ 1)π

)
exists, which we denote by k+

2m,0(κ). It is clear that k+
2m,0(κ) is continuous and

monotonic. Furthermore, k+
2m,0(κ) ∈

[
2mπ, (2m+1)π

)
and k+

2m,0(κ) ≤ κ. As κ→∞,

it follows that k+
2m,0(κ)→ (2m+ 1)π.

Similarly, φ+(k) is monotonic decreasing in the interval ((2m+1)π, (2m+2)π) with
range ((2m+2)π,+∞) (cf. Figure 4). The inverse (φ+)−1 also exists and is denoted by
k+

2m+1,0(κ). We have k+
2m+1,0(κ) ∈ ((2m+ 1)π, (2m+ 2)π) and |k+

2m+1,0(κ)| < κ. The
continuity, monotonicity, and asymptotic behavior of the function are straightforward
to derive.

Since the range of k+
2m,0(κ) and k+

2m+1,0(κ) does not overlap for different values

of m, we may arrange the roots such that 0 ≤ k+
0,0 < k+

1,0 < · · · < k+
M,0 ≤ κ. Similarly,

by solving c−(k, κ) = 0 we obtain

κ = ±φ−(k) := ± k
√

1 + η2 cot2(k/2), k ≥ 0.

An analogous argument as above leads to the assertion for the roots of c−(k, κ).
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970 JUNSHAN LIN AND HAI ZHANG

Next we derive the asymptotic expansion of the roots for p and q. Note that
kd � 1 in the homogenization regime (H1); we may restrict the discussion in the
bounded domain DM := {z : |z| ≤ M} on the complex k-plane, where M > 0 is a
fixed constant. In addition, for a given κ, p and q are analytic with respect to k in
DM except for the cut-off frequency k = κ; thus we consider k which is away from
this cut-off frequency. To this end, let us define the domain

Dκ,δ,M := {z : |z| ≤M}\Bδ(κ),

where δ is a positive constant and Bδ(z) is the disk with radius δ centered at z on the
complex plane. Let k±m,0 be the roots of c±(k, κ) = 0 as given in Lemma 3.1. Note

that ∂kc±(k±m,0, κ) = 0 only if κ = 0 or ∂kφ
±(km,0) = 0. They hold on a countable set

on the (κ, k)-plane, as observed from the definition of φ±(k) and Figure 4. If km,0 ∈
Dκ,δ,M , we obtain the following asymptotic expansion in the neighborhood of k±m,0.

Theorem 3.2. For each κ, if km,0 ∈ Dκ,δ,M and ∂kc±(k±m,0, κ) 6= 0, then in the
neighborhood Bδ/2(k±m), the roots of p(k;κ, d, ε) = 0 and q(k;κ, d, ε) = 0 have the
following asymptotic expansion:

k±m = k±m(κ, ε) = k±m,0(κ) +
1

∂kc±(k±m,0, κ)

(
1

α(k±m,0, κ)
+

3 ln 2

π

)
ε+O(ε2).(3.3)

Note that

p = c+(k, κ)α(k, κ) +
3 ln 2 · α

π
ε+ ε+O(s(ε)),

q = c−(k, κ)α(k, κ) +
3 ln 2 · α

π
ε+ ε+O(t(ε)),

and k±m,0 are roots of the leading-order terms c±(k, κ) = 0. Hence the proof of the
theorem follows the same perturbation argument as the one for Lemma 4.2 in [24],
and we do not repeat it here.

Remark 3.1. For a given κ, from Lemma 3.1, we have |k±m,0(κ)| < |κ|. By assum-
ing that km,0 is away from the cut-off frequency such that km,0 ∈ Dκ,δ,M , |k±m(κ)| < |κ|
holds true for k±m obtained above.

Remark 3.2. Since both ∂kc±(k±m,0, κ) and α(k±m,0, κ) are real numbers, k±m,0 and
the O(ε) term in the above asymptotic expansion are real. In fact, since |k±m| < |κ|,
it can be argued by the variational method that k±m are real eigenvalues. We refer
to section 4.2 of [24] for a complete discussion. Therefore, the O(ε2) term in the
asymptotic expansion is real too.

3.2. Asymptotic expansion of eigenmodes and surface bound states.
For a given κ, recall that the eigenvectors for the corresponding two eigenvalues of
M + I are [1 1]T and [1 − 1]T . Therefore, if k is an eigenvalue of the scattering
operator such that λ1 = 0 or λ2 = 0, the solution to the homogeneous linear system

(M + I)
[
〈ϕ, e1〉
〈ϕ, e2〉

]
= 0

is given by [
〈ϕ, e1〉
〈ϕ, e2〉

]
= c1

[
1
1

]
and

[
〈ϕ, e1〉
〈ϕ, e2〉

]
= c2

[
1
−1

]
,

respectively, for some constant c1 and c2.
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SCATTERING BY SLITS IN HOMOGENIZATION REGIME 971

We derive the eigenmode of the homogeneous scattering problem. Without loss of
generality, let us set c1 = c2 = 1. First consider the far-field zones Ω+

1 := {x | x2 > 2}
and Ω−1 := {x | x2 < −1} above and below the slab, respectively. By the quasi
periodicity of the solution, we may restrict the discussion to the domain Ω+

1 ∩ Ω(0).
Observe that the scattered field

usε(x) =

∫
Γ+
ε

ge(x, y)
∂uε(y)

∂ν
dsy = −ε

∫ 1

0

ge(x, (εY, 1))ϕ1(Y )dY, x ∈ Ω+
1 ∩ Ω(0).

(3.4)

Let k = k+
m, then 〈ϕ, e1〉 = 1. In addition,

ge(x, (εY, 1)) = ge(x, (0, 1)) (1 +O(ε)) for x ∈ Ω+
1 ∩ Ω(0),(3.5)

and we obtain

usε(x) = −ε (1 +O(ε)) ge(x, (0, 1)) for x ∈ Ω+
1 ∩ Ω(0).(3.6)

Note that κn ∼ O(1/ε) and ζn(k) =
√
k2 − κ2

n ∼ O(1/ε) for n 6= 0, since d ∼ ε.
Therefore,

ge(x, (0, 1)) = 2gd(x, (0, 1)) = − i
d

∞∑
n=−∞

1

ζn(k+
m)
eiκn(x1)+iζn(k+m)|x2−1|

= − i
d

1

ζ0(k+
m)
eiκx1+iζ0(k)|x2−1| +O(e−2πη/ε·|x2−1|).(3.7)

Substituting into (3.6) and using the fact that |κ| > k+
m yields that

usε(x) =
η√

κ2 − (k+
m)2

eiκx1−
√
κ2−(k+m)2 |x2−1| +O(ε) for x ∈ Ω+

1 ∩ Ω(0).(3.8)

Similarly, by using 〈ϕ, e2〉 = 1, we have

usε(x) =
η√

κ2 − (k+
m)2

eiκx1−
√
κ2−(k+m)2 |x2| +O(ε) for x ∈ Ω−1 ∩ Ω(0).(3.9)

Namely, the eigenmode is a surface bound-state mode that decays exponentially above
and below the slab. The same holds for the eigenmode corresponding to k = k−m.

In the reference slit S
(0)
ε , by noting that

∆uε + k2uε = 0 in S
(0)
ε ,

∂uε
∂x1

= 0 on x1 = 0, x1 = ε,

we may expand uε as the sum of wave-guide modes as follows:

uε(x) = a0e
ikx2 + b0e

ik(1−x2) +
∑
m≥1

(
ame

−k(m)
2 x2 + bme

−k(m)
2 (1−x2)

)
cos

mπx1

ε
,

(3.10)
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972 JUNSHAN LIN AND HAI ZHANG

where k
(m)
2 =

√
(mπ/ε)2 − k2. Taking the derivative of (3.10) and evaluating on the

slit apertures, it follows that

∂uε
∂x2

(x1, 1) = ika0e
ik − ikb0 +

∑
m≥1

(
−ame−k

(m)
2 + bm

)
k

(m)
2 cos

mπx1

ε
,(3.11)

∂uε
∂x2

(x1, 0) = ika0 − ikb0eik +
∑
m≥1

(
−am + bme

−k(m)
2

)
k

(m)
2 cos

mπx1

ε
.(3.12)

For k = k+
m, recall that

〈ϕ, e1〉 = 〈ϕ, e2〉 = 1,

and from (2.26),
ϕ = −(β + β̃)(L−1e1 + L−1e2).

Therefore, it can be shown that

a0 = a+
0 =

e−ik

(1− eik)
, b0 = b+0 =

e−ik

(1− eik)
,

and
|am| ≤ C/

√
m, |bm| ≤ C/

√
m for m ≥ 1.

A similar calculation for k = k+
m leads to

a0 = a−0 = − e−ik

(1 + eik)
, b0 = b−0 = − eik

(1 + eik)
.

Therefore, for a given κ, the eigenmode in the slit region S
(0),int
ε := {x ∈ S(0)

ε | x2 �
ε, 1− x2 � ε} adopts the following asymptotical expansion:

uε(x) = a±0 e
ikx2 + b±0 e

ik(1−x2) +O
(
e−1/ε

)
for the eigenvalue k = k±m.

3.3. Homogenization and effective medium theory. As ε → 0, by the
homogenization theory, one expects that the scattering by the slab with an array of
slits is equivalent to the scattering by a homogeneous effective slab. To this end, let
us consider an incident wave ui = ei(κx1−ζ(x2−1)), where κ = k sin θ and ζ = k cos θ,
that impinges on the slab. We calculate the total field uε in the far-field zone. This
procedure is parallel to the one presented in section 3.2. First, it is clear that the
scattered field usε is given by (3.4) in Ω+

1 ∩ Ω(0). Using the asymptotic expansion of
the Green function (3.5), it follows that

usε(x) = −ε (1 +O(ε)) · ge(x, (0, 1)) ·
∫ 1

0

ϕ1(Y )dY for x ∈ Ω+
1 ∩ Ω(0).

An application of the asymptotic expansions for the Green function in (3.7) and
〈ϕ, e1〉 in Lemma 2.11 leads to

usε(x) = −ε (1 +O(ε)) ·
(
− i
d

1

ζ0(k)
eiκx1+iζ0(k)|x2−1| +O(e−1/ε)

)
(3.13)

· (α+O(r(ε)))

(
1

p
+

1

q

)
=
iεα

d ζ
·
(

1

p
+

1

q

)
· ei(κx1+ζ(x2−1)) · (1 +O(ε)) .
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Fig. 5. The effective layered medium as ε→ 0.

Therefore, by virtue of Lemma 2.1 and the relation ε = ηd,

uε(x) = ui(x)+

[
1 +

iηα

ζ
·
(

1

p
+

1

q

)
· (1 +O(ε))

]
·ei(κx1+ζ(x2−1)) for x ∈ Ω+

1 ∩Ω(0).

A straightforward calculation based on (3.1) and (3.2) gives

α ·
(

1

p
+

1

q

)
=

2ζ2k − i · 2ζη · k2 tan k

−(ζ2 + η2k2) tan k − i · 2ζηk
(1 +O(ε)) .

We substitute the above into (3.13) and obtain

uε(x) = ui(x) +R · ei(κx1+ζ(x2−1)) for x ∈ Ω+
1 ∩ Ω(0),(3.14)

where the reflection coefficient

R =
i · (−ζ2 + η2k2) tan k

−i · (ζ2 + η2k2) tan k + 2ζηk
· (1 +O(ε)) .(3.15)

Similarly, it can be obtained that the transmitted field below the slab is

uε(x) = T · ei(κx1−ζx2) for x ∈ Ω−1 ∩ Ω(0),(3.16)

where the transmission coefficient

T =
2ζηk

−i · (ζ2 + η2k2) sin k + 2ζηk cos k
· (1 +O(ε)) .(3.17)

Now let us derive the effective slab as ε → 0. Denote the relative permittivity
and the permeability of the effective medium in the slab by τ̄ and µ̄, respectively, and
consider the layered medium as depicted in Figure 5. The corresponding scattering
problem is formulated as

∇ ·
(

1

τ
∇u
)

+ k2µu = 0,(3.18)

where

τ(x1, x2) =

{
1, x2 > 1 or x2 < 0,

τ̄ , 0 < x2 < 1.
and µ(x1, x2) =

{
1, x2 > 1 or x2 < 0,

µ̄, 0 < x2 < 1.

We look for τ̄ and µ̄ such that the associated far-field u recovers the leading-order
term of the far-field uε given by (3.14)–(3.17).
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974 JUNSHAN LIN AND HAI ZHANG

Theorem 3.3. Let

τ̄ =

[
∞ 0
0 1/η

]
and µ̄ = η,

and let ui = I0e
i(κx1−ζ(x2−1)), where κ = k sin θ and ζ = k cos θ, be the incident wave.

Then the total field for the scattering problem (3.18) has the following form:

u(x1, x2) =

{
I0e

i(κx1−ζ(x2−1) +R0e
i(κx1+ζ(x2−1)), x2 > 1,

T0e
i(κx1−ζx2), x2 < 0.

The reflection and transmission coefficients are given by

R0=
i · (−ζ2 + η2k2) tan k

−i · (ζ2 + η2k2) tan k + 2ζηk
· I0, T0=

2ζηk

−i · (ζ2 + η2k2) sin k + 2ζηk cos k
· I0.

Proof. If τ̄ and µ̄ are given as in the theorem, then the solution to the scattering
problem can be written as follows in each layer:

u(x1, x2) =


I0e

i(κx1−ζ(x2−1)) +R0e
i(κx1+ζ(x2−1)), x2 > 1,

a+ei(κx1+kx2) + a−ei(κx1−kx2), 0 < x2 < 1,
T0e

i(κx1−ζx2), x2 < 0.

By imposing the continuity conditions along the interfaces x2 = 0 and x2 = 1,

u(x1, 0−) = u(x1, 0+), ∂x2
u(x1, 0−) = η∂x2

u(x1, 0+);

u(x1, 1−) = u(x1, 1+), ∂x2
u(x1, 1−) = η∂x2

u(x1, 1+),

we obtain the following linear system for (R0, T0, a
+, a−):

a+ + a− = T0, −iζT0 = iηk(a+ − a−),

eika+ + c−ika− = I0 +R0, iηk(eika+ − e−ika−) = iζ(−I0 +R0).

This can be further reduced to the following system:[
−i tan k · (1 + ζ̃2) + 2ζ̃

]
R0 = I0 · i · (1− ζ̃2) tan k,(3.19) [

−i tan k · (1 + ζ̃2) + 2ζ̃
]
T0 = I0 · 2ζ̃/ cos k,(3.20)

1

2

(
1− ζ̃

)
T0 − a+ = 0,(3.21)

1

2

(
1 + ζ̃

)
T0 − a− = 0,(3.22)

where ζ̃ = ζ/(ηk). Solving (3.19) and (3.20) proves the assertion.

Next, we demonstrate the dispersion relation for the homogenized layered medium
and recover the leading-order term of the dispersion relation k±m(κ) given in
Theorem 3.2.

Theorem 3.4. If

τ̄ =

[
∞ 0
0 1/η

]
and µ̄ = η,
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then the dispersion relation for the layered medium has two branches given by

κ = k
√

1 + η2 tan2(k/2) and κ = k
√

1 + η2 cot2(k/2).(3.23)

Moreover, the corresponding eigenmode for each branch has the following form:

u(x1, x2) =


R0e

iκx1+
√
κ2−k2x2 , x2 > 1,

a+ei(κx1+kx2) + a−ei(κx1−kx2), 0 < x2 < 1,

eiκx1−
√
κ2−k2x2 , x2 < 0,

where

R0 =
i sin k

2
·
(
ηk

ζ
− ζ

ηk

)
, a+ =

1

2

(
1− ζ

ηk

)
, a− =

1

2

(
1 +

ζ

ηk

)
.

Proof. To obtain the dispersion relation, we solve for (k, κ) such that there exists
nontrivial solutions to the linear system (3.19)–(3.22) when I0 = 0. This implies that

−i tan k · (1 + ζ̃2) + 2ζ̃ = 0.

Solving the above equation yields

ζ̃ =
ζ

ηk
= i tan(k/2) or ζ̃ =

ζ

ηk
= −i cot(k/2).

Using the relation κ2 + ζ2 = k2, it follows that

κ2 = k2(1 + η2 tan2(k/2)) or κ2 = k2(1 + η2 cot2(k/2)).

Finally, the corresponding nontrivial solutions to the above linear system are

T0 = C, R0 =
ie−iζ

2
sin k ·

(
ηk

ζ
− ζ

ηk

)
C,

a+ =
1

2

(
1− ζ

ηk

)
C, a− =

1

2

(
1 +

ζ

ηk

)
C

for some constant C. By taking C = 1, we proved the second part of the theorem.

3.4. Surface plasmon for plasmonic metals and perfect conductors with
slits. It is known that surface plasmon modes can be supported on the flat interface
between dielectric and noble metals. Let the permittivity of the dielectric and the
metal be τ1 and τ2, respectively. For metals, we assume that Re τ2 < 0. Such metals
are also called plasmonic metals. Then it can be calculated that, for a metallic slab
with thickness ` as shown in Figure 6 (left), the following bound states (localized
surface plasmonic modes) exist along the interfaces of the dielectric-metal medium
(cf. [26])

u(x1, x2) =


eiκx1−

√
κ2−k2τ1 x2 , x2 > 0,

a+ei(κx1+
√
κ2−k2τ2 x2) + a−ei(κx1−

√
κ2−k2τ2 x2), 0 < x2 < `,

t0e
iκx1+

√
κ2−k2x2 , x2 < 0.

(3.24)

In addition, the dispersion relations are given by

tanh(
√
κ2−k2τ2`) +

τ1
√
κ2−k2τ2

τ2
√
κ2−k2τ1

= 0 and tanh(
√
κ2−k2τ2`) +

τ2
√
κ2−k2τ1

τ1
√
κ2−k2τ2

= 0.
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  2 0
, 

 

 

 1 0
,   

 

 1 0
, 

 

κ

k

ωp
√

2c

Fig. 6. The diaelectric-metal-diaelectric medium (left) and the associated dispersion curve (right).

For simplicity, assume that the exterior medium is vacuum so that τ1 = 1. If one
applies the Drude model without damping for the metal permittivity by letting τ2 =

1 − ω2
p

ω2 , where ωp is the plasma frequency and it takes the value ωp = 1.37 × 1016Hz
for gold [27], then the first dispersion relation is shown in Figure 6 (right), and the
second dispersion relation has a similar shape.

Such localized plasmonic waves, however, do not exist for a perfect conducting
slab [26]. Now if the perfect conducting slab is patterned with an array of slits as we
consider here, a direct comparison of Figures 4 and 6 shows the resemblance of the
dispersion curves for the plasmonic metal and the perfect conductor. Both dispersion
curves lie below the light line such that k(κ) < |κ| and approach certain frequencies
as κ → ∞. In addition, from (3.8), (3.9), and (3.24), the corresponding eigenmodes
are both localized bound states along the slab interfaces. That is, a surface plasmonic
effect mimicking that of plasmonic metals exists in a perfect conducting slab with
engineered surfaces. In particular, for a perfect conducting slab with thickness `, by a
scaling argument, it is seen that the wavenumber k → π/` and 2π/`, respectively, for
the first branch of two dispersion curves as the κ increases to infinity, while for the
plasmonic metal, the wavenumber k → ωp/(

√
2c) as κ increases to infinity. Therefore,

1/` determines the plasmonic frequency for the perfect conductor. As such one can
tune the associated plasmonic mode in different frequencies by adjusting the thickness
` of the metallic slab.

3.5. Total transmission for the scattering by an incident plane wave.
As discussed in previous sections, surface bound states occur when k±(κ) < |κ|. Now
if one considers scattering by an incident plane wave ui = ei(κx1−ζ(x2−1)), where
κ = k sin θ and ζ = k cos θ. Then |κ| < k holds, and the solution to the scattering
problem is unique. The corresponding reflection and transmission coefficients are
given by (3.15) and (3.17). As ε→ 0, their limit values are the ones associated with
the effective medium as stated in Theorem 3.3. In this section, we investigate the
field pattern above and below the metallic slab in the limiting case of ε→ 0. To this
end, let us rewrite the reflection coefficient R0 and the transmission coefficient T0 in
Theorem 3.3 as

R0 =
i tan k · (η2 − cos2 θ)

−i tan k · (η2 + cos2 θ)) + 2η cos θ
,(3.25)

T0 =
2 cos θ · η

−i sin k · (η2 + cos2 θ) + 2 cos θ · η cos k
.(3.26)
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Fig. 7. |R0|2 and |T0|2 for various incident angles and wavenumbers when η = 0.5. Note that
|R0|2 + |T0|2 = 1.

When η = 0.5, their amplitudes for various incident angles and wavenumbers
are shown in Figure 7. It is seen that at k = mπ, where m is an integer, |T0| = 1
for all incident angles. That is, total transmission is achieved at k = mπ for the
scattering by the homogenized slab, which is the limiting effective medium of a perfect
conducting slab perorated with an array of small slits and with small periods. For
the special incident angle such that cos θ = η, it can be calculated that T0 = eik and
total transmission is obtained for all frequencies (see Figure 7). It should be pointed
out that perfect transmission has also been reported for highly conductive metals
patterned with narrow slits [9].

We now discuss the physical origin of the above total transmission phenomenon.
Note that surface bound states associated with the slab structure do not couple an in-
cident plane wave, since k±(κ) < |κ| holds for the real dispersion curves (3.23). On the
other hand, it is evident from our analysis in section 3.1 that there exists no scattering
resonance for the periodic structure in the homogenization regime (H1). Therefore,
we deduce that the total transmission observed here is not due to a plasmonic reso-
nant effect or scattering resonance. Instead, the first type of total transmission, which
occurs at frequency k = mπ for some integer m, is due to the so-called Fabry–Perot
resonances associated with the homogenized slab. At those frequencies, all reflected
waves from the slab boundaries interfere destructively and the zero reflected wave is
finally attained on top of the slab [33]. The second type of total transmission occurs
for all frequencies at the special incident angle such that cos θ = η. This can be
attributed to the so-called Brewster angle effect [2, 3].

4. Homogenization regime (H2): Nonresonant field enhancement. In
the homogenization regime (H2) where ε � d � λ (see Figure 2, bottom), we show
that there exists no resonance or eigenvalue and the corresponding scattering problem
(1.1)–(1.4) attains a unique solution in section 4.1. In section 4.2, we derive the
asymptotic expansion of the wave fields in both the near- and far-field zones and
study their enhancement in this regime. It is shown that although no enhancement
is gained for the magnetic field, a strong electric field is induced in the slits and on
the slit apertures. A discussion on the field enhancement for varying period d is
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978 JUNSHAN LIN AND HAI ZHANG

presented in section 4.3. Briefly speaking, the field enhancement becomes stronger as
d increases. For extremely large d that still satisfies d � λ, the effect of periodicity
is vanishing and enhancement resembles that of the single slit considered in [23] as
d → ∞. On the other hand, as d decreases, the field enhancement becomes weaker.
In particular, if d ∼ ε holds, then no electromagnetic field enhancement is gained.

4.1. Nonexistence of resonance or eigenvalue. From (2.22), the homoge-
neous scattering problem with the incident wave ui = 0 can be equivalently formulated
as the operator equation

(P + L)ϕ = 0,

which further reduces to

(M + I)
[
〈ϕ, e1〉
〈ϕ, e2〉

]
= 0,

by (2.27). Therefore, the resonances/eigenvalues of the scattering operator are roots
of λ1(k;κ, d, ε) and λ2(k;κ, d, ε), the eigenvalues of M+I. Equivalently, they are roots
of p(k;κ, d, ε) = 0 and q(k;κ, d, ε) = 0.

Let us define

γ(k, κ, d) =
1

π

(
3 ln 2 + ln

π

d

)
+

 1

2π

∑
n6=0

1

|n|
− i

d

∞∑
n=−∞

1

ζn(k)

 ,(4.1)

where

ζn(k) = ζ(k, κ, d) =

{√
k2 − (κ+ 2πn/d)2, |κ+ 2πn/d| < k,

i
√

(κ+ 2πn/d)2 − k2, |κ+ 2πn/d| > k.

Then from (2.29), the definition of β in (2.18), and Lemma 2.9, we may explicitly
express

p(k;κ, d, ε) = ε+

[
cot k

k
+

1

k sin k
+ εγ(k, κ, d) +

1

π
ε ln ε

] (
〈L−1e1, e1〉+ 〈L−1e1, e2〉

)
= ε+

[
cot k

k
+

1

k sin k
+ εγ(k, κ, d) +

1

π
ε ln ε

]
(α+ s(ε)) ,(4.2)

where s(ε) ∼ O(r(ε)). Similarly,

q(k;κ, d, ε) = ε+

[
cot k

k
− 1

k sin k
+ εγ(k, κ, d) +

1

π
ε ln ε

]
(α+ t(ε)) ,(4.3)

where t(ε) ∼ O(r(ε)). It is clear that as k → 0,(
cot k

k
+

1

k sin k

)
α→∞ and

(
cot k

k
− 1

k sin k

)
α→ −α

2
.

Therefore, as ε→ 0, p(k;κ, d, ε) = 0 and q(k;κ, d, ε) = 0 do not attain roots for k � 1.
We can conclude that no resonance or eigenvalue (or singular frequency) exists for
the periodic slit structure in the homogenization regime (H2).
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4.2. Quantitative analysis of the electromagnetic field in the near-field
and far-field zones.

4.2.1. Field enhancement in the slits. From the previous discussion, the
scattering problem in the homogenization regime (H2) attains a unique solution. In
this section, we investigate the electromagnetic field in both near-field and far-field

zones. Note that in the reference slit S
(0)
ε (see section 3.2), uε can be expanded as

uε(x) = a0 cos kx2 + b0 cos k(1− x2) +
∑
m≥1

(
ame

−k(m)
2 x2 + e−k

(m)
2 x2

)
cos

mπx1

ε
,

(4.4)

where k
(m)
2 =

√
(mπ/ε)2 − k2. The following asymptotic expansion holds for uε in

S
(0),int
ε := {x ∈ S(0)

ε | x2 � ε, 1− x2 � ε}.

Lemma 4.1. In the slit region S
(0),int
ε , we have uε(x1, x2) = u0(x2) +u∞(x1, x2),

where

u0(x2) = [α+O(r(ε))]

[
cos(kx2)

k sin k

(
1

p
+

1

q

)
+

cos(k(1− x2))

k sin k

(
1

p
− 1

q

)]
,(4.5)

and u∞ ∼ O
(
e−1/ε

)
. Here α is defined in Lemma 2.7.

Proof. From the expansion (4.4), it follows that

∂uε
∂x2

(x1, 1) = ika0e
ik − ikb0 +

∑
m≥1

(
−ame−k

(m)
2 + bm

)
k

(m)
2 cos

mπx1

ε
,(4.6)

∂uε
∂x2

(x1, 0) = ika0 − ikb0eik +
∑
m≥1

(
−am + bme

−k(m)
2

)
k

(m)
2 cos

mπx1

ε
.(4.7)

Therefore,

−a0k sin k =
1

ε

∫
Γ+
ε

∂uε
∂x2

(x1, 1)dx1 = −
∫ 1

0

ϕ1(X)dX = − [α+O(r(ε))]

(
1

p
+

1

q

)
,

b0k sin k =
1

ε

∫
Γ−
ε

∂uε
∂x2

(x1, 0)dx1 =

∫ 1

0

ϕ2(X)dX = [α+O(r(ε))]

(
1

p
− 1

q

)
.

We obtain

a0 =
1

k sin k
[α+O(r(ε))]

(
1

p
+

1

q

)
, b0 =

1

k sin k
[α+O(r(ε))]

(
1

p
− 1

q

)
.(4.8)

For m ≥ 1, the coefficients am and bm can be obtained similarly by taking the

inner product of (4.6) and (4.7) with cos
mπx1

ε
. Then a direct estimate leads to

|am| ≤ C/
√
m, |bm| ≤ C/

√
m for m ≥ 1,(4.9)

where C is some positive constant independent of ε, k, and m. The proof is complete
by substituting (4.8) and (4.9) into (4.4).

Recall that in homogenization regime (H2), ε � 1 and k � 1. In what follows,
we set k = εσ, where σ > 0.

D
ow

nl
oa

de
d 

05
/2

5/
18

 to
 1

31
.2

04
.2

36
.1

56
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

980 JUNSHAN LIN AND HAI ZHANG

Lemma 4.2. Let σ > 0 and k = εσ; then

1

p
· 1

k sin k
=

1

2α
(1 +O(ε2σ) +O(εσ+1))(4.10)

and

1

q
=


− 2

α

(
1 +O(ε2σ) +O(ε1−σ)

)
if 0 < σ < 1,

i · d cos θ

α
εσ−1

(
1 +O(εσ−1)

)
if σ > 1.

(4.11)

Proof. From the expression of γ in (4.1), it is clear that

γ(k, κ, d) = − i

d ζ0(k)
+O(1) = − i

kd cos θ
+O(1).

From the explicit formulas of p and q in (4.2) and (4.3), a direct calculation yields

1

p
· 1

k sin k
=

1

(cos k + 1)α

(
1 +O(k2ε ln ε) +O(γk2ε)

)
=

1

2α(1 +O(ε2σ))

(
1 +O(ε2+2σ ln ε) +

1

d
·O(ε1+σ)

)
=

1

2α

(
1 +O(ε2σ) +

1

d
·O(ε1+σ)

)
.(4.12)

On the other hand,

q =

(
−1

2
+O(k2) + γε+

1

π
ε ln ε

)(
α+ t(ε)

)
+ ε

= −α
(

1

2
+O(ε2σ) +

i

d cos θ
ε1−σ +O(ε ln ε)

)
,(4.13)

whence the asymptotic expansion of 1/q follows.

Theorem 4.3. Let σ > 0 and k = εσ; then uε(x1, x2) = u0(x2) + u∞(x1, x2),
where

u0(x2) =


2x2 +O(ε2σ) +O(ε1−σ) if 0 < σ < 1,

1 + id · cos θ
(
2x2 − 1

)
εσ−1 +O(εσ+1) +O(ε2(σ−1)) if σ > 1,

and u∞ ∼ O
(
e−1/ε

)
.

Proof. By a combination of Lemmas 4.1 and 4.2, and the Taylor expansion, it
follows that when 0 < σ < 1,

u0(x2) = (1 +O(r(ε)))

[
1

2

(
1 +O(ε2σ)

)(
cos(kx2) + cos(k(1− x2))

)
−2
(
1 +O(ε2σ) +O(ε1−σ)

)cos(kx2)− cos(k(1− x2))

k sin k

]
= (1 +O(r(ε)))

[
1 +O(ε2σ)−

(
1 +O(ε2σ

)
+O(ε1−σ)

) (
1− 2x2

)]
= 2x2 +O(ε2σ) +O(ε1−σ),
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while for σ > 1,

u0(x2) = (1 +O(r(ε)))

[
1 +O(εσ+1) +

id · cos θ

2
εσ−1

(
1 +O(εσ−1)

) (
1− 2x2

)]
= 1 +

id · cos θ

2

(
1− 2x2

)
εσ−1 +O(εσ+1) +O(ε2(σ−1)).

From the above theorem, we see that there is no enhancement for the magnetic
field uε in the homogenization regime (H2). However, the transition of the magnetic
field uε along the x2 direction resembles a linear function with a slope of 2 (for
0 < σ < 1) and O(εσ−1) (for σ > 1) in the slits. This is in contrast with the incident
field, which changes with a rate of O(k), or O(εσ), in the slits. Such fast transition
of magnetic field from the upper to the lower slit aperture, compared to the incident
wave, induces strong electric field enhancement as stated in the following theorem.

Theorem 4.4. If ε� 1 and k = εσ, then the electric field Eε = [Eε,1, Eε,2, 0] in
Sintε has the following asymptotic expansion:

Eε,1 =


2i

εσ
√
τ0/µ0

+ min{O(εσ), O(ε1−2σ)} if 0 < σ < 1,

d cos θ

ε
√
τ0/µ0

+ min{O(ε), O(εσ−2)} if σ > 1,

and Eε,2 ∼ O(e−1/ε/εσ).

Here τ0 and µ0 are the electric permittivity and magnetic permeability in the vacuum,
respectively.

Proof. Note that in the TM case, the magnetic field is given by

Hε = [0, 0, uε].

Therefore, by Ampere’s law

∇×Hε = [∂uε/∂x2,−∂uε/∂x1, 0] = −iωτ0Eε.

For 0 < σ < 1, we have

Eε,1 =
2i

k
√
τ0/µ0

+O(ε2σ/k) +O(ε1−σ/k) =
2i

εσ
√
τ0/µ0

+O(εσ) +O(ε1−2σ),

Eε,2 = −∂u∞/∂x1 · i/ωτ0 ∼ O(e−1/ε/k) = O(e−1/ε/εσ).

The electric field when σ > 1 follows by a similar calcuation.

Remark 4.5. From the above theorem, we see that the enhancement for the elec-
tric field is not uniform in the low frequency regime. When k = εσ with 0 < σ < 1, Eε
is of order O(1/εσ), or equivalently O(1/k). Thus the enhancement becomes stronger
as k decreases in such a scenario, while for σ > 1, Eε is of order O(1/ε), which is
independent of k.

Remark 4.6. It is also observed from the previous discussion that the electric field
enhancement also depends on the size of period d. Such dependence is significant when
σ > 1. This will be discussed in more detail in section 4.3.
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4.2.2. Field enhancement on apertures of slits. Define

h(X) =
1

π

∫ 1

0

ln |X − Y |(K−11)(Y )dY,(4.14)

and let

β̄e(k, κ, d) := βe(k, κ, d, ε)− 1

π
ln ε =

(
ln 2 + ln

π

d

)
+

 1

2π

∑
n 6=0

1

|n|
− i

d

∞∑
n=−∞

1

ζn(k)

 .

(4.15)

Lemma 4.7. The following asymptotic for the total field holds:

uε(x1, 1) = − 1

π

(
α

p
+
α

q

)
· ε ln ε−

(
α

p
+
α

q

)(
β̄e + h(x1/ε)

)
· ε+ 2

−
(
α

p
+
α

q

)
·O(ε ln ε · r(ε))− κ ·O(ε) +O(ε · r(ε))(4.16)

and

uε(x1, 0) = − 1

π

(
α

p
− α

q

)
· ε ln ε−

(
α

p
− α

q

)(
β̄e + h(x1/ε)

)
· ε

−
(
α

p
− α

q

)
·O(ε ln ε · r(ε)) +O(ε · r(ε))(4.17)

on the slit apertures Γ+
ε and Γ−ε , respectively.

Proof. Recall that on Γ+
ε ,

uε(x) =

∫
Γ+
ε

geε(x, y)
∂uε(y)

∂ν
dsy + ui + ur.

Let x1 = εX, y1 = εY . We have

uε(εX, 1) = −
∫ 1

0

Geε(X,Y )εϕ1(Y )dY + f(X).

Using Lemma 2.11 and the asymptotic expansion of Geε(X,Y ) in Lemma 2.6, we
obtain

uε(εX, 1) = −εβe (α+O(r(ε)))

(
1

p
+

1

q

)
− ε
π

(
κ ·O(1) +

α

p
+
α

q

)∫ 1

0

ln |X − Y |(K−11)(Y )dY

−
(
α

p
+
α

q

)
O(ε · r(ε)) +O(ε · r(ε)) + f(X).

The desired expansion follows by using (4.14) and (4.15). The asymptotic expansion
on the lower aperture can be obtained similarly.

Now if σ > 0 and k = εσ, by subsituting (4.10)–(4.11) into the above lemma, it
follows that

u(x1, 1) = 2 +O(ε ln ε), u(x1, 0) = O(ε ln ε).

Therefore there is no enhancement for the magnetic field on the aperture. The en-
hancement of the electric field is stated in the following theorem.
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Theorem 4.8. Let σ > 0 and k = εσ; then the following hold for the electric
field:

Eε(x1, 1) =


2i

εσ
√
τ0/µ0

[K−11,−h′(X), 0] + min{O(εσ), O(ε1−2σ)} if 0 < σ < 1,

d cos θ

ε
√
τ0/µ0

[K−11,−h′(X), 0] +O(εσ−2) if σ > 1,

Eε(x1, 0) =


2i

εσ
√
τ0/µ0

[K−11, h′(X), 0] + min{O(εσ), O(ε1−2σ)} if 0 < σ < 1,

d cos θ

ε
√
τ0/µ0

[K−11, h′(X), 0] +O(εσ−2) if σ > 1,

on the upper and lower apertures, respectively.

Proof. We derive Eε on the upper slit apertures. The case for the lower slit
apertures can be obtained similarly. Taking the derivative of (4.16) yields

∂uε
∂x1

(x1, 1) = −
(
α

p
+
α

q

)
· 1

ε
h′(X) · ε−

(
α

p
+
α

q

)
·O(ε ln ε · r(ε))− κ ·O(ε),

where h(X) is defined by (4.14). Therefore, using (4.10)–(4.11), we see that

∂uε
∂x1

(x1, 1) =


2h′(X) +O(ε2σ) +O(ε1−σ) if 0 < σ < 1,

−i · d cos θ h′(X) · εσ−1 +O(ε2(σ−1)) if σ > 1.
(4.18)

On the other hand, by (2.34) it follows that

∂uε
∂x2

(x1, 1) = −K−11 ·
(
κ ·O(ε) +

α

p
+
α

q

)
+

(
α

p
+
α

q

)
·O(r(ε)) +O(r(ε)).

An application of (4.10)–(4.11) yields

∂uε
∂x2

(x1, 1) =


2K−11 +O(ε2σ) +O(ε1−σ) if 0 < σ < 1,

−i · d cos θ K−11 · εσ−1 +O(ε2(σ−1)) if σ > 1.
(4.19)

A combination of (4.18)–(4.19) and the Ampere’s law leads to the desired asymptotic
expansions.

4.2.3. Far-field asymptotic and effective medium theory. In the far-field
zone Ω+

1 := {x | x2 > 2} above the slits, by restricting to the reference cell Ω+
1 ∩Ω(0),

we note that the scattered field

usε(x) =

∫
Γ+
ε

ge(x, y)
∂uε(y)

∂ν
dsy.

An application of formula (4.19) yields

usε ∼ O(ε) and usε ∼ O(ε2σ−1)

for 0 < σ < 1 and σ > 1, respectively. The same holds true for the far-field zone
below the slits. This shows that there is no electric or magnetic field enhancement in
the far field. Moreover, as ε → 0, the effect of the slits vanishes and the perforated
perfect conducting slab becomes a homogeneous perfect conducting slab. This is very
different from the case considered in the homogenization regime (H1) in section 3.3.
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984 JUNSHAN LIN AND HAI ZHANG

4.3. Electric field enhancement in the near field for varying sizes of
period. From Theorems 4.4 and 4.8, it is observed that the enhancement for the
electric field Eε depends on the size of the period d. More precisely, if k = εσ, then
for 0 < σ < 1, the enhancement is of order O(1/εσ) (or equivalently O(1/k)) and is
slightly affected as d increases, since d appears in the high-order terms of Eε, while
for σ > 1, d appears in the leading-order term of Eε. In particular, the enhancement
becomes stronger as d increases. Let us set d = O(ε1−σ−δ) for some 0 < δ < 1. Then
d � λ still holds and d → ∞ as ε → 0 in such a scenario. By substituting d into
(4.12) and (4.13), it is clear that the following holds for p and q.

Lemma 4.9. If ε � 1, k = εσ with σ > 1, and d = O(ε1−σ−δ) with 0 < δ < 1,
then

1

p
· 1

k sin k
=

1

2α
(1 +O(ε2σ)),

and

1

q
= − 2

α

(
1 +O(ε2σ) +O(εδ) +O(ε ln ε)

)
.

Following the same lines as in Theorems 4.3 and 4.4, we can obtain the asymptotic
expansion for the electromagnetic field.

Proposition 4.10. If ε � 1, k = εσ with σ > 1, and d = O(ε1−σ−δ) with
0 < δ < 1, then

u = 2x2 +O(εδ) and Eε,1 =
2i

εσ
√
τ0/µ0

+O(εδ−σ)

in the slits.

Therefore, we recover the O(1/εσ) order (or equivalently the O(1/k) order) en-
hancement for σ > 1. Namely, for sufficiently large d, a uniform O(1/k) enhancement
for Eε is achieved in the low frequency regime. This is consistent with the field en-
hancement for a single slit perorated in a perfect conducting slab (when d = ∞),
where an enhancement order of O(1/k) is obtained in the low frequency regime [23].

On the other hand, as the period d decreases, the magnitude of the electric field
Eε decreases as well. In particular, by taking the extreme case with d = ε/η and
0 < η < 1, one recovers the periodic structure in the homogenization regime (H1).
A straightforward asymptotic expansion of (3.1) and (3.2) for p and q leads to the
following lemma.

Lemma 4.11. If ε� 1, k = εσ, and d = ε/η with 0 < η < 1, then

1

p
· 1

k sin k
=

1

2α
(1 +O(εσ))

and

1

q
=
i cos θ

ηα
εσ (1 +O(εσ)) .

A similar calculation as in Theorems 4.3 and 4.4 yields the following conclusion.

Proposition 4.12. If ε� 1, k = εσ, and d = ε/η with 0 < η < 1, then

u = 1 +O(εσ) and Eε,1 = O(1)

in the slits.

Therefore, no enhancement is gained for such configuration.
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5. Conclusion. In this series of two papers, we have investigated the field en-
hancement and anomalous diffraction for electromagnetic wave scattering by a peri-
odic array of subwavelength slits perforated in a perfect conducting slab. The quan-
titative analysis of the wave field is presented in both the diffraction regime and the
two homogenization regimes. It is demonstrated that the field enhancement in the
diffraction regime is mainly attributed to scattering resonances. Such enhancement
becomes weaker if the resonant frequency is close to the Rayleigh cut-off frequencies.
In the homogenization regimes, the field enhancement can be attributed to a certain
nonresonant effect. In addition, a surface plasmonic effect mimicking that of plas-
monic metals exists for the periodic structure with small period, and almost total
transmission can be obtained for certain incident plane waves.

Based on the studies for the single slit case in [23] and the periodic case in
this series, the mechanism of the field enhancement and anomalous diffraction for
subwavelength slit structures in a perfect conducting slab is now clearly understood.
Along this line of research, we will explore the field enhancement and anomalous
diffraction (or transmission) for a single narrow slit and an array of slits in plasmonic
metallic slabs. Other than the mechanisms that are already known to occur for perfect
conductors, it is expected that additional enhancement mechanisms, including surface
plasmonic resonances, will be present. This will be reported in forthcoming papers.

Appendix A. Proof of Lemma 2.7 for (H1). We prove Lemma 2.7 for the
homogenization regime (H1) in this section. The proof is adopted from the one in
[8]. Let Ω1 = (0, 1

η ) × (0,∞), Ω2 = (0, 1) × (0,−∞), and Ω1,N = (0, 1
η ) × (0, N),

Ω2,N = (0, 1) × (0,−N). We first introduce two Green functions for the domain Ω1

and Ω2, respectively.
For x, y ∈ Ω1, we define

G1(x, y) = −
∞∑
n=1

1

2nπη

(
e−2nπη|x2−y2| + e−2nπη|x2+y2|

)
× (cos 2nπηx1 cos 2nπηy1 + sin 2nπηx1 sin 2nπηy1)

= −
∞∑
n=1

1

2nπη

(
e−2nπη|x2−y2| + e−2nπη|x2+y2|

)
cos 2nπη(x1 − y1).

It is clear that G1 satisfies the following equations:

∆xG1(x, y) = δ(x− y) for x ∈ Ω1,

∂G1(x, y)

∂x2
= 0 for x2 = 0,

G1(0, x2, y) = G1(1/η, x2, y),∫ 1
η

0

G1(x1, 0, y)dx1 = 0,

G1(·, y)→ 0 as x2 →∞ and satisfies the outgoing radiation condition (1.4).

Moreover, when both x, y are restricted to the boundary {(x1, x2) : x1 ∈ (0, 1
η ),

x2 = 0}, we have

G1(x1, 0, y1, 0) = −
∞∑
n=1

1

nπ
cos 2nπη(x1 − y1) =

1

π
ln |2 sinπη(x1 − y1)|.
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For x, y ∈ Ω2, we define

G2(x, y) = −
∞∑
n=1

1

2nπ

(
e−2nπ|x2−y2| + e−2nπ|x2+y2|

)
cosnπx1 cosnπy1.

Then G2 solves the following equations:

∆xG2(x, y) = δ(x− y),

∂G2(x, y)

∂x2
= 0 for x2 = 0,

∂G2(x, y)

∂x1
= 0 for x1 = 0 and x1 = 1,∫ 1

0

G2(x1, 0, y)dx1 = 0,

G2(·, y)→ 0 as x2 → −∞ and satisfies the outgoing radiation condition (1.4).

Moreover, when both x, y are restricted to the boundary {(x1, x2) : x1 ∈ (0, 1),
x2 = 0}, we have

G2(x1, 0, y1, 0) = −
∞∑
n=1

1

nπ
(cosnπ(x1 − y1) + cosnπ(x1 + y1))

=
1

π
ln

∣∣∣∣4 sin
π(x1 − y1)

2
sin

π(x1 + y1)

2

∣∣∣∣ .
Recall that V1 is the space of distributions in H−

1
2 (R) whose support is contained

in [0, 1], or distributions defined in the interval (0, 1) whose zero extension to the whole

line belongs to H−
1
2 (R). For any ψ ∈ V1, we define two functions:

u1 = K1ψ(x1, x2) =

∫ 1
η

0

G1(x1, x2, y1, 0)ψ(y1)dy1(A.1)

=

∫ 1

0

G1(x1, x2, y1, 0)ψ(y1)dy1,

u2 = K2ψ(x1, x2) =

∫ 1

0

G2(x1, x2, y1, 0)ψ(y1)dy1.(A.2)

By the Green identity, one can show that u1 and u2 are the unique solution to the
problem

∆u1(x) = 0 for x ∈ Ω1,

∂u1(x)

∂x2
= ψ for x2 = 0,

u1(0, x2) = u1(1/η, x2),∫ 1
η

0

u1(x1, 0)dx1 = 0,

u1 → 0 as x2 →∞,

and



∆u2(x) = 0 for x ∈ Ω2,

−∂u2(x)

∂x2
= ψ for x2 = 0,

u2(0, x2) = u2(1, x2),∫ 1

0

u2(x1, 0)dx1 = 0,

u2 → 0 as x2 → −∞,

respectively.
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Let us define the following two operators associated with the trace of the functions
u1, u2:

K1,0ψ(x1) =

∫ 1

0

G1(x1, 0, y1, 0)ψ(y1)dy1,

K2,0ψ(x1) =

∫ 1

0

G2(x1, 0, y1, 0)ψ(y1)dy1.

Let K0 = K1,0+K2,0. By analyzing the singularities in the kernel of the two operators
K1,0,K2,0, and using the argument in [8], it follows that K0 : V1 → (V1)∗ = V2 is
bounded. Moreover, K∗0 = K0, where K∗0 is the dual operator (see [12]) of K0. We
show as follows.

Lemma A.1. K0 is invertible from V1 to (V1)∗ and its inverse is bounded.

To establish the above result, we first prove the following identity.

Lemma A.2. For any ψ ∈ V1, we have

〈K0ψ,ψ〉 = −
∫

Ω1

|∇u1|2dx1dx2 −
∫

Ω2

|∇u2|2dx1dx2,

where u1 and u2 are defined in (A.1) and (A.2) .

Proof. Note that both u1 and u2 are harmonic functions and can be expanded as

u1 =
∑
n>0

(an,1 sin 2nπηx1 + bn,1 cos 2nπηx1) e−2nπηx2 ,

u2 =
∑
n>0

bn,2 cosnπx1e
2nπx2

for some constants an,1, bn,1, bn,2.
On the other hand, from the boundary conditions

∂u1(x1, 0)

∂x2
= −∂u2(x1, 0)

∂x2
= ψ,

it follows that∫
Ω1

|∇u1|2dx1dx2 = lim
N→∞

∫
Ω1,N

|∇u1|2dx1dx2 = lim
N→∞

∫
∂Ω1,N

u1
∂u1

∂ν
dσ

= −
∫ 1

0

u1(x1, 0)
∂u1(x1, 0)

∂x2
dx1+ lim

N→∞

∫ 1
η

0

u1(x1, N)
∂u1(x1, N)

∂x2
dx1

= −〈K1,0ψ,ψ〉 − lim
N→∞

∞∑
n=1

nπηe−4nπηN
(
|an,1|2 + |bn,1|2

)
= −〈K1,0ψ,ψ〉.

Similarly for u2, we have∫
Ω2

|∇u2|2dx1dx2 = −〈K2,0ψ,ψ〉.

The lemma follows.
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Based on the above identity, we can show as follows.

Lemma A.3. There exists C > 0 such that for all ψ ∈ V1

‖K0ψ‖V2
≥ C‖ψ‖V1

.

Proof. We consider u2 restricted to the domain Ω2,1. We have∫
Ω2,1

u2dx1dx2 = 0.

By Poincarés inequality, there exists a constant C1 such that

‖u2‖H1(Ω2,1) ≤ C1‖∇u2‖L2(Ω2,1) ≤ C1

√
‖Kψ‖V2

· ‖ψ‖V1
.

On the other hand, note that ψ = −∂u2(x1,0)
∂x2

. By the trace theorem, we have

‖ψ‖V1 ≤ C2‖u2‖H1(Ω2,1)

for some constant C2. It follows that

‖ψ‖V1
≤ C2

1C
2
2‖Kψ‖V2

.

This proves the lemma.

Proof of Lemma A.1. From Lemma A.3, we can conclude that the map K0 : V1 →
V ∗1 is injective. This also shows that K∗0 is also injective (since K∗0 = K0). As a result,
K0(V1) is dense in (V1)∗. But Lemma A.3 also implies that K0(V1) is closed in V2.
Therefore, K0(V1) = (V1)∗ and consequently K0 has a bounded inverse K−1

0 by the
open mapping theorem.

Proof of Lemma 2.7 for the case H1. For any ψ ∈ V1, note that

Kψ(X) = K0ψ −
3 ln 2

π
〈ψ, 1〉1 +

κη√
k2 − κ2

∫ 1

0

(X − Y )ψ(Y )dY.

A direct calculation yields

〈Kψ,ψ〉 = 〈K0ψ,ψ〉 −
3 ln 2

π
|〈ψ, 1〉|2 < 〈K0ψ,ψ〉.

Therefore, using Lemma A.3, we can show that

‖Kψ‖V ∗
1
≥ C‖ψ‖V1

for some constant C. Similar to the proof of Lemma A.1, we can conclude that K is
invertible from V1 to V ∗1 and its inverse is also bounded.

To calculate α(k, κ) := 〈K−11, 1〉, let ψ0 = K−11. Then ψ0 depends on k and κ
and we have

α(k, κ) = 〈ψ0,Kψ0〉 = 〈K0ψ0, ψ0〉 −
3 ln 2

π
|〈ψ, 1〉|2 < 0.

It is obvious that α(k, κ) is a real number. This completes the proof of Lemma 2.7.
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