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In this work we present an adaptive boundary-integral equation method for computing 
the electromagnetic response of wave interactions in hyperbolic metamaterials. The 
indefiniteness of the permittivity tensor gives rise to preferential wave radiation within 
the propagating cone for the hyperbolic media, and this induces sharp transition for the 
solution of the integral equation across the cone boundary when waves start to decay or 
grow exponentially. In order to avoid a global refined mesh over the whole boundary, 
we employ a two-level a posteriori error estimator and an adaptive mesh refinement 
procedure to resolve the singularity locally for the solution of the integral equation. 
Such an adaptive procedure allows for the reduction of the number of the degrees of 
freedom significantly for the integral equation solver while achieving desired accuracy 
for the solution. In addition, to resolve the fast transition of the fundamental solution 
and its derivatives accurately across the propagation cone boundary, adaptive numerical 
quadrature rules are applied to evaluate the integrals for the stiffness matrices. Finally, 
to formulate the integral equations over the boundary we also derive the limits of layer 
potentials and their derivatives in the hyperbolic media when the target points approach 
the boundary.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Hyperbolic metamaterials are a class of uniaxial anisotropic electromagnetic materials for which the axial principle com-
ponent of their relative permittivity or permeability tensors attain opposite sign of the other two principal components:

ε(x) =
⎡
⎣ ε‖(x) 0 0

0 ε⊥(x) 0
0 0 ε⊥(x)

⎤
⎦ or μ(x) =

⎡
⎣μ‖(x) 0 0

0 μ⊥(x) 0
0 0 μ⊥(x)

⎤
⎦ . (1.1)

In the above, the subscripts ‖ and ⊥ denote the component parallel and perpendicular to the optical axis (oriented along 
the x1 direction here) respectively, and it holds that

Reε⊥ · Reε‖ < 0 or Reμ⊥ · Reμ‖ < 0.
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Hyperbolic metamaterials can be realized, for instance, by alternating metal–dielectric layers or by embedding metallic wire 
array in a dielectric matrix by restricting free-electron motion to certain directions [21,36,39]. The homogenized media will 
attain the anisotropy described by (1.1). More recently, hexagonal boron nitride (hBN), α-phase molybdenum trioxide (α-
MoO 3), α-phase vanadium pentoxide (α-V 2 O 5) and a few others have emerged as natural hyperbolic materials that attain 
opposite signs for the in-plane and out-of-plane components of the permittivity tensor [5,16,17,31,34,40]. These natural 
hyperbolic materials typically have layered structures, in which the optical axis is pointing out-of-plane and ε‖(x) in (1.1)
refers to the out-of-the-plane component of the permittivity tensor.

Assume that the media is nonmagnetic such that the permeability reduces to the unit tensor, then the dispersion relation 
for the time-harmonic (with e−iωt dependence) Maxwell’s equations

∇ × E = iωμ0μH, ∇ × H = −iωε0εE

is given by

(
k2

1 + k2
2 + k2

3 − ε⊥k2
0

)
·
(

k2
1

ε⊥
+ k2

2 + k2
3

ε‖
− k2

0

)
= 0, (1.2)

where ε0 and μ0 are the free-space permittivity or permeability, k0 is the free-space wavenumber, and k1, k2 and k3 are the 
x1, x2 and x3 components of the wave vector respectively in the Cartesian coordinate. The first term in (1.2) corresponds 
a spherical isofrequency surface for the transverse electric (TE) polarized waves, while the second term gives rise to a 
hyperboloidal isofrequency surface for the transverse magnetic (TM) polarized waves when Reε⊥ · Reε‖ < 0. It is seen that 
the TM waves remain propagating with arbitrarily large wave vectors in the hyperbolic medium, as opposed to evanescent 
in an isotropic medium. This unique property leads to many interesting applications of hyperbolic metamaterials ranging 
from sub-wavelength light manipulation and imaging to spontaneous and thermal emission modification [13,26,28,37,38].

1.2. Problem formulation

In this paper, we focus on the computation of the electromagnetic response from the wave interactions in hyperbolic 
metamaterials. We study the two-dimensional problem when the medium is invariant along the x3 direction and the wave 
is TM-polarized with the magnetic field H = (0, 0, u)T . The TE-polarized case is less interesting as it leads to an isotropic 
problem with the dispersion relation given by the first term of (1.2), and various existing computational methods can be 
applied to solve the problem. The Maxwell’s equations in the hyperbolic medium for the TM-polarized polarization reduce 
to the scalar wave equation

∇ · (A∇u) + k2
0u = 0, (1.3)

where the coefficient matrix

A(x) =
⎡
⎣ 1

ε⊥(x) 0

0 1
ε‖(x)

⎤
⎦ . (1.4)

It is useful to note that P A(x), rather than A(x), is the inverse of the 2D permittivity tensor ε(x), in which P is the 2 × 2
permutation matrix corresponding to switching the rows. In a homogeneous medium, we set the permittivity values as 
ε⊥(x) ≡ ε1 and ε‖(x) ≡ ε2, where the complex-valued permittivities ε1 and ε2 satisfy

Reε1 · Reε2 < 0 and Imε j > 0 ( j = 1,2).

Namely, the hyperbolic medium considered here is lossy.
Assume that a hyperbolic metamaterial with permittivity values ε⊥(x) ≡ ε

(1)
1 and ε‖(x) ≡ ε

(1)
2 occupies a bounded simply 

connected domain �1. It is placed in an isotropic medium (e.g., vacuum, silicon) or is embedded in another hyperbolic 
metamaterial with the permittivity values ε⊥(x) ≡ ε

(2)
1 and ε‖(x) ≡ ε

(2)
2 , which occupies the region �2 = R2\�̄. When a 

near-field source is excited in the interior or exterior domain, the magnetic field u satisfies

∇ · (A j∇u j) + k2
0u j = f j in � j, j = 1,2, (1.5)

in which

A j =
⎡
⎢⎣
(
ε

( j)
1

)−1
0

0
(
ε

( j)
2

)−1

⎤
⎥⎦ .

There holds ε(2)
1 = ε

(2)
2 when the exterior region is isotropic. The source f j attains a compact support in � j . Across the 

interface � := ∂�1, the continuity of the electric and magnetic fields leads to the condition
2
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Fig. 1. Left: The real part of the fundamental solution �(x1, x2) in the hyperbolic medium with ε1 = 1 + 0.02i and ε2 = −2 + 0.02i. The source is located 
at the origin, and the wavenumber k0 = 2π . Right: cross-sectional plot of �(x1, x2) when x1 = 0.4 and 0.8. �(x1, x2) attains sharp transitions near the 
boundary of the propagating cone C. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

u1 = u2, A1∇u1 · ν = A2∇u2 · ν, (1.6)

where ν represents the unit outward normal along the interface �. In addition to (1.5) and (1.6), the wave field u2 in the 
exterior domain is outgoing when the exterior medium is isotropic. When the exterior medium is hyperbolic, u2 is outgoing 
within the propagation cone with decreasing magnitude (due to the material loss) and it decays exponentially outside the 
propagating cone. In both configurations, u2 satisfies the well-known Sommerfeld radiation condition [12]. This will be 
enforced automatically by using the Green’s function and the integral equation formulation here.

Remark 1. One can formulate the scattering problem (1.5) in a bounded domain by using the Dirichlet-to-Neumann map 
along the domain boundary. Note that the hyperbolic medium is lossy with nonzero imaginary part for the permittivity 
values. Hence it can be shown from the Lax-Milgram theorem and the unique continuation principle that the corresponding 
boundary value problem is well-posed. However, the well-posedness of the boundary value problem for lossless hyperbolic 
medium is still open. Initial attempt has been reported in [3] for boundary value problems with special anisotropy directions 
and spherical geometry.

1.3. Computational challenges

Due to indefiniteness of the permittivity tensor, one important feature of a hyperbolic medium is the preferential wave 
propagation inside the cone

C := {x ; Re(xT A−1x) > 0}.

The half cone angle is given by arctan

√
−Reε1

Reε2
and arctan

√
−Reε2

Reε1
when Reε1 > 0 and Reε1 < 0, respectively. Namely, 

the wave propagates within this cone but decays exponentially outside of the cone [21]. See, for instance, Fig. 1 for the fun-
damental solution of (1.3) and the numerical simulations for wave propagation in hyperbolic media presented in Section 4. 
In particular, when the source is located at the origin, one observes that the imaginary part of the argument z in the Hankel 
function H1

0(z) increases as the target point moves away from the cone boundary in R2\C and the fundamental solution 
decays exponentially accordingly. This induces sharp transition of the solution across the cone boundary when wave starts 
decaying/growing exponentially. The domain discretization methods such as finite element or finite difference are compu-
tationally very expensive to resolve such singular behaviors of the solution. Here we propose a boundary element method 
for solving for the transmission problem (1.5). Integral equation solvers have played an increasing role in the computational 
electromagnetics in the past several decades due to its powerfulness in solving large-scale problems by discretization over 
the boundaries of the objects only; see the monographs [1,10–12,27,32] and the references therein. The application of the 
integral equation method for the hyperbolic media requires us to address several new computational challenges as described 
below.

First, the fundamental solution in the hyperbolic medium is propagating inside the cone C and it decays exponentially 
across the cone boundary and outside. As a result, when computing the stiffness matrices in the boundary element method, 
one needs to apply adaptive numerical quadrature rules to evaluate the integrals with the fundamental solution or its 
derivatives as kernels in order to achieve sufficient accuracy for discretization. Second, the solution of the integral equation 
formulation along the interface � attains sharp transitions when wave front reaches the boundary, especially for hyperbolic 
media with small loss (see Section 4). Here we employ a two-level a posteriori error estimator and an adaptive mesh 
3
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refinement procedure to resolve the singularity of the integral equation solution in an accurate and efficient manner. The 
theory and computation for the adaptive boundary element methods (BEM) are mature in solving elliptic boundary value 
problems [20]. By using a posteriori error estimator, the adaptive procedure chooses a sequence of meshes such that the 
numerical error decays in an optimal manner with increasing dimension of the approximation spaces. There exist a variety of 
error estimators for elliptic boundary value problems, including residual type estimators, space enrichment type estimators, 
averaging estimators, etc [6–9,18,19,22,23,41]. The two-level a posteriori error estimator proposed here for the hyperbolic 
transmission problem belongs to the family of the space enrichment type estimators. The principal idea is to use improved 
approximation of solutions uh/2 and ∂ν̃uh/2 obtained over a uniform refined mesh with mesh size h/2 to replace the exact 
solution u and ∂ν̃u in the numerical error ‖u −uh‖ and ‖∂ν̃u −∂ν̃uh‖. The Dörfler strategy is then applied to mark and refine 
the mesh where local errors ‖uh/2 − uh‖ + ‖∂ν̃uh/2 − ∂ν̃uh‖ are large. Such an adaptive procedure allows for the reduction 
of the number of the degrees of freedom significantly while achieving desired accuracy for the solution, as demonstrated 
by the numerical examples in Section 4. The goal of our work in this paper is to demonstrate the efficacy and accuracy of 
the adaptive algorithm for the two dimensional problems. Its application in three dimensions will be investigated in the 
forthcoming work.

The rest of the paper is organized as follows. In Section 2 we introduce layer potentials and derive their limits as the 
target points approach the boundary. The limiting formulas recover the formulas in the isotropic medium when ε1 = ε2. 
The boundary integral equation for the transmission problem (1.5) is then formulated in Section 2. The adaptive Galerkin 
boundary element method is described in Section 3, where we introduce the adaptive numerical quadrature and the two-
level a posteriori error estimator. Several numerical examples are given in Section 4 to illustrate the accuracy and efficiency 
of the adaptive algorithm. The paper is concluded with brief remark about the proposed computational approach and the 
future work along this direction.

2. Layer potentials and boundary integral equations for the transmission problem

2.1. Layer potentials and integral operators

Here and henceforth, for a hyperbolic material with ε⊥(x) ≡ ε1 and ε‖(x) ≡ ε2, we let

r̃(x, y) =
√

(x − y)T A−1(x − y),

where the matrix A is given in (1.4) and the function 
√

z is understood as an analytic function defined in the domain 
C\{−it : t ≥ 0} such that 

√
z = |z| 1

2 e
1
2 i arg z . Note that when Imε j > 0 ( j = 1, 2), ̃r(x, y) is complex-valued lying in the first 

quadrant of the complex plane. We emphasize that Imε j > 0 is necessary to guarantee that r̃(x, y) �= 0 when x �= y and the 
fundamental solution of (1.3) is well-defined for x �= y. Let ν̃ = Aν be the A-deformed normal vector over the interface �. 
Correspondingly, the derivative of a given function ϕ along the direction ν̃ is defined as

∂ϕ

∂ν̃
= ∇ϕ · ν̃ =

[
1

ε1

∂ϕ

∂x1
,

1

ε2

∂ϕ

∂x2

]
· ν.

Let �(x, y) = i

4
√

ε1ε2 H (1)
0

(
k0r̃(x, y)

)
be the fundamental solution which satisfies (1.3) when x �= y. Here H (1)

0 (r) rep-

resents the zero order Hankel function of the first kind. As |x − y| → ∞, �(x, y) is outgoing within the propagation cone 
C and decays exponentially near and outside the cone. � is a bounded simply connected domain with the boundary � of 
class C2. Given the density function ϕ over �, the single and double layer potentials are defined by

v(x) =
∫
�

�(x, y)ϕ(y)dsy and w(x) =
∫
�

∂�(x, y)

∂ν̃(y)
ϕ(y)dsy for x /∈ �. (2.1)

It is well-known that the single layer potential v(x) is continuous throughout R2. In what follows, for completeness we 
derive the limits of the double layer potential and the derivatives of two layer potentials as x approaches �. Although the 
derivation follows the similar lines as the proof for the isotropic medium, the anisotropy requires special treatment for the 
new integrals and their decompositions, especially in Lemmas 2.1 and 2.3, and Proposition 2.4. Note also that the limiting 
formulas now depend on the anisotropy of the medium.

Lemma 2.1. The double-layer potential w(x) with the continuous density ϕ can be continuously extended from � to �̄ and R2\�̄ to 
R2\� respectively with the limit

w±(x) =
∫
�

∂�(x, y)

∂ν̃(y)
ϕ(y)dsy ± 1

2
ϕ(x) for x ∈ �, (2.2)

where
4
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w±(x) = lim
h>0,h→0

w(x ± hν(x)).

Proof. Let �0(x, y) = − 1
2π

√
ε1ε2 ln(r̃(x, y)) be the fundamental solution of (1.3) when k0 = 0, and w0 be the corresponding 

double layer potential:

w0(x) =
∫
�

∂�0(x, y)

∂ν̃(y)
ϕ(y)dsy .

Note that the difference of two double layer potentials w(x) and w0(x) is continuous in R2, thus it suffices to verify (2.2)
for w0(x). The proof can be further reduced to the special case when the density function ϕ ≡ 1, this is because for an 
arbitrary density function ϕ , one can write the double layer potential as

w0(x) = ϕ(x)

∫
�

∂�0(x, y)

∂ν̃(y)
dsy +
∫
�

∂�0(x, y)

∂ν̃(y)
(ϕ(y) − ϕ(x))dsy,

and the latter is continuous throughout R2 when ϕ is continuous. Next we verify the assertion by assuming that ϕ(x) ≡ 1
and showing that

w0(x) =
⎧⎨
⎩

0, x ∈R2\�̄,

− 1
2 , x ∈ �,

−1, x ∈ �.

(2.3)

When x ∈ R2\�̄, noting that �0(x, y) solves (1.3) with k0 = 0 in �, it is obvious w0(x) = 0 by applying the Green’s 
formula. Now if x ∈ �, let Bδ(x) be the small disk with radius δ centered at x and ∂ Bδ(x) be its boundary. It follows from 
the Green’s formula that∫

�

∂�0(x, y)

∂ν̃(y)
dsy = lim

δ→0

∫
∂ Bδ(x)∩�

∂�0(x, y)

∂ν̃(y)
dsy,

where ν denotes the unit normal exterior to Bδ(x). A direct calculation yields

∫
∂ Bδ(x)∩�

∂�0(x, y)

∂ν̃(y)
dsy = − 1

2π

√
ε1ε2

θ2(δ)∫
θ1(δ)

r2

r̃2
dθ = − 1

2π

θ2(δ)∫
θ1(δ)

√
ε1ε2

ε1 cos2 θ + ε2 sin2 θ
dθ (2.4)

in the polar coordinate, where r2 = (x1 − y1)
2 + (x2 − y2)

2 and r̃2 = ε1(x1 − y1)
2 + ε2(x2 − y2)

2. Hence,

∫
�

∂�0(x, y)

∂ν̃(y)
dsy = lim

δ→0
− 1

2π

√
ε1

ε2

θ2(δ)∫
θ1(δ)

sec2 θ

tan2 θ + ε1/ε2
dθ.

By evaluating the above integral explicitly and noting that limδ→0(θ2(δ) − θ1(δ)) = π , we obtain that w0(x) = − 1
2 . A parallel 

calculation leads to w0(x) = −1 for x ∈ �, for which there holds θ2(δ) − θ1(δ) = 2π . �
Proposition 2.2. The derivative of the single-layer potential v(x) with the continuous density ϕ can be continuously extended from �
to �̄ and R2\�̄ to R2\� respectively with the limit

∂v±(x)

∂ν̃
=
∫
�

∂�(x, y)

∂ν̃(x)
ϕ(y)dsy ∓ 1

2
ϕ(x) for x ∈ �, (2.5)

where

∂v±(x)

∂ν̃
= lim

h>0,h→0
∇v(x ± hν(x)) · ν̃(x).

Proof. This can be observed from the formula

∇v(x ± hν(x)) · ν̃(x) = −w(x ± hν(x)) +
∫
�

∇y�(x ± hν(x), y) · (ν̃(y) − ν̃(x))ϕ(y)dsy,

wherein we have used the relation ∇x�(x, y) = −∇y�(x, y). Note that the second term is continuous in R2, thus an 
application of Lemma 2.1 leads to (2.5). �
5
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Lemma 2.3. The gradient of the single layer potential v(x) with the density ϕ ∈ C1(�) can be continuously extended from � to �̄ and 
R2\�̄ to R2\� respectively with the limit

∇v±(x) =
∫
�

∇x�(x, y)ϕ(y)dsy ∓ 1

2
ϕ(x) eν(x) for x ∈ �. (2.6)

In the above, ∇v±(x) = lim
h>0,h→0

∇v(x ± hν(x)), and the vector eν(x) is given by eν(x) = ν(x)

ν(x) · ν̃(x)
.

Proof. For y ∈ �, let ν(y) = [ν1(y), ν2(y)]T and τ (y) = [−ν2(y), ν1(y)]T be the normal and tangential vector respectively. 
For x �= y, one can decompose ∇y�(x, y) as

∇y�(x, y) = ∂�(x, y)

∂ν̃(y)
eν(y) + ∂�(x, y)

∂τ (y)
eτ (y), (2.7)

where

eν(y) = 1

ν(y) · ν̃(y)

[
ν1(y)

ν2(y)

]
and eτ (y) = 1

ν(y) · ν̃(y)

[−ν2(y)/ε2
ν1(y)/ε1

]
.

For fixed z ∈ �, set x = z + hν(x) with 0 < h � 1. Noting that ∇x�(x, y) = −∇y�(x, y) and in light of the decomposition 
(2.7), we have∫

�

∇x�(x, y)ϕ(y)dsy = −
∫
�

∂�(x, y)

∂ν̃(y)
ϕ(y)eν(y) dsy −

∫
�

∂�(x, y)

∂τ (y)
ϕ(y)eτ (y) dsy .

By letting h → 0, the following relation holds:

lim
h→0

∫
�

∂�(x, y)

∂ν̃(y)
ϕ(y)eν(y) dsy =

∫
�

∂�(z, y)

∂ν̃(y)
ϕ(y)eν(y) dsy + 1

2
ϕ(z) · eν(z),

lim
h→0

∫
�

∂�(x, y)

∂τ (y)
ϕ(y)eτ (y) dsy = − lim

h→0

∫
�

�(x, y)
d(ϕ(y)eτ (y))

dτ (y)
dsy

= −
∫
�

�(z, y)
d(ϕ(y)eτ (y))

dτ (y)
dsy

=
∫
�

∂�(z, y)

∂τ (y)
ϕ(y)eτ (y) dsy .

Therefore,

lim
h→0

∫
�

∇x�(x, y)ϕ(y)dsy = −
∫
�

(
∂�(z, y)

∂ν̃(y)
eν(y) + ∂�(z, y)

∂τ (y)
eτ (y)

)
ϕ(y)dsy − 1

2
ϕ(z) · eν(z)

=
∫
�

∇z�(z, y)ϕ(y)dsy − 1

2
ϕ(z) · eν(z),

where we use (2.7) and the relation ∇z�(z, y) = −∇y�(z, y) again. The proof for x = z − hν(x) is parallel. �
Proposition 2.4. Let w(x) be the double layer potential defined in (2.1) and ϕ ∈ C1(�), then

∂ w±(x)

∂ν̃
= 1

ε1ε2

d

dsx

∫
�

�(x, y)
dϕ(y)

ds
dsy + k2

0

∫
�

�(x, y)ϕ(y)(ν(x) · ν̃(y))dsy for x ∈ �, (2.8)

where 
∂ w±(x)

∂ν̃
= lim

h>0,h→0
∇w(x ± hν(x)) · ν̃(x), and d

ds denotes the derivative with respect to the arc length.

Proof. For y ∈ �, let τ (y)⊥ = [τ2(y), −τ1(y)]T = ν(y). If x /∈ �, using the relation

∂�(x, y) = ∇y�(x, y) · ν̃(y) = −∇x�(x, y) · ν̃(y) = −
[

1 ∂�(x, y)
,

1 ∂�(x, y)
]

· τ (y)⊥,

∂ν̃(y) ε1 ∂x1 ε2 ∂x2

6



J. Lin Journal of Computational Physics 444 (2021) 110573
we have

∇x
∂�(x, y)

∂ν̃(y)
= −∇x

(
τ2(y)

ε1

∂�(x, y)

∂x1
− τ1(y)

ε2

∂�(x, y)

∂x2

)

=
[

τ1(y)

ε2

∂2�(x, y)

∂x1∂x2
− τ2(y)

ε1

∂2�(x, y)

∂x2
1

,
τ1(y)

ε2

∂2�(x, y)

∂x2
2

− τ2(y)

ε1

∂2�(x, y)

∂x1∂x2

]T

.

By using the equation (1.3) and the relation ∇x�(x, y) = −∇y�(x, y), it follows that

∇x
∂�(x, y)

∂ν̃(y)
=
[

τ1(y)

ε2

∂2�(x, y)

∂x1∂x2
+ τ2(y)

ε2

∂2�(x, y)

∂x2
2

, −τ1(y)

ε1

∂2�(x, y)

∂x2
1

− τ2(y)

ε1

∂2�(x, y)

∂x1∂x2

]T

+k2
0�(x, y)τ (y)⊥

=
[
− 1

ε2

∂

∂x2

∂�(x, y)

∂τy
,

1

ε1

∂

∂x1

∂�(x, y)

∂τy

]T

+ k2
0�(x, y)ν(y).

Hence, applying the integration by parts leads to

A∇x

∫
�

∂�(x, y)

∂ν̃(y)
ϕ(y)dsy = 1

ε1ε2

⎛
⎝∇x

∫
�

�(x, y)
dϕ(y)

ds
dsy

⎞
⎠

⊥
+ k2

0

∫
�

�(x, y)ϕ(y)ν̃(y)dsy . (2.9)

Now for fixed z ∈ �, we set x = z + hν(z). By virtue of (2.9) and Lemma 2.3, it follows that

lim
h→0

∇w(z + hν(z)) · ν̃(z)

= lim
h→0

1

ε1ε2

⎛
⎝∇
∫
�

�(z + hν(z), y)
dϕ(y)

ds
dsy

⎞
⎠

⊥
· ν(z) + k2

0

∫
�

�(z, y)ϕ(y)(ν(z) · ν̃(y))dsy

= 1

ε1ε2

⎛
⎝∇z

∫
�

�(z, y)
dϕ(y)

ds
dsy − 1

2
ϕ(z) eν(z)

⎞
⎠

⊥
· ν(z) + k2

0

∫
�

�(z, y)ϕ(y)(ν(z) · ν̃(y))dsy .

A straightforward calculation leads to

∂ w+(z)

∂ν̃
= 1

ε1ε2

d

dsz

∫
�

�(z, y)
dϕ(y)

ds
dsy + k2

0

∫
�

�(z, y)ϕ(y)(ν(z) · ν̃(y))dsy .

Similarly, by setting x = z − hν(z), one can obtain the same formula for ∂ w−(z)
∂ν̃

. �
2.2. Boundary integral equation formulation for the transmission problem

Let � j(x, y) = i

4

√
ε

( j)
1 ε

( j)
2 H (1)

0

(
kr̃ j(x, y)

)
be the fundamental solution in the domain � j , where r̃ j = (x − y)T A−1

j (x − y). 
Let ν̃ j = A jν be the A j-deformed normal vector over the interface �. We define the integral operators S j , K j , K ′

j and N j

for x ∈ � as follows:

[S jϕ](x) =
∫
�

� j(x, y)ϕ(y)dsy, (2.10)

[K jϕ](x) =
∫
�

∂� j(x, y)

∂ν̃ j(y)
ϕ(y)dsy, (2.11)

[K ′
jϕ](x) =

∫
�

∂� j(x, y)

∂ν̃ j(x)
ϕ(y)dsy, (2.12)

[N jϕ](x) = 1

ε
( j)
1 ε

( j)
2

d

dsx
S j

(
dϕ

ds

)
+ k2

0ν(x) · S j(ϕν̃ j) (2.13)

= 1

ε
( j)
1 ε

( j)
2

d

dsx

∫
�

� j(x, y)
dϕ(y)

ds
dsy + k2

0

∫
�

� j(x, y)ϕ(y)(ν(x) · ν̃ j(y))dsy .
7
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Note that � j(x, y) in the lossy hyperbolic medium attains the same singularity as the fundamental solution with ε1 = ε2 =
1, thus from the standard theory of the boundary integral operators (cf. [30]), we have the following lemma for the above 
integral operators.

Lemma 2.5. The operators S j : H−1/2(�) → H1/2(�), K j : H1/2(�) → H1/2(�), K ′
j : H−1/2(�) → H−1/2(�), and N j : H1/2(�) →

H−1/2(�) are bounded.

Let

S = S1 − S2, K = K1 − K2, K ′ = K ′
1 − K ′

2, N = N ′
1 − N ′

2

be the difference of two integral operators with associated kernels. The volume integral operators P j and Q j are defined as

[P jϕ](x) =
∫
� j

� j(x, y)ϕ(y)dy, for x ∈ �,

[Q jϕ](x) =
∫
� j

∂� j(x, y)

∂ν(x)
ϕ(y)dy, for x ∈ �.

Applying the Green’s formula in �1 and using the formula (2.3), we obtain for x ∈ �1 that

u1(x) =
∫
�

�1(x, y)
∂u1(y)

∂ν̃1(y)
− ∂�1(x, y)

∂ν̃1(y)
u1(y)dsy −

∫
�1

�1(x, y) f1(y)dy. (2.14)

Similarly, for x ∈ �2 there holds

u2(x) =
∫
�

∂�2(x, y)

∂ν̃2(y)
u2(y) − �2(x, y)

∂u2(y)

∂ν̃2(y)
dsy −
∫
�2

�2(x, y) f2(y)dy. (2.15)

Recall that f1(x) and f2(x) are localized sources with compact support, the volume integrals above only need to be eval-
uated over their support regions. By taking the limit of (2.14) and (2.15) when x approaches the interface � and applying 
Lemma 2.1, we achieve the integral equations on �:

1

2
u1 = S1

(
∂u1

∂ν̃1

)
− K1u1 − P1 f1; (2.16)

1

2
u2 = K2u2 − S2

(
∂u2

∂ν̃2

)
− P2 f2. (2.17)

For x ∈ �, evaluating ∇u j(x ± hν(x)) · ν̃(x) in (2.14) and (2.15) respectively, and taking the limit when h → 0 yields

1

2

∂u1

∂ν̃
= K ′

1

(
∂u1

∂ν̃1

)
− N1u1 − Q 1 f1; (2.18)

1

2

∂u2

∂ν̃
= N2u2 − K ′

2

(
∂u2

∂ν̃2

)
− Q 2 f2, (2.19)

where we have used Lemma 2.3 and Proposition 2.4.
By taking the sum (2.16) + (2.17) and (2.18) + (2.19) respectively, and applying the continuity condition (1.6) for the wave 

field across the interface, we obtain the following system of integral equations:[
N I − K ′

I + K −S

][
φ(1)

φ(2)

]
=
[

g(1)

g(2)

]
. (2.20)

In the above, φ(1) = u1 = u2, φ(2) = ∂u1
∂ν̃1

= ∂u2
∂ν̃2

, and

g(1) = −(Q 1 f1 + Q 2 f2), g(2) = −(P1 f1 + P2 f2).

We point out that integral equations in the form of (2.20) have been widely used in studies of acoustic, electromagnetic, 
and elastic transmission problems with isotropic media; see, for instance, [4,14,15,29] and the references therein.

For brevity of notation, we let

T =
[

N I − K ′
I + K −S

]
, φ =

[
φ(1)

φ(2)

]
, g =

[
g(1)

g(2)

]
. (2.21)
8
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In view of Lemma 2.5, the operator T is bounded from H1/2(�) × H−1/2(�) → H−1/2(�) × H1/2(�). Let H = H1/2(�) ×
H−1/2(�) be the Hilbert space equipped with the inner product

〈φ,ψ〉 =
∫
�

φ(1)ψ̄ (1) + φ(2)ψ̄ (2) ds,

and H′ = H−1/2(�) × H1/2(�) be the dual space of H. Then the weak formulation for the integral equation (2.20) reads as 
finding φ ∈H such that

a(φ,ψ) = 〈g,ψ〉 ∀ψ ∈ H, (2.22)

in which the sesquilinear form

a(φ,ψ) = 〈Tφ,ψ〉 = 〈Nφ(1),ψ(1)〉 + 〈(I − K ′)φ(2),ψ(1)〉 + 〈(I + K )φ(1),ψ(2)〉 − 〈Sφ(2),ψ(2)〉.

Remark 2. One can show the well-posedness of the above formulation following the lines in [14,15]. As pointed out in 
Remark 1, the well-posedness holds for lossy hyperbolic media, for which the Lax-Milgram theorem can still be applied. 
However, one may lose the well-posedness if the hyperbolic medium becomes lossless.

3. Adaptive Galerkin boundary element method

3.1. Galerkin boundary element method

Let �h = {E1, E2, · · · , E M} be a mesh assigned on the interface � with the mesh size h = max1≤m≤M |Em|, and Hh := Uh ×
Vh be the corresponding finite-dimensional space defined over �h . Here Uh and Vh are the finite-dimensional approximation 
of the space H1/2(�) and H−1/2(�) respectively. The Galerkin boundary element method is to find φh ∈Hh such that

a(φh,ψh) = 〈g,ψh〉 ∀ψh ∈ Hh. (3.1)

Let 
{
φ

(1)
m

}M1

m=1
and 
{
φ

(2)
m

}M2

m=1
be the basis of the space Uh and Vh respectively. By representing the solution as φ(1)

h (x) =
M1∑

m=1

c(1)
m φ

(1)
m (x) and φ(2)

h (x) =
M2∑

m=1

c(2)
m φ

(2)
m (x), the Galerkin approximation (3.1) leads to the following linear system:

[
Nh I ′h − K ′

h
Ih + Kh −Sh

][
c(1)

c(2)

]
=
[

g(1)

h
g(2)

h

]
. (3.2)

In the above, c(1) and c(2) represent the unknown vectors that take the following form:

c(1) =
[

c(1)
1 , c(1)

2 , · · · , c(1)
M1

]
, c(2) =

[
c(2)

1 , c(2)
2 , · · · , c(2)

M2

]
.

The (m, n)-th entry of the matrices Nh , Kh , Sh , and Ih are given by

Nh(m,n) =
〈
Nφ

(1)
n , φ

(1)
m

〉
, Kh(m,n) =

〈
Kφ

(1)
n , φ

(2)
m

〉
, (3.3)

Sh(m,n) =
〈
Sφ

(2)
n , φ

(2)
m

〉
, Ih(m,n) =

〈
φ

(1)
n , φ

(2)
m

〉
. (3.4)

I ′h and K ′
h are the transposes of Ih and Kh respectively. In light of (2.13), we evaluate Nh(m, n) using the formula

〈
N jφ

(1)
n , φ

(1)
m

〉
= − 1

ε
( j)
1 ε

( j)
2

〈
S j

dφ
(1)
n

ds
,

dφ
(1)
m

ds

〉
+ k2

0

〈
S j(φ

(1)
n ν̃ j) · ν,φ

(1)
m

〉
, j = 1,2. (3.5)

The m-th element for the vectors g(1)

h and g(2)

h are given by

g(1)

h (m) =
〈
g(1), φ

(1)
m

〉
, g(2)

h (m) =
〈
g(2), φ

(2)
m

〉
.

9
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3.2. Adaptive numerical integration

The entries of the local stiffness matrices (3.3) - (3.5) boil down to the evaluation of integral in the form of

emn =
∫

Em

∫
En

�(x, y)φn(y)φm(x) dsydsx,

in which �(x, y) represents the kernel � j(x, y) or 
∂� j(x, y)

∂ν̃ j(y)
, and φm(x) represents the basis functions in Uh or Vh . 

As pointed out in Section 1.3, the fundamental solution in the hyperbolic medium is propagating in the cone C =
{x ; Re(xT A−1x) > 0} only, and it attains sharp transition near the cone boundary ∂C . To capture the variation of the kernels 
accurately, we employ the adaptive numerical quadrature to compute emn . In more detail, for a given small real number 
τ > 0, let us introduce the domain

�τ = {x ; dist(x, ∂C) < τ } (3.6)

that includes the cone boundary. τ is chosen so that �τ contains the region where �(x, y) attains very large derivatives. 
Let Emn = {x − y ; x ∈ Em, y ∈ En} be the set of relative locations between the source and target points when evaluating 
emn . If Emn ∩ �τ = ∅, then �(x, y) changes smoothly over the domain (x, y) ∈ Em × En , thus there is no need for adaptivity 
and one can still apply fast algorithms, such as the fast multipole method, to evaluate emn for fixed m and all n satisfying 
Emn ∩ �τ = ∅ in an efficient manner [10,25]. Otherwise, if Emn ∩ �τ �= ∅, we compute emn adaptively to resolve the kernels 
accurately as described below.

Note that when m = n, the kernel �(x, y) is weakly singular and the singular part of emn can be evaluated analytically. 
Hence we only need to consider the case when m �= n and �(x, y) is nonsingular. By a change of variable, emn is expressed 
as

emn =
1∫

−1

1∫
−1

�
(
x(t), y(s)

)
φn
(

y(s)
)
φm
(
x(t)
)

dsdt (3.7)

in the parameter space. The integral in (3.7) is computed via the adaptive Lobatto quadrature rule [24]. Let 
{

R(�)
j

} J

j=1
be 

a decomposition of the whole integral region at level � with small rectangles R(�)
j . Starting from � = 0 and J = 1 with 

R(0)
1 = [−1, 1] × [−1, 1], the adaptive algorithm computes the integral recursively over the region R(�)

j by first dividing R(�)
j

in half along t and s coordinate axis respectively to produce four new subregions R(�+1)
j1

, R(�+1)
j2

, R(�+1)
j3

and R(�+1)
j4

, and then 
calculating the integral using the Lobatto quadrature rule over these four subregion regions. The recursive procedure stops 
when the relative difference of the two approximations at level � and � + 1 is smaller than the prescribed tolerance. We 
refer the readers to [2] for more details of the recursive procedure. Since the region �τ is usually thin with small τ (τ = 0.1
is chosen in variety of numerical experiments demonstrated in Section 4), the cardinal number of the set {(m, n)|Emn ∩�τ �=
∅} � M2. In addition, the recursive adaptive Lobatto quadrature rule for the integral inside �τ convergences fast, thus the 
adaptive integration only accounts for a small percentage of the overall cost in assembling the stiffness matrices.

3.3. The two-level a posteriori error estimator and mesh refinement

Let �h = {E1, E2, · · · , E M} be a mesh over � with the mesh size h, and �̂h = {Ê1, Ê2, · · · , Ê2M} be a uniform refinement 
of �h with the mesh size h/2. The corresponding Galerkin solution in the finite-dimensional space Hh = Uh × Vh and 
Ĥh = Ûh × V̂h is denoted as φh and φ̂h , respectively. We use a two-level a posteriori error estimator where the exact 
solution in the numerical error ‖φh − φ‖ is replaced by the solution φ̂h obtained over the uniformly refined mesh �̂h . This 
leads to the first h − h/2 based estimators

η(1) = ‖φ̂(1)

h − φ
(1)

h ‖H1/2(�) and η(2) = ‖φ̂(2)

h − φ
(2)

h ‖H−1/2(�), (3.8)

wherein φh = [φ(1)

h , φ(2)

h ] and φ̂h = [φ̂(1)

h , φ̂(2)

h ].
The estimators η(1) and η(2) defined above are simple, but they suffer certain practical computational constraints. First, 

the estimators η(1) and η(2) require the computation of the solutions φh and φ̂h at both discretization levels, which could be 
computationally burdensome. Note that φ̂h is expected to be more accurate than φh , thus the latter becomes a temporary 
result that is not useful once η(1) and η(2) are calculated. In order to reduce the computational cost and avoid such redun-
dancy, after φ̂h is computed, following [20] we use φ̂h to approximate the solution φh by projecting the refined solution φ̂h

over the finite-dimensional space Hh . In addition, we localize the estimators by using h1/2-weighted H1-seminorm for φ(1)
h

10
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and L2-norm for φ(2)

h , respectively. The localization yields error indicator over each element that is computable and can be 
used to design the mesh refinement strategy. More precisely, we define the second error estimators η̃(1) and η̃(2) as follows:

η̃(1) =
(

M∑
m=1

ρ(1)(Em)

)1/2

and η̃(2) =
(

M∑
m=1

ρ(2)(Em)

)1/2

,

where the error indicators over each element Em are given by

ρ
(1)
m (Em) = |Em| ·

∥∥∥∥ d

ds

(
φ̂

(1)

h − �
(1)

h φ̂
(1)

h

)∥∥∥∥
2

L2(Em)

and ρ
(2)
m (Em) = |Em| ·

∥∥∥φ̂(2)

h − �
(2)

h φ̂
(2)

h

∥∥∥2
L2(Em)

, (3.9)

and �(1)

h

(
�

(2)

h

)
denotes the L2-projection operator from Ûh to Uh (V̂h to Vh). The total error estimator η̃ for φh is defined 

as

η̃ =
(

M∑
m=1

ρ(1)(Em) + ρ(2)(Em)

)1/2

. (3.10)

Recall that φ̂(1)

h and φ̂(2)

h are the Galerkin approximations of the solution for the transmission problem and its normal 
derivative, we see that η̃ provides a h1/2-weighted H1-seminorm estimator for the solution u over the interface �. We point 
out that η̃( j) ( j = 1, 2) alone has been used as a posteriori error estimator for solving elliptic boundary value problems with 
Dirichlet or Neumann boundary conditions, and it has been shown that the estimator is efficient and reliable in the sense 
that the true error for the numerical solution is bounded below and above by the estimator η̃( j) [20]. Here we combine the 
two together in (3.10) as the error estimator for the transmission problem in the hyperbolic media. A variety of numerical 
examples in Section 4 demonstrate the effectiveness of the proposed error estimator. The theoretical investigation on its 
robustness remains to be studied in the future.

The Dörfler strategy is employed to mark and refine the mesh �h using the error estimator η̃. For given 0 < γ < 1, we 
find the minimal set E ⊂ �h such that

γ η̃2 ≤
∑
E∈E

(ρ(1)(E) + ρ(2)(E)), (3.11)

and each marked element in E is then divided into two sub-elements with equal size. The complete adaptive strategy starts 
from an initial discretization of the interface �. The calculation of the estimator (3.10) and the refinement procedure (3.11)
is repeated until η̃ < σ for certain prescribed tolerance σ . This is summarized in the following algorithm:

Algorithm The adaptive boundary element method.

Given tolerance σ and the initial mesh size h, generate the initial �(0)

h ;
for � = 0, 1, 2, . . . , L do

Let �̂(�)

h be a uniform refinement of �(�)

h ;

Apply the adaptive numerical integration over �̂(�)

h to assemble the matrix in (3.2);

Compute φ̂(�)

h via (3.2) and compute the estimator η̃ by (3.9) and (3.10);
if η̃ ≥ σ then

Choose the minimal subset E ⊂ �
(�)

h such that (3.11) is satisfied;

Divide each element in E into two sub-elements to obtain �(�+1)

h ;
else

Stop and return the solution φ̂(�)

h ;
end if

end for

4. Numerical examples

We test the accuracy and efficiency of the adaptive boundary element method (BEM) in this section. Without loss of 
generality, we consider the point source functions in (1.5) when either f1 or f2 is a Dirac delta function. Throughout all the 
examples, τ is set as 0.1 in (3.6) for the domain �τ used in the adaptive numerical integration. Recall that φ(1) = u1 = u2, 
φ(2) = ∂u1

∂ν̃1
= ∂u2

∂ν̃2
are the Dirichlet and Neumann data over the interface �, which are approximated by the first-order 

linear element and the zero-order constant element respectively in the boundary element calculations. The corresponding 
numerical solutions returned from the adaptive algorithm are denoted by φ̂(1)

h and φ̂(2)

h , which are obtained over the refined 
mesh �̂(�) . We also define the relative errors by letting
h

11
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Table 1
The maximum and minimum mesh sizes hmax and hmin for �(�)

h , and the relative errors ê(1) and ê(2) for the adaptive BEM and non-adaptive BEM (Exam-
ple 1).

Adaptive BEM Non-adaptive BEM

DOF M(0) = 100 M(1) = 125 M(2) = 158 M(3) = 202 M(4) = 253 M̄ = 700

hmax 0.1256 0.1256 0.1245 0.1245 0.1234 0.018
hmin 0.0629 0.0349 0.0174 0.0087 0.0069 0.009

ê(1) 0.0359 0.0145 0.0057 0.0047 0.0044 5.28 × 10−4

ê(2) 0.5685 0.3804 0.2965 0.1070 0.0745 0.0757

Fig. 2. The mesh �
(4)

h over the boundary of the ellipse for Example 1 (left) and Example 2 (right).

Fig. 3. The real parts of φ̂
(1)

h and φ̂
(2)

h obtained from the adaptive algorithm in Example 1. θ represents the polar angle over the ellipse.

ê(1) = ‖φ(1) − φ̂
(1)

h ‖L2(�)

‖φ(1)‖L2(�)

and ê(2) = ‖φ(2) − φ̂
(2)

h ‖L2(�)

‖φ(2)‖L2(�)

,

in which φ(1) and φ(2) are reference solutions obtained with high-order accuracy.

Example 1. Assume that the interface � is an ellipse with semi-axes a = 2 and b = 1 respectively. The interior domain is a 
hyperbolic medium while the exterior domain is vacuum. The permittivity values in �1 and �2 are given by ε(1)

1 = 1 +0.02i, 
ε

(1)
2 = −2 + 0.02i and ε(2)

1 = ε
(2)
2 = 1, respectively. The wavenumber k0 = 1, and the source is located in �1 such that 

f1 = −δ(x) and f2 = 0. Due to the smoothness of the interface, we compute the reference solutions φ(1) and φ(2) with 
high-order accuracy by the Nyström scheme, which is a spectral method using the trigonometric interpolant over � [30]. 
By parameterizing the interface � with x1 = a cos θ and x2 = b sin θ , the initial mesh �(0)

h is generated with grid points {
(a cos θm, b sin θm)

}M(0)

m=1, in which θm = 2(m−1)π
M(0) .

Table 1 shows the mesh sizes and the corresponding numerical errors for different levels of refinements when the 
adaptive procedure is applied, in which M(�) denotes the number of grid points being used in the mesh �(�)

h . As expected, 
the numerical error ê(1) for the Dirichlet data φ(1) is relatively small over the initial mesh �(0)

h , while ê(2) for the Neumann 
data is large due to the singular behavior of φ(2) . It is observed that the two-level a posteriori error estimator η̃ is effective 
in identifying the solution singularities and a local mesh refinement near the singularities reduces the numerical error 
significantly after each refinement. The adaptive procedure terminates with � = 4 and the number of grid points is M(4) =
253 for the mesh �(4)

h ; see Fig. 2 (left) for a plot of the mesh �(4)

h . The numerical solutions φ̂(1)

h and φ̂(2)

h in the final 
stage of the adaptive procedure are plotted in Fig. 3, which are solved over the mesh �̂(4) . The corresponding numerical 
h
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Fig. 4. Real (left) and imaginary part (right) of the wave field inside and outside the elliptical domain in Example 1.

Table 2
The maximum and minimum mesh sizes hmax and hmin for �(�)

h , and the relative errors ê(1) and ê(2) for the adaptive BEM and non-adaptive BEM (Exam-
ple 2).

Adaptive BEM Non-adaptive BEM

DOF M(0) = 100 M(1) = 125 M(2) = 157 M(3) = 199 M(4) = 249 M̄ = 1000

hmax 0.1256 0.1256 0.1256 0.1256 0.1256 0.0126
hmin 0.0629 0.0364 0.0182 0.0092 0.0046 0.0063

ê(1) 0.0576 0.0154 0.0042 0.0034 0.0034 2.16 × 10−4

ê(2) 0.6957 0.4197 0.1881 0.0928 0.0616 0.0639

Fig. 5. The real parts of φ̂
(1)

h and φ̂
(2)

h obtained from the adaptive algorithm in Example 2. θ represents the polar angle over the ellipse.

errors are ê(1) = 0.0044 and ê(2) = 0.0745, respectively. As a comparison, if the mesh is quasi-uniform, one needs a much 
more refined mesh �̂h with a total number of 2M̄ grid points to achieve a comparable accuracy, in which M̄ = 700. This is 
illustrated in the last column of Table 1. In Fig. 4 we also plot the wave field in the domain �1 and �2, which are computed 
via the formulas (2.14) and (2.15) using the solutions φ̂(1)

h and φ̂(2)

h obtained from the adaptive algorithm. The preferential 
propagation of the wave in the hyperbolic medium and the multiple reflections by the interface � is clearly seen.

Example 2. The geometry in this example is the same as Example 1, but both media in �1 and �2 are now hyperbolic. 
Their permittivity values are given by ε(1)

1 = −1 +0.02i, ε(1)
2 = 1 +0.02i, and ε(2)

1 = −4 +0.05i, ε(2)
2 = 1 +0.05i. Assume that 

the source is located in exterior domain such that f1 = 0 and f2 = −δ(x − x0), in which the source location is x0 = (0, 2).
The adaptive procedure also terminates with � = 4 and the mesh �(4)

h attains a total of 249 grids points as shown in 
Fig. 2 (right). The final numerical solutions φ̂(1)

h and φ̂(2)

h are plotted in Fig. 5, and the corresponding numerical errors 
are ê(1) = 0.0034 and ê(2) = 0.0616, respectively. For completeness, we collect all the mesh sizes and the corresponding 
numerical errors for different levels of refinements in Table 2. The computation with a quasi-uniform mesh to achieve a 
comparable accuracy is also shown. We see that the number of degrees of freedom is reduced by about 4 times when the 
adaptive procedure is applied. Fig. 6 demonstrates the wave field in the domain �1 and �2. The wave is strongly directional 
while penetrating through the interior hyperbolic medium and being reflected at the interface.
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Fig. 6. Real (left) and imaginary part (right) of the wave field inside and outside the elliptical domain in Example 2.

Table 3
The maximum and minimum mesh sizes hmax and hmin for �(�)

h , and the relative errors ê(1) and ê(2) for the adaptive BEM and non-adaptive BEM (Exam-
ple 3).

Adaptive BEM Non-adaptive BEM

M(0) = 120 M(1) = 150 M(2) = 190 M(3) = 238 M̄ = 672

hmax 0.02 0.02 0.02 0.02 0.0036
hmin 0.02 0.01 0.0050 0.0025 0.0036

ê(1) 0.0333 0.0078 0.0023 0.0011 3.76 × 10−4

ê(2) 0.5684 0.2860 0.1268 0.0722 0.0714

Fig. 7. The mesh �
(3)

h (top) and �
(4)

h (bottom) over the boundary of the rectangle for Example 3 and Example 4 respectively.

Example 3. In this example, we consider a rectangular hyperbolic slab placed in the vacuum. The permittivity values are 
ε

(1)
1 = 1 + 0.02i, ε(1)

2 = −3 + 0.1i in the rectangular domain �1 = (0, 1) × (0, 0.2). When the source is located at (0.3, 0.1)

and the wavenumber k0 = 1, the mesh sizes and the corresponding numerical errors for the adaptive algorithm are shown 
in Table 3. Here we obtain the reference solutions φ(1) and φ(2) with high-order accuracy by using a uniform fine mesh 
with 12000 grid points. The final mesh �(3)

h attains a total of 238 grids points as shown in Fig. 7 (top). The numerical errors 
for the solutions obtained from �̂(3)

h are ê(1) = 0.0011 and ê(2) = 0.0722, respectively. In contrast, the same level of accuracy 
is obtained by a quasi-uniform mesh �̂h with a total number of 2M̄ grid points, in which M̄ = 672. Fig. 8 plots the wave 
field in the domain �1 and �2. It is observed that multiple reflections by the interface induce strong wave interactions 
inside �1.

Example 4. We consider the same geometry as in Example 3 while assigning the permittivity values as ε(1)
1 = −1 + 0.02i, 

ε
(1)
2 = 1 + 0.02i and ε(2)

1 = −4 + 0.05i, ε(2)
2 = 1 + 0.05i for the interior and exterior domain, respectively. The wavenumber 

k0 = 2π , and the source is located in exterior domain with f1 = 0 and f2 = −δ(x − x0), wherein the source location is 
14



J. Lin Journal of Computational Physics 444 (2021) 110573
Fig. 8. Real (top) and imaginary part (bottom) of the wave field inside and outside the rectangle in Example 3.

Table 4
The maximum and minimum mesh sizes hmax and hmin for �(�)

h , and the relative errors ê(1) and ê(2) for the adaptive BEM and non-adaptive BEM (Exam-
ple 4).

Adaptive BEM Non-adaptive BEM

M(0) = 120 M(1) = 150 M(2) = 188 M(3) = 235 M(4) = 294 M̄ = 1920

hmax 0.02 0.02 0.02 0.02 0.02 0.0013
hmin 0.02 0.01 0.005 0.0025 1.25 × 10−3 0.0012

ê(1) 0.1044 0.0365 0.0093 0.0015 8.31 × 10−4 7.79 × 10−4

ê(2) 0.7599 0.6673 0.4123 0.1785 0.0812 0.0804

Fig. 9. Real (left) and imaginary part (right) of the wave field inside and outside the rectangle in Example 4.

x0 = (0.5, 0.3). The adaptive boundary element still successfully leads to a reduction of numerical errors to the desired 
accuracy when the mesh refinement is performed locally, as demonstrated by Table 4. Due to the singularity of the solution, 
one needs a quasi-uniform mesh with the mesh size hmax = 0.0013 to achieve an accuracy that is obtained by an adaptive 
mesh with hmax = 0.02. The number of degrees of freedom for the former is more than 5 times higher than the latter. The 
final mesh in the adaptive procedure and the corresponding wave field in the domain are shown in Figs. 7 (bottom) and 9, 
respectively.

Example 5. In the final example, the interior domain �1 attains a wedge shape and it is placed in the vacuum. Such 
geometry has been be used for super-focusing of the electromagnetic waves near the sharp tip [33]. The permittivity values 
for the hyperbolic medium are ε(1)

1 = 2, ε(1)
2 = −3 + 0.03i. The source is located in �1 so that f1 = −δ(x − x0) with 

x0 = (0.1, 0.1) and f2 = 0, and the wavenumber k0 = 1. Similar to Example 3, the reference solutions φ(1) and φ(2) are 
obtained with high-order accuracy by using a uniform mesh with more than 10000 grid points. The adaptive algorithm 
starts with M(0) = 220 and terminates after three mesh refinements. The mesh �(3)

h over the wedge boundary is shown 
in Fig. 10. The final numerical solutions φ̂(1) and φ̂(2) attain an accuracy of ê(1) = 0.0030 and ê(2) = 0.0658 respectively 
h h
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Table 5
The maximum and minimum mesh sizes hmax and hmin for �(�)

h , and the relative errors ê(1) and ê(2) for the adaptive BEM and non-adaptive BEM (Exam-
ple 5).

Adaptive BEM Non-adaptive BEM

M(0) = 220 M(1) = 275 M(2) = 344 M(3) = 431 M̄ = 1210

hmax 0.0102 0.0102 0.0102 0.0102 0.0019
hmin 0.01 0.005 0.0025 1.25 × 10−3 0.0018

ê(1) 0.0219 0.0110 0.0051 0.0030 0.0062
ê(2) 0.4025 0.2515 0.1126 0.0658 0.0696

Fig. 10. The mesh �
(3)

h over the boundary of the wedge in Example 5.

Fig. 11. Real (top) and imaginary part (bottom) of the wave field inside and outside the wedge in Example 5.

(see Table 5). As demonstrated in Fig. 11, the wave propagates toward the tip while being reflected by the boundary of the 
wedge.

5. Discussions

An adaptive boundary-integral equation method was presented in this paper for solving the transmission problem with 
hyperbolic metamaterials. Compared to the discretization with a quasi-uniform mesh, the adaptive approach is able to re-
solve the singular behavior of the solution with local mesh refinement, which reduces the number of the degrees of freedom 
and the overall computational cost significantly. There are several theoretical and computational issues to be explored along 
this direction. Although numerical examples show the efficacy of the error estimator and the accuracy of the adaptive pro-
cedure, the robust analysis of the estimator and the convergence analysis of the algorithm have not been carried out yet. 
As pointed out previously, this work is mainly on the demonstration of the adaptive algorithm for the two dimensional 
problems, its application in three dimensions has not been explored. It is expected that the adaptive algorithm would offer 
even larger reduction on the computational cost for 3D simulations. However, the computation becomes more challenging 
for mesh refinement and numerical integration in 3D. Note that for the full Maxwell’s equations, the Dyadic Green’s func-
tions used in the integral formulation is highly anisotropic with coexistence of the cone-like pattern due to emission of 
the extraordinary TM-polarized waves and elliptical pattern due to emission of ordinary TE-polarized waves [35]. Finally, 
efficient integral equation methods for hyperbolic metamaterials with unbounded domains (e.g. layered media) and other 
settings of practical interest remain to investigated. The propagation nature of waves with arbitrarily large wave vectors 
inside the propagating cone requires new treatment in developing the computational algorithms.
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