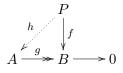
4.3 **Projective and Injective Modules**

Given *R*-modules *A* and *B*, the set $[\operatorname{Hom}_R(A, B)]$ of all *R*-module homomorphisms $A \to B$ is naturally an *R*-module.

4.3.1 **Projective Modules**

Def. An *R*-module *P* is **projective** if for any exact sequence $A \rightarrow B \rightarrow 0$ (i.e. *g* is an epimorphism) and any homomorphism $P \xrightarrow{f} B$, there exists an *R*-module homomorphism $h: P \rightarrow A$ such that $g \circ h = f$:



In other words, P is projective iff

$$A \twoheadrightarrow B \to 0$$
 is exact \implies the induced sequence $Hom_R(P, A) \twoheadrightarrow Hom_R(P, B) \to 0$ is exact

Thm 4.15. Every free R-module is projective.

Cor 4.16. Every R-module is the homomorphic image of a projective R-module.

Thm 4.17. Let P be an R-module. The following are equivalent:

- 1. P is projective;
- 2. if $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact, then

$$0 \to Hom_R(P,A) \xrightarrow{f^*} Hom_R(P,B) \xrightarrow{g^*} Hom_R(P,C) \to 0 \qquad is \ exact;$$

3. if $0 \to A \xrightarrow{f} B \xrightarrow{g} P \to 0$ is exact, then it is split exact (so $B \simeq A \oplus P$);

4. there is a free R-module F and an R-module K such that $F \simeq K \oplus P$;

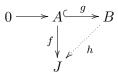
Ex. $\mathbb{Z}_6 \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_3$ as \mathbb{Z}_6 -modules. So \mathbb{Z}_2 and \mathbb{Z}_3 are projective (but not free) \mathbb{Z}_6 -modules. **Ex.** \mathbb{Z}_2 is NOT a projective \mathbb{Z}_4 -module.

Thm 4.18. A direct sum of R-modules $\bigoplus_{i \in I} P_i$ is projective iff each P_i is projective.

4.3.2 Injective Modules

Injectivity is dual to projectivity.

Def. An *R*-module *J* is **injective** if for any exact sequence $0 \to A \stackrel{g}{\hookrightarrow} B$, (i.e. *g* is a monomorphism) and any homomorphism $A \stackrel{f}{\to} J$, there exists a homomorphism $h : B \to J$ such that $h \circ g = f$:



In other words, J is injective iff

 $0 \to A \hookrightarrow B$ is exact \implies the induced sequence $\operatorname{Hom}_R(B,J) \twoheadrightarrow \operatorname{Hom}_R(A,J) \to 0$ is exact.

Prop 4.19. Every R-module A can be embedded in an injective R-module.

Thm 4.20. Let J be an R-module. The following conditions are equivalent:

- 1. J is injective;
- 2. if $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact, then

 $0 \to Hom_R(C,J) \xrightarrow{g_*} Hom_R(B,J) \xrightarrow{f_*} Hom_R(A,J) \to 0 \qquad is \ exact;$

3. every short exact sequence $0 \to J \xrightarrow{f} B \xrightarrow{g} C \to 0$ is split exact (hence $B \simeq J \oplus C$).

4. J is a direct summand of any module B of which J is a submodule.

Thm 4.21. A direct product of R-modules $\prod_{i \in I} J_i$ is injective iff each J_i is injective.