Chapter 4

Modules

We always assume that R is a ring with unity 1_R .

4.1 Modules, Homomorphisms, and Exact Sequences

A fundamental example of groups is the symmetric group S_{Ω} on a set Ω . By Cayley's Theorem, every group G is isomorphic to a subgroup of the transformation group S_G .

Similarly, a fundamental example of rings is End (A), the ring of endomorphisms of an abelian group A. Every ring R with unity is isomorphic to a subring of End (R), determined by $f: R \to \text{End}(R), r \mapsto g_r$, where $g_r(x) := rx$ for $x \in R$.

In general, an *R*-module is an abelian group *A* together with a ring homomorphism $f : R \to \text{End}(A)$ such that $1_R \mapsto id_A$.

Def. Let R be a ring. A (left) R-module is an abelian group A together with a function $R \times A \rightarrow A$, $(r, a) \mapsto ra$, such that for all $r, s \in R$ and $a, b \in A$:

- 1. r(a+b) = ra + rb,
- $2. \ (r+s)a = ra + sa,$
- 3. r(sa) = (rs)a,
- 4. $1_R a = a$ for all $a \in A$.

Right R-modules are similarly defined.

- **Ex.** Every abelian group A is a \mathbb{Z} -module by $(n, a) \mapsto na$ for $n \in \mathbb{Z}$ and $a \in A$.
- **Ex.** A vector space V over a division ring \mathbb{F} is an \mathbb{F} -module.
- **Ex.** Let I be a left ideal of R.

- I is a (left) R-module by $(r, x) \mapsto rx$ for $r \in R$ and $x \in I$;
- the quotient ring R/I is a (left) R-module by $(r, s+I) \mapsto rs+I$ for $r \in R$ and $s+I \in R/I$.

Ex. If S is a subring of R, then R is a S-module by $(s, x) \mapsto sx$ for $s \in S$ and $x \in R$.

Ex. Let $\varphi : R \to S$ be a ring homomorphism. Then every S-module A can be made into an R-module by $(r, x) \mapsto \varphi(r)x$. The R-module structure of A is given by pullback along φ .

We use A, B, \dots , to denote *R*-modules for a ring *R* with unity.

Def. A subgroup B of A is called a submodule of A (notation: $B \le A$) provided that $rb \in B$ for all $r \in R$ and $b \in B$.

Ex. A subspace of a vector space is a submodule.

Ex. A subgroup H of an abelian group G is a \mathbb{Z} -submodule of G.

Thm 4.1.

- 1. If B_i $(i \in I)$ are submodules of A, then $\bigcap_{i \in I} B_i$ is a submodule of A.
- 2. If B_1, \dots, B_n are submodules of A, then $B_1 + \dots + B_n$ is a submodule of A.

Def. Let X be a subset of an R-module A. Then

$$\bigcap_{\substack{B \text{ is a submodule of } A \\ that \ contains \ X}} B$$

is called the submodule generated by X.

Thm 4.2. Let A be an R-module.

- 1. The cyclic submodule generated by $a \in A$ is $Ra = \{ra \mid r \in R\}$.
- 2. The submodule generated by $X \subseteq A$ is

$$\left\{ \sum_{i=1}^{s} r_i a_i \middle| s \in \mathbb{N} \cup \{0\}; \ a_i \in X; \ r_i \in R \right\} = \sum_{x \in X} Rx.$$

Def. Let A and B be R-modules. A function $f : A \to B$ is an R-module homomorphism if

$$f(a+c) = f(a) + f(c) \qquad and \qquad f(ra) = rf(a)$$

for $a, c \in A$ and $r \in R$.

76

• The kernel of f is:

$$\ker f = \{ a \in A \mid f(a) = 0 \} \le A.$$

• The image of f is

$$Im f = \{f(a) \mid a \in A\} \leq B$$

The *R*-module **monomorphism**, **epimorphism**, **isomorphism** are similarly defined.

Ex. An R-module homomorphism over a division ring R is called a linear transformation of vector spaces.

Ex. An abelian group homomorphism $f : A \to B$ is a \mathbb{Z} -module homomorphism.

Ex. Let $f : A \to B$ be an *R*-module homomorphism.

- If $C \leq A$, then f(C) is a submodule of B.
- If $D \leq B$, then $f^{-1}(D) = \{a \in A \mid f(a) \in D\}$ is a submodule of A.

Ex. Let A be an R-module. Given $a \in A$, the function $\phi_a : R \to Ra, r \mapsto ra$, is an epimorphism. The kernel

$$\ker \phi_a = \{r \in R \mid ra = 0_A\} := \boxed{Ann(a)}$$

is a left ideal of R.

Thm 4.3. Let $B \leq A$ as *R*-modules. Then A/B is an *R*-module such that

$$r(a+B) = ra+B$$
 for $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B* (called **canonical epimorphism** or **projection**).

The three isomorphism theorems and the (external/internal) products and coproducts of abelian groups can be extended to their counterparts in modules.

Def. A pair of module homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is said to be **exact** at B if $Im f = \ker g$. A sequence of module homomorphisms

$$\cdots \xrightarrow{f_{i-1}} A_{i-1} \xrightarrow{f_i} A_i \xrightarrow{f_{i+1}} A_{i+1} \xrightarrow{f_{i+2}} \cdots$$

is exact provided that $Im f_i = \ker f_{i+1}$ for all indices *i*.

For any module A, there are unique module homomorphisms $0 \to A$ and $A \to 0$.

- 1. $0 \to A \xrightarrow{f} B$ is exact if and only if f is a monomorphism.
- 2. $B \xrightarrow{g} C \to 0$ is exact if and only if g is a epimorphism.
- 3. If $A \xrightarrow{f} B \xrightarrow{g} C$ is exact, then $g \circ f = 0$.
- 4. An exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is called a **short exact sequence**, in which

$$A \simeq \operatorname{Im} f = \ker g, \qquad B/\ker g \simeq \operatorname{Im} g = C.$$

Whenever $A \leq B$, there is a short exact sequence

$$0 \to A \xrightarrow{\iota} B \xrightarrow{\pi} B/A \to 0$$

Ex. Let $f : A \to B$ be an *R*-module homomorphism.

- $A / \ker f$ is the coimage of f (denoted Coim f), and
- B/Im f is the cokernel of f (denoted Coker f).

The following sequences are exact:

$$\begin{array}{l} 0 \rightarrow \ker f \rightarrow A \rightarrow Coim f \rightarrow 0 \\ 0 \rightarrow Im f \rightarrow B \rightarrow Coker f \rightarrow 0 \\ 0 \rightarrow \ker f \rightarrow A \xrightarrow{f} B \rightarrow Coker f \rightarrow 0 \end{array}$$

Thm 4.4. (The Short Five Lemma) Let R be a ring and

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{\gamma} \\ 0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

a commutative diagram of R-module homomorphisms such that each row is a short exact sequence. Then

- 1. α and γ are monomorphisms $\implies \beta$ is a monomorphism;
- 2. α and γ are epimorphisms $\Longrightarrow \beta$ is a epimorphism;
- 3. α and γ are isomorphisms $\implies \beta$ is a isomorphism. In such case, the row short exact sequences are said to be isomorphic.

Proof.

1. Suppose α and γ are monomorphisms. Let $b \in B$ such that $\beta(b) = 0$. Then

$$\gamma \circ g(b) = g' \circ \beta(b) = g'(0) = 0.$$

So g(b) = 0 since γ is injective. Then $b \in \text{Ker } g = \text{Im } f$. There is $a \in A$ such that b = f(a). Then

$$f' \circ \alpha(a) = \beta \circ f(a) = \beta(b) = 0.$$

So a = 0 since both f' and α are injective. Therefore b = f(a) = 0. This shows that f is a monomorphism.

2. Suppose α and β are epimorphisms. Let $b' \in B'$. Then

$$g'(b') = \gamma(c) = \gamma \circ g(b) = g' \circ \beta(b)$$

for some $c \in C$ and $b \in B$, since γ and g are surjective. Therefore $g'(b' - \beta(b)) = 0$. Thus

$$b' - \beta(b) \in \operatorname{Ker} g' = \operatorname{Im} f' \stackrel{(*)}{=} \operatorname{Im} f' \circ \alpha = \operatorname{Im} \beta \circ f,$$

where (*) is implied by the surjectivity of α . There is $a \in A$ such that $b' - \beta(b) = \beta \circ f(a)$. Then $b' = \beta(b + f(a)) \in \text{Im }\beta$. Therefore β is an epimorphism.

3. Obviously by 1. and 2.

Thm 4.5. Let R be a ring and $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ a short exact sequence of R-module homoms. Then the following conditions are equivalent:

- 1. There is an R-module homomorphism $h: A_2 \to B$ with $gh = 1_{A_2}$;
- 2. There is an R-module homomorphism $k : B \to A_1$ with $kf = 1_{A_1}$;
- 3. The given sequence is isomorphic to the direct sum short exact sequence

$$0 \to A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \to 0;$$

in particular $B \simeq A_1 \oplus A_2$; such a sequence is called a split exact sequence.

Proof.

-	_	_	_	
L				
L				
L				

1. (i) \Rightarrow (iii): Define $\varphi : A_1 \oplus A_2 \to B$ by $(a_1, a_2) \mapsto f(a_1) + h(a_2)$. The following diagram is commutative:

$$0 \longrightarrow A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \longrightarrow 0$$
$$\downarrow^{1_{A_1}} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{1_{A_2}} \\ 0 \longrightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \longrightarrow 0$$

The Short Five Lemma implies that φ is an isomorphism.

2. (ii) \Rightarrow (iii): Define $\psi : B \to A_1 \oplus A_2$ by $b \mapsto (k(b), g(b))$. The following diagram is commutative:

$$0 \longrightarrow A_{1} \xrightarrow{f} B \xrightarrow{g} A_{2} \longrightarrow 0$$
$$\downarrow^{1_{A_{1}}} \qquad \downarrow^{\psi} \qquad \downarrow^{1_{A_{2}}}$$
$$0 \longrightarrow A_{1} \xrightarrow{\iota_{1}} A_{1} \oplus A_{2} \xrightarrow{\pi_{2}} A_{2} \longrightarrow 0$$

The Short Five Lemma implies that ψ is an isomorphism.

3. Obvious.

80