
Chapter 4

Modules

We always assume that R is a ring with unity 1R.

4.1 Modules, Homomorphisms, and Exact Sequences

A fundamental example of groups is the symmetric group SΩ on a set Ω. By Cayley’s Theorem,
every group G is isomorphic to a subgroup of the transformation group SG.

Similarly, a fundamental example of rings is End (A), the ring of endomorphisms of an
abelian group A. Every ring R with unity is isomorphic to a subring of End (R), determined
by f : R→ End (R), r 7→ gr, where gr(x) := rx for x ∈ R.

In general, an R-module is an abelian group A together with a ring homomorphism f :
R→ End (A) such that 1R 7→ idA.

Def. Let R be a ring. A (left) R-module is an abelian group A together with a function
R×A→ A, (r, a) 7→ ra, such that for all r, s ∈ R and a, b ∈ A:

1. r(a+ b) = ra+ rb,

2. (r + s)a = ra+ sa,

3. r(sa) = (rs)a,

4. 1Ra = a for all a ∈ A.

Right R-modules are similarly defined.

Ex. Every abelian group A is a Z-module by (n, a) 7→ na for n ∈ Z and a ∈ A.

Ex. A vector space V over a division ring F is an F-module.

Ex. Let I be a left ideal of R.

75



76 CHAPTER 4. MODULES

• I is a (left) R-module by (r, x) 7→ rx for r ∈ R and x ∈ I;

• the quotient ring R/I is a (left) R-module by (r, s+I) 7→ rs+I for r ∈ R and s+I ∈ R/I.

Ex. If S is a subring of R, then R is a S-module by (s, x) 7→ sx for s ∈ S and x ∈ R.

Ex. Let ϕ : R → S be a ring homomorphism. Then every S-module A can be made into an
R-module by (r, x) 7→ ϕ(r)x. The R-module structure of A is given by pullback along ϕ.

We use A, B, · · · , to denote R-modules for a ring R with unity.

Def. A subgroup B of A is called a submodule of A (notation: B ≤ A) provided that rb ∈ B
for all r ∈ R and b ∈ B.

Ex. A subspace of a vector space is a submodule.

Ex. A subgroup H of an abelian group G is a Z-submodule of G.

Thm 4.1.

1. If Bi (i ∈ I) are submodules of A, then
⋂
i∈I Bi is a submodule of A.

2. If B1, · · · , Bn are submodules of A, then B1 + · · ·+Bn is a submodule of A.

Def. Let X be a subset of an R-module A. Then⋂
B is a submodule of A

that contains X

B

is called the submodule generated by X.

Thm 4.2. Let A be an R-module.

1. The cyclic submodule generated by a ∈ A is Ra = {ra | r ∈ R}.

2. The submodule generated by X ⊆ A is{
s∑
i=1

riai

∣∣∣∣∣ s ∈ N ∪ {0}; ai ∈ X; ri ∈ R

}
=
∑
x∈X

Rx.

Def. Let A and B be R-modules. A function f : A→ B is an R-module homomorphism
if

f(a+ c) = f(a) + f(c) and f(ra) = rf(a)

for a, c ∈ A and r ∈ R.
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• The kernel of f is:
ker f = {a ∈ A | f(a) = 0} ≤ A.

• The image of f is
Im f = {f(a) | a ∈ A} ≤ B.

The R-module monomorphism, epimorphism, isomorphism are similarly defined.

Ex. An R-module homomorphism over a division ring R is called a linear transformation
of vector spaces.

Ex. An abelian group homomorphism f : A→ B is a Z-module homomorphism.

Ex. Let f : A→ B be an R-module homomorphism.

• If C ≤ A, then f(C) is a submodule of B.

• If D ≤ B, then f−1(D) = {a ∈ A | f(a) ∈ D} is a submodule of A.

Ex. Let A be an R-module. Given a ∈ A, the function φa : R → Ra, r 7→ ra, is an
epimorphism. The kernel

kerφa = {r ∈ R | ra = 0A} := Ann(a)

is a left ideal of R.

Thm 4.3. Let B ≤ A as R-modules. Then A/B is an R-module such that

r(a+B) = ra+B for r ∈ R, a ∈ A.

The map π : A→ A/B given by a 7→ a+B is an R-module epimorphism with kernel B (called
canonical epimorphism or projection).

The three isomorphism theorems and the (external/internal) products and coproducts of
abelian groups can be extended to their counterparts in modules.

Def. A pair of module homomorphisms A
f→ B

g→ C is said to be exact at B if Im f = ker g.
A sequence of module homomorphisms

· · · fi−1→ Ai−1
fi→ Ai

fi+1→ Ai+1
fi+2→ · · ·

is exact provided that Im fi = ker fi+1 for all indices i.

For any module A, there are unique module homomorphisms 0→ A and A→ 0.
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1. 0→ A
f→ B is exact if and only if f is a monomorphism.

2. B
g→ C → 0 is exact if and only if g is a epimorphism.

3. If A
f→ B

g→ C is exact, then g ◦ f = 0.

4. An exact sequence 0→ A
f→ B

g→ C → 0 is called a short exact sequence, in which

A ' Im f = ker g, B/ ker g ' Im g = C.

Whenever A ≤ B, there is a short exact sequence

0→ A
ι→ B

π→ B/A→ 0

Ex. Let f : A→ B be an R-module homomorphism.

• A/ ker f is the coimage of f (denoted Coim f), and

• B/Im f is the cokernel of f (denoted Coker f).

The following sequences are exact:

0→ ker f → A→ Coim f → 0
0→ Im f → B → Coker f → 0

0→ ker f → A
f→ B → Coker f → 0

Thm 4.4. (The Short Five Lemma) Let R be a ring and

0 // A
f //

α

��

B
g //

β
��

C //

γ

��

0

0 // A′
f ′ // B′

g′ // C ′ // 0

a commutative diagram of R-module homomorphisms such that each row is a short exact
sequence. Then

1. α and γ are monomorphisms =⇒ β is a monomorphism;

2. α and γ are epimorphisms =⇒ β is a epimorphism;

3. α and γ are isomorphisms =⇒ β is a isomorphism. In such case, the row short exact
sequences are said to be isomorphic.
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Proof.

1. Suppose α and γ are monomorphisms. Let b ∈ B such that β(b) = 0. Then

γ ◦ g(b) = g′ ◦ β(b) = g′(0) = 0.

So g(b) = 0 since γ is injective. Then b ∈ Ker g = Im f . There is a ∈ A such that
b = f(a). Then

f ′ ◦ α(a) = β ◦ f(a) = β(b) = 0.

So a = 0 since both f ′ and α are injective. Therefore b = f(a) = 0. This shows that f
is a monomorphism.

2. Suppose α and β are epimorphisms. Let b′ ∈ B′. Then

g′(b′) = γ(c) = γ ◦ g(b) = g′ ◦ β(b)

for some c ∈ C and b ∈ B, since γ and g are surjective. Therefore g′(b′ − β(b)) = 0.
Thus

b′ − β(b) ∈ Ker g′ = Im f ′
(∗)
= Im f ′ ◦ α = Imβ ◦ f,

where (∗) is implied by the surjectivity of α. There is a ∈ A such that b′−β(b) = β◦f(a).
Then b′ = β(b+ f(a)) ∈ Imβ. Therefore β is an epimorphism.

3. Obviously by 1. and 2.

Thm 4.5. Let R be a ring and 0 → A1
f→ B

g→ A2 → 0 a short exact sequence of R-module
homoms. Then the following conditions are equivalent:

1. There is an R-module homomorphism h : A2 → B with gh = 1A2;

2. There is an R-module homomorphism k : B → A1 with kf = 1A1;

3. The given sequence is isomorphic to the direct sum short exact sequence

0→ A1
ι1→ A1 ⊕A2

π2→ A2 → 0;

in particular B ' A1 ⊕A2; such a sequence is called a split exact sequence.

Proof.
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1. (i)⇒(iii): Define ϕ : A1 ⊕ A2 → B by (a1, a2) 7→ f(a1) + h(a2). The following diagram
is commutative:

0 // A1
ι1 //

1A1

��

A1 ⊕A2
π2 //

ϕ

��

A2
//

1A2

��

0

0 // A1
f // B

g // A2
// 0

The Short Five Lemma implies that ϕ is an isomorphism.

2. (ii)⇒(iii): Define ψ : B → A1 ⊕ A2 by b 7→ (k(b), g(b)). The following diagram is
commutative:

0 // A1
f //

1A1

��

B
g //

ψ

��

A2
//

1A2

��

0

0 // A1
ι1 // A1 ⊕A2

π2 // A2
// 0

The Short Five Lemma implies that ψ is an isomorphism.

3. Obvious.


