Chapter 4

Modules

We always assume that \underline{R} is a ring with unity 1_{R}.

4.1 Modules, Homomorphisms, and Exact Sequences

A fundamental example of groups is the symmetric group S_{Ω} on a set Ω. By Cayley's Theorem, every $\operatorname{group} G$ is isomorphic to a subgroup of the transformation group S_{G}.

Similarly, a fundamental example of rings is End (A), the ring of endomorphisms of an abelian group A. Every ring R with unity is isomorphic to a subring of $\operatorname{End}(R)$, determined by $f: R \rightarrow \operatorname{End}(R), r \mapsto g_{r}$, where $g_{r}(x):=r x$ for $x \in R$.

In general, an R-module is an abelian group A together with a ring homomorphism f : $R \rightarrow \operatorname{End}(A)$ such that $1_{R} \mapsto i d_{A}$.

Def. Let R be a ring. A (left) R-module is an abelian group A together with a function $R \times A \rightarrow A,(r, a) \mapsto r a$, such that for all $r, s \in R$ and $a, b \in A$:

1. $r(a+b)=r a+r b$,
2. $(r+s) a=r a+s a$,
3. $r(s a)=(r s) a$,
4. $1_{R} a=a$ for all $a \in A$.

Right R-modules are similarly defined.
Ex. Every abelian group A is a \mathbb{Z}-module by $(n, a) \mapsto n a$ for $n \in \mathbb{Z}$ and $a \in A$.
Ex. A vector space V over a division ring \mathbb{F} is an \mathbb{F}-module.
Ex. Let I be a left ideal of R.

- I is a (left) R-module by $(r, x) \mapsto r x$ for $r \in R$ and $x \in I$;
- the quotient ring R / I is a (left) R-module by $(r, s+I) \mapsto r s+I$ for $r \in R$ and $s+I \in R / I$.

Ex. If S is a subring of R, then R is a S-module by $(s, x) \mapsto s x$ for $s \in S$ and $x \in R$.
Ex. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then every S-module A can be made into an R-module by $(r, x) \mapsto \varphi(r) x$. The R-module structure of A is given by pullback along φ.

We use A, B, \cdots, to denote R-modules for a ring R with unity.
Def. A subgroup B of A is called a submodule of A (notation: $B \leq A$) provided that $r b \in B$ for all $r \in R$ and $b \in B$.

Ex. A subspace of a vector space is a submodule.
Ex. A subgroup H of an abelian group G is a \mathbb{Z}-submodule of G.

Thm 4.1.

1. If $B_{i}(i \in I)$ are submodules of A, then $\bigcap_{i \in I} B_{i}$ is a submodule of A.
2. If B_{1}, \cdots, B_{n} are submodules of A, then $B_{1}+\cdots+B_{n}$ is a submodule of A.

Def. Let X be a subset of an R-module A. Then

is called the submodule generated by X.
Thm 4.2. Let A be an R-module.

1. The cyclic submodule generated by $a \in A$ is $R a=\{r a \mid r \in R\}$.
2. The submodule generated by $X \subseteq A$ is

$$
\left\{\sum_{i=1}^{s} r_{i} a_{i} \mid s \in \mathbb{N} \cup\{0\} ; a_{i} \in X ; r_{i} \in R\right\}=\sum_{x \in X} R x
$$

Def. Let A and B be R-modules. A function $f: A \rightarrow B$ is an R-module homomorphism if

$$
f(a+c)=f(a)+f(c) \quad \text { and } \quad f(r a)=r f(a)
$$

for $a, c \in A$ and $r \in R$.

- The kernel of f is:

$$
\operatorname{ker} f=\{a \in A \mid f(a)=0\} \leq A
$$

- The image of f is

$$
\operatorname{Im} f=\{f(a) \mid a \in A\} \leq B
$$

The R-module monomorphism, epimorphism, isomorphism are similarly defined.
Ex. An R-module homomorphism over a division ring R is called a linear transformation of vector spaces.

Ex. An abelian group homomorphism $f: A \rightarrow B$ is a \mathbb{Z}-module homomorphism.
Ex. Let $f: A \rightarrow B$ be an R-module homomorphism.

- If $C \leq A$, then $f(C)$ is a submodule of B.
- If $D \leq B$, then $f^{-1}(D)=\{a \in A \mid f(a) \in D\}$ is a submodule of A.

Ex. Let A be an R-module. Given $a \in A$, the function $\phi_{a}: R \rightarrow R a, r \mapsto r a$, is an epimorphism. The kernel

$$
\operatorname{ker} \phi_{a}=\left\{r \in R \mid r a=0_{A}\right\}:=\operatorname{Ann}(a)
$$

is a left ideal of R.
Thm 4.3. Let $B \leq A$ as R-modules. Then A / B is an R-module such that

$$
r(a+B)=r a+B \quad \text { for } \quad r \in R, a \in A .
$$

The map $\pi: A \rightarrow A / B$ given by $a \mapsto a+B$ is an R-module epimorphism with kernel B (called canonical epimorphism or projection).

The three isomorphism theorems and the (external/internal) products and coproducts of abelian groups can be extended to their counterparts in modules.

Def. A pair of module homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is said to be exact at B if $\operatorname{Im} f=\operatorname{ker} g$. A sequence of module homomorphisms

$$
\cdots \xrightarrow{f_{i-1}} A_{i-1} \xrightarrow{f_{i}} A_{i} \xrightarrow{f_{i+1}} A_{i+1} \xrightarrow{f_{i+2}} \cdots
$$

is exact provided that $\operatorname{Im} f_{i}=\operatorname{ker} f_{i+1}$ for all indices i.
For any module A, there are unique module homomorphisms $0 \rightarrow A$ and $A \rightarrow 0$.

1. $0 \rightarrow A \xrightarrow{f} B$ is exact if and only if f is a monomorphism.
2. $B \xrightarrow{g} C \rightarrow 0$ is exact if and only if g is a epimorphism.
3. If $A \xrightarrow{f} B \xrightarrow{g} C$ is exact, then $g \circ f=0$.
4. An exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is called a short exact sequence, in which

$$
A \simeq \operatorname{Im} f=\operatorname{ker} g, \quad B / \operatorname{ker} g \simeq \operatorname{Im} g=C
$$

Whenever $A \leq B$, there is a short exact sequence

$$
0 \rightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} B / A \rightarrow 0
$$

Ex. Let $f: A \rightarrow B$ be an R-module homomorphism.

- $A / \operatorname{ker} f$ is the coimage of f (denoted Coimf), and
- B/Imf is the cokernel of f (denoted Cokerf).

The following sequences are exact:

$$
\begin{gathered}
0 \rightarrow \operatorname{ker} f \rightarrow A \rightarrow \operatorname{Coim} f \rightarrow 0 \\
0 \rightarrow \operatorname{Im} f \rightarrow B \rightarrow \operatorname{Coker} f \rightarrow 0 \\
0 \rightarrow \operatorname{ker} f \rightarrow A \xrightarrow{f} B \rightarrow \operatorname{Coker} f \rightarrow 0
\end{gathered}
$$

Thm 4.4. (The Short Five Lemma) Let R be a ring and

a commutative diagram of R-module homomorphisms such that each row is a short exact sequence. Then

1. α and γ are monomorphisms $\Longrightarrow \beta$ is a monomorphism;
2. α and γ are epimorphisms $\Longrightarrow \beta$ is a epimorphism;
3. α and γ are isomorphisms $\Longrightarrow \beta$ is a isomorphism. In such case, the row short exact sequences are said to be isomorphic.

Proof.

1. Suppose α and γ are monomorphisms. Let $b \in B$ such that $\beta(b)=0$. Then

$$
\gamma \circ g(b)=g^{\prime} \circ \beta(b)=g^{\prime}(0)=0
$$

So $g(b)=0$ since γ is injective. Then $b \in \operatorname{Ker} g=\operatorname{Im} f$. There is $a \in A$ such that $b=f(a)$. Then

$$
f^{\prime} \circ \alpha(a)=\beta \circ f(a)=\beta(b)=0
$$

So $a=0$ since both f^{\prime} and α are injective. Therefore $b=f(a)=0$. This shows that f is a monomorphism.
2. Suppose α and β are epimorphisms. Let $b^{\prime} \in B^{\prime}$. Then

$$
g^{\prime}\left(b^{\prime}\right)=\gamma(c)=\gamma \circ g(b)=g^{\prime} \circ \beta(b)
$$

for some $c \in C$ and $b \in B$, since γ and g are surjective. Therefore $g^{\prime}\left(b^{\prime}-\beta(b)\right)=0$. Thus

$$
b^{\prime}-\beta(b) \in \operatorname{Ker} g^{\prime}=\operatorname{Im} f^{\prime} \stackrel{(*)}{=} \operatorname{Im} f^{\prime} \circ \alpha=\operatorname{Im} \beta \circ f
$$

where $(*)$ is implied by the surjectivity of α. There is $a \in A$ such that $b^{\prime}-\beta(b)=\beta \circ f(a)$. Then $b^{\prime}=\beta(b+f(a)) \in \operatorname{Im} \beta$. Therefore β is an epimorphism.
3. Obviously by 1 . and 2 .

Thm 4.5. Let R be a ring and $0 \rightarrow A_{1} \xrightarrow{f} B \xrightarrow{g} A_{2} \rightarrow 0$ a short exact sequence of R-module homoms. Then the following conditions are equivalent:

1. There is an R-module homomorphism $h: A_{2} \rightarrow B$ with $g h=1_{A_{2}}$;
2. There is an R-module homomorphism $k: B \rightarrow A_{1}$ with $k f=1_{A_{1}}$;
3. The given sequence is isomorphic to the direct sum short exact sequence

$$
0 \rightarrow A_{1} \xrightarrow{\iota_{1}} A_{1} \oplus A_{2} \xrightarrow{\pi_{2}} A_{2} \rightarrow 0
$$

in particular $B \simeq A_{1} \oplus A_{2}$; such a sequence is called a split exact sequence.

Proof.

1. (i) \Rightarrow (iii): Define $\varphi: A_{1} \oplus A_{2} \rightarrow B$ by $\left(a_{1}, a_{2}\right) \mapsto f\left(a_{1}\right)+h\left(a_{2}\right)$. The following diagram is commutative:

The Short Five Lemma implies that φ is an isomorphism.
2. (ii) \Rightarrow (iii): Define $\psi: B \rightarrow A_{1} \oplus A_{2}$ by $b \mapsto(k(b), g(b))$. The following diagram is commutative:

The Short Five Lemma implies that ψ is an isomorphism.
3. Obvious.

