Chapter 4

Modules

We always assume that R is a ring with unity 1g.

4.1 Modules, Homomorphisms, and Exact Sequences

A fundamental example of groups is the symmetric group Sq on a set 2. By Cayley’s Theorem,
every group G is isomorphic to a subgroup of the transformation group Sg.

Similarly, a fundamental example of rings is End (A), the ring of endomorphisms of an
abelian group A. Every ring R with unity is isomorphic to a subring of End (R), determined
by f: R — End (R), r — g, where g,.(z) := rz for x € R.

In general, an R-module is an abelian group A together with a ring homomorphism f :
R — End (A) such that 1z — id4.

Def. Let R be a ring. A (left) R-module is an abelian group A together with a function
Rx A— A, (r,a) — ra, such that for all r,s € R and a,b € A:

1. rla+b) =ra+rb,

2. (r+s)a=ra+ sa,

3. r(sa) = (rs)a,

4. lga =a for all a € A.

Right R-modules are similarly defined.
Ex. Every abelian group A is a Z-module by (n,a) — na forn € Z and a € A.
Ex. A vector space V over a division ring F is an F-module.

Ex. Let I be a left ideal of R.
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e [ is a (left) R-module by (r,x) — rx forr € R and x € I;
e the quotient ring R/1 is a (left) R-module by (r,s+1) — rs+1I forr € R and s+1 € R/I.
Ex. If S is a subring of R, then R is a S-module by (s,x) — sx for s € S and x € R.

Ex. Let ¢ : R — S be a ring homomorphism. Then every S-module A can be made into an
R-module by (r,x) — @(r)z. The R-module structure of A is given by pullback along ¢.

We use A, B, ---, to denote R-modules for a ring R with unity.

Def. A subgroup B of A is called a submodule of A (notation: B < A) provided that rb € B
forallr € R and b € B.

Ex. A subspace of a vector space is a submodule.
Ex. A subgroup H of an abelian group G is a Z-submodule of G.
Thm 4.1.
1. If B; (i € 1) are submodules of A, then (\;c; B; is a submodule of A.
2. If By,---, B, are submodules of A, then B1 + --- + By, is a submodule of A.
Def. Let X be a subset of an R-module A. Then
N B

B is a submodule of A
that contains X

1s called the submodule generated by X.

Thm 4.2. Let A be an R-module.
1. The cyclic submodule generated by a € A is Ra = {ra | r € R}.
2. The submodule generated by X C A is

i=1

s e NU{0}; a; € X; rieR}:ZRx.
zeX

Def. Let A and B be R-modules. A function f : A — B is an R-module homomorphism
if
flatc)=fla)+ flc)  and  f(ra)=rf(a)

fora,c€ A andr € R.
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o The kernel of f is:
kerf={a€ A| f(a) =0} < A.

e The image of f is
Imf={f(a)|lac A} < B.

The R-module monomorphism, epimorphism, isomorphism are similarly defined.

Ex. An R-module homomorphism over a division ring R is called a linear transformation
of vector spaces.

Ex. An abelian group homomorphism f : A — B is a Z-module homomorphism.
Ex. Let f : A — B be an R-module homomorphism.

o IfC < A, then f(C) is a submodule of B.

e If D < B, then f~}(D) ={a € A| f(a) € D} is a submodule of A.

Ex. Let A be an R-module. Given a € A, the function ¢, : R — Ra, r — ra, is an
epimorphism. The kernel

kergp, ={re R|ra=04}:=|Ann(a)
s a left ideal of R.
Thm 4.3. Let B < A as R-modules. Then A/B is an R-module such that
r(a+B)=ra+ B for re R, ac A

The map w: A — A/B given by a — a+ B is an R-module epimorphism with kernel B (called
canonical epimorphism or projection).

The three isomorphism theorems and the (external/internal) products and coproducts of
abelian groups can be extended to their counterparts in modules.

Def. A pair of module homomorphisms A 1. B % C is said to be exact at B if Imf =kerg.
A sequence of module homomorphisms

R L PR o P
is exact provided that Im f; = ker f;+1 for all indices i.

For any module A, there are unique module homomorphisms 0 — A and A — 0.
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.0—- A 1, B is exact if and only if f is a monomorphism.
2. B C — 0 is exact if and only if g is a epimorphism.
3. 1t AL B2 Cis exact, then go f = 0.
4. An exact sequence 0 — A ENY RN C — 0 is called a short exact sequence, in which
A~TImf =kerg, B/kerg ~Img = C.
Whenever A < B, there is a short exact sequence

0—>Ai>Bl>B/A—>O

Ex. Let f : A — B be an R-module homomorphism.
e A/ker f is the coimage of f (denoted Coim f), and
e B/Imf is the cokernel of f (denoted Cokerf).

The following sequences are exact:

0—kerf—A— Coimf—0
00— Imf— B — Cokerf —0

0—>kerf—>Ai>B—> Cokerf — 0

Thm 4.4. (The Short Five Lemma) Let R be a ring and

0 A-t.p . 0
1 g
0— > A’ B c’ 0

a commutative diagram of R-module homomorphisms such that each row is a short exact
sequence. Then

1. a and v are monomorphisms = (3 is a monomorphism;
2. « and 7y are epimorphisms = (3 is a epimorphism;

3. a and 7y are isomorphisms = [ is a isomorphism. In such case, the row short exact
sequences are said to be isomorphic.
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Proof.
1. Suppose a and v are monomorphisms. Let b € B such that §(b) = 0. Then
vog(b) =g o B(b) =4'(0) = 0.

So g(b) = 0 since + is injective. Then b € Kerg = Im f. There is a € A such that
b= f(a). Then

f'oala) = Bo fa) = B(b) = 0.

So a = 0 since both f" and « are injective. Therefore b = f(a) = 0. This shows that f
is a monomorphism.

2. Suppose « and 3 are epimorphisms. Let ' € B’. Then
g() =7(c) =v0g(b) = g' o B(b)

for some ¢ € C and b € B, since v and g are surjective. Therefore ¢'(b/ — 8(b)) = 0.
Thus

b’—ﬂ(b)EKerg’:Imf’(*:)Imf’oa:hnﬁof,

where (*) is implied by the surjectivity of a. There is a € A such that b’ —3(b) = So f(a).
Then b’ = 3(b+ f(a)) € Im 8. Therefore 3 is an epimorphism.

3. Obviously by 1. and 2.

O]

Thm 4.5. Let R be a ring and 0 — A 4, B % Ay — 0 a short exact sequence of R-module
homoms. Then the following conditions are equivalent:

1. There is an R-module homomorphism h : Ay — B with gh = 14,;
2. There is an R-module homomorphism k : B — Ay with kf = 14,;
3. The given sequence is isomorphic to the direct sum short exact sequence
0— A1 5 A1 @ Ay 53 Ay — 0;
in particular B ~ A1 @ Aag; such a sequence is called a split exact sequence.

Proof.
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1. (i)=-(iii): Define ¢ : A} ® A2 — B by (a1,a2) — f(a1) + h(az). The following diagram
is commutative:
0—= A —> A1 @Ay > Ay ——>0

ilA1 iw ilA2
f g

0 Aq B As 0

The Short Five Lemma implies that ¢ is an isomorphism.

2. (ii)=-(iii): Define ¢ : B — A} & Az by b — (k(b),g(b)). The following diagram is

commutative:

0 At g9, 0
[ O
0—A —2 A @A s Ay ——0

The Short Five Lemma implies that 1 is an isomorphism.

3. Obvious.



