1.6 Symmetric, Alternating, and Dihedral Groups

1.6.1 Symmetric groups S_n

Denote $I_n := \{1, 2, \ldots, n\}$. The symmetric group S_n is the group of all bijections $I_n \to I_n$ with functional composition operation.

Def. Fix n. Given distinct elements $i_1, \ldots, i_r \in \{1, \ldots, n\}$, we use $(i_1i_2\cdots i_r)$ to denote the permutation that maps $i_1 \mapsto i_2, i_2 \mapsto i_3, \ldots, i_r \mapsto i_1$. $(i_1i_2\cdots i_r)$ is called an r-cycle, and r is the order or the length of this cycle. A 2-cycle is called a transposition.

Def. The permutations $\sigma_1, \ldots, \sigma_r$ of S_n are said to be disjoint provided that for each $k \in I_n$, there is at most one $r \in I_r$ such that $\sigma_i(k) \neq k$.

Thm 1.22. Every nonidentity permutation in S_n is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

Ex. In $S_6, (1\ 2\ 3\ 4\ 5\ 6)$ can be expressed as $(1\ 2\ 4)(3\ 5)$.

Sketch of Proof of Theorem 1.22. Let $\sigma \in S_n$ be the nonidentity permutation. Define a relationship in I_n, such that $i \sim j$ in I_n if and only if $\sigma^k(i) = j$ for some $k \in \mathbb{Z}$. Then \sim is an equivalent relationship. So I_n is partitioned into \sim equivalence classes. Each class has finitely many elements. Suppose $S := \{i_1, \ldots, i_r\}$ is a \sim equivalent class. Then $i_1, \sigma(i_1), \sigma^2(i_1), \ldots$, are elements of S. There is a minimal $t \in \mathbb{Z}^+$ such that $\sigma^t(i_1) = \sigma^{t+s}(i_1)$ for some $s \in \{1, 2, \ldots, t\}$. Since σ is a bijection, we have $\sigma^k(i_1) = \sigma^{k+s}(i_1)$ for any integer $k \geq 0$, and $S = \{i_1, \sigma(i_1), \sigma^2(i_1), \ldots, \sigma^{s-1}(i_1)\}$. Then σ is the product of disjoint cycles $(i_1 \sigma(i_1) \sigma^2(i_1) \cdots \sigma^{s-1}(i_1))$ produced from these equivalent classes. We may omit the 1-cycles.

The uniqueness is easily seen from the uniqueness of the partition. \qed

Cor 1.23. The order of a permutation $\sigma \in S_n$ is the least common multiple of the orders of its disjoint cycles.

Two permutations $\sigma_1, \sigma_2 \in S_n$ are conjugate in S_n if there exists a permutation $g \in S_n$ such that $g\sigma_1g^{-1} = \sigma_2$. Given two cycles of the same length in S_n, say $\sigma_1 = (a_1a_2\cdots a_r)$ and $\sigma_2 = (b_1b_2\cdots b_r)$, let $g \in S_n$ be the permutation that sends a_i to b_i for $i = 1, 2, \ldots, r$. Then $g\sigma_1g^{-1} = \sigma_2$. Conversely, every permutation that conjugates to σ_1 in S_n is a cycle of the same length as σ_1.

Cor 1.24. Two permutations $\alpha, \beta \in S_n$ are conjugate in S_n if and only if they have the same cycle structure.

A cycle can be expressed as a product of transpositions by the way that $(x_1) = (x_1x_2)(x_1x_2)$ and $(x_1x_2\cdots x_r) = (x_1x_r)(x_1x_{r-1}) \cdots (x_1x_3)(x_1x_2)$. Then we have the following result.

Cor 1.25. Every permutation in S_n can be written as a product of (not necessarily disjoint) transpositions.
1.6.2 Alternating groups A_n

Def. A permutation is said to be even [resp. odd] if it can be written as a product of even [resp. odd] number of transpositions.

Thm 1.26. A permutation in S_n ($n \geq 2$) cannot be both even and odd.

Proof. We use matrix theory to prove it. Denote $e_i := (0, 0, \cdots, 1_{i\text{-th term}}, \cdots, 0)$ in \mathbb{R}^n. Let W_n be the set of $n \times n$ permutation matrices, i.e. matrices each of whose columns and rows consists of exactly one nonzero entry 1. Define $f : S_n \rightarrow W_n$ by $\sigma \mapsto P_\sigma$, where the i-th row of P_σ is $e_{\sigma(i)}$. It is easy to check that f is a group isomorphism. Moreover, $\det : W_n \rightarrow \{\pm 1\}$ is a group homomorphism. So $\det \circ f : S_n \rightarrow \{\pm 1\}$ is a group homomorphism. Obviously, $\det \circ f ((ab)) = -1$ for every transposition $(ab) \in S_n$. Hence for $\sigma \in S_n$, it is a product of even [resp. odd] number of transpositions if and only if $\det \circ f (\sigma) = 1$ [resp. $\det \circ f (\sigma) = -1$].

Thm 1.27. The set A_n of all even permutations of S_n forms a subgroup of S_n of index 2.

So A_n is a normal subgroup of S_n with $|A_n| = n!/2$. A_n is called the alternating group on n letters.

Lem 1.28. Let r, s be distinct elements of $\{1, 2, \cdots, n\}$. Then A_n ($n \geq 3$) is generated by the 3-cycles $\{(rsk) | 1 \leq k \leq n, k \neq r, s\}$.

Proof. Every element of A_n is a product of even numbers of transpositions. Since

$$(ab)(cd) = (acb)(acd), \quad (ab)(ac) = (acb),$$

A_n is generated by all 3-cycles. A 3-cycle is of the form

$$\begin{align*}
(ras) &= (rsa)^2, \\
(rab) &= (rsb)(rsa)^2, \\
(sab) &= (rsb)^2(rsa), \\
\text{or} \quad (abc) &= (rsa)^2(rsc)(rsb)^2(rsa).
\end{align*}$$

This shows that A_n is generated by $\{(rsk) | 1 \leq k \leq n, k \neq r, s\}$. □

Lem 1.29. If N is a normal subgroup of A_n ($n > 3$) and N contains a 3-cycle, then $N = A_n$.

Proof. If $(abc) \in N$, then for any $d \neq a, b, c$,

$$(abd) = (ab)(cd)(abc)^2(cd)(ab) = [(ab)(cd)(abc)^2](ab)(cd)^{-1} \in N.$$

So N contains all 3-cycles. Thus $N = A_n$. □
1.6. SYMMETRIC, ALTERNATING, AND DIHEDRAL GROUPS

Def. A group G is simple if G has no proper normal subgroups.

Ex. A cyclic group is simple if and only if it is isomorphic to \mathbb{Z}_p for some prime p.

Thm 1.30. The alternating group A_n is simple when $n \neq 4$.

See textbook (Section 1.6) for a complete proof. The key idea is to show that every non-proper normal subgroup of A_n contains a 3-cycle.

1.6.3 Dihedral group D_n

The subgroup of S_n generated by $a = (123 \cdots n)$ and $b = (2n)(3(n - 1)) \cdots (i(n + 2 - i)) \cdots$ is called the dihedral group of degree n, denoted D_n. It is isomorphic to the group of all symmetries of a regular n-gon.

Thm 1.31. The dihedral group D_n ($n \geq 3$) is a group of order $2n$ whose generators a and b satisfy:

1. $a^n = b^2 = e; a^k \neq e$ if $0 < k < n$;
2. $ba = a^{-1}b$.