2.4 Direct Products and Finitely Generated Abelian Groups

2.4.1 Direct Products

Def 2.43. The Cartesian product of sets S_1, S_2, \cdots, S_n is the set of all ordered n-tuples (a_1, \cdots, a_n) where $a_i \in S_i$ for $i = 1, 2, \cdots, n$.

\[
\prod_{i=1}^{n} S_i = S_1 \times S_2 \times \cdots \times S_n
\]

\[= \{(a_1, a_2, \cdots, a_n) \mid a_i \in S_i \text{ for } i = 1, 2, \cdots, n\}.
\]

Caution: The notation (a_1, a_2, \cdots, a_n) here has different meaning from the cycle notation in permutation groups.

Thm 2.44. If G_1, G_2, \cdots, G_n are groups with the corresponding multiplications, then $\prod_{i=1}^{n} G_i$ is a group under the following multiplication:

\[(a_1, a_2, \cdots, a_n)(b_1, b_2, \cdots, b_n) := (a_1b_1, a_2b_2, \cdots, a_nb_n)\]

for (a_1, a_2, \cdots, a_n) and (b_1, b_2, \cdots, b_n) in $\prod_{i=1}^{n} G_i$.

Proof.

1. **Closed:** $a_i \in G_i, b_i \in G_i \Rightarrow a_ib_i \in G_i \Rightarrow (a_1b_1, \cdots, a_nb_n) \in \prod_{i=1}^{n} G_i$.

2. **Associativity:** By the associativity in each G_i.

3. **Identity:** Let e_i be the identity in G_i. Then $e := (e_1, e_2, \cdots, e_n)$ is the identity of G.

4. **Inverse:** The inverse of (a_1, \cdots, a_n) is $(a_1^{-1}, \cdots, a_n^{-1})$.

\[\square\]

Ex 2.45. $\mathbb{R}^2, \mathbb{R}^3$ are abelian groups.
(Every finite dimensional real vector space is an abelian group that is isomorphic to certain \mathbb{R}^n.)

Ex 2.46. $\mathbb{Z}^2 = \{(a, b) \mid a, b \in \mathbb{Z}\}$ is a subgroup of \mathbb{R}^2.
(If $H_i \leq G_i$ for $i = 1, \cdots, n$, then $\prod_{i=1}^{n} H_i \leq \prod_{i=1}^{n} G_i$.)

1st HW: 1, 2, 14, 34, 46
Ex 2.47. If \(e_i \) is the identity of \(G_i \) for \(i = 1, \cdots, n \). Then
\[
G_j \simeq \{e_1\} \times \{e_2\} \times \cdots \times \{e_{j-1}\} \times G_j \times \{e_{j+1}\} \times \cdots \times \{e_n\} \leq \prod_{i=1}^{n} G_i.
\]
So every \(G_j \) is isomorphic to a subgroup of \(\prod_{i=1}^{n} G_i \) for \(j = 1, \cdots, n \).

Ex 2.48. The Klein 4-group \(V \) is isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \), which is not cyclic.

Ex 2.49. \(\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6 \) is cyclic, and \((1,1)\) is a generator.

Thm 2.50. Let \(m \) and \(n \) be positive integers.

1. If \(\gcd(m, n) = 1 \) (i.e. \(m \) and \(n \) are relative prime), then \(\mathbb{Z}_m \times \mathbb{Z}_n \) is cyclic and is isomorphic to \(\mathbb{Z}_{mn} \), and \((1,1)\) is a generator of \(\mathbb{Z}_m \times \mathbb{Z}_n \).

2. If \(\gcd(m, n) \neq 1 \), then \(\mathbb{Z}_m \times \mathbb{Z}_n \) is not cyclic.

Proof.

1. Suppose \(\gcd(m, n) = 1 \). The sum of \(k \) copies of \((1,1)\) is equal to \((k \mod m, k \mod n)\). The smallest positive integer \(k \) that makes \((k \mod m, k \mod n) = (0,0)\) is \(k = mn \) because \(m \) and \(n \) are relative prime. So the cyclic subgroup of \((1,1)\) in \(\mathbb{Z}_m \times \mathbb{Z}_n \) has the order \(mn = |\mathbb{Z}_m \times \mathbb{Z}_n|\). So \((1,1)\) generates \(\mathbb{Z}_m \times \mathbb{Z}_n \). It implies that \(\mathbb{Z}_m \times \mathbb{Z}_n \) is a cyclic group isomorphic to \(\mathbb{Z}_{mn} \).

2. Suppose \(\gcd(m, n) = d \neq 1 \). Given \((a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n\), the sum of \(k \) copies of \((a, b)\) is \((ka \mod m, kb \mod n)\). Notice that both \(m \) and \(n \) divide \(\frac{mn}{d} = m \cdot \frac{n}{d} = \frac{m}{d} \cdot n \). Then
\[
\left(\frac{mn}{d}a \mod m, \frac{mn}{d}b \mod n \right) = (0,0).
\]
So the cyclic subgroup generated by \((a,b)\) has an order no more than \(\frac{mn}{d} < mn = |\mathbb{Z}_m \times \mathbb{Z}_n|\). Thus \(\mathbb{Z}_m \times \mathbb{Z}_n \) can not be generated by any one of its elements, which implies that \(\mathbb{Z}_m \times \mathbb{Z}_n \) is not cyclic.

Cor 2.51. The group \(\prod_{i=1}^{n} \mathbb{Z}_{m_i} \) is cyclic and is isomorphic to \(\mathbb{Z}_{m_1m_2\cdots m_n} \) if and only if the numbers \(m_i \) for \(i = 1, \cdots, n \) are pairwise relative prime, that is, the gcd of any two of them is 1.

1st HW: 1, 2, 14, 34, 46
2.4. DIRECT PRODUCTS AND FINITELY GENERATED ABELIAN GROUPS

Proof. (For reference only) If \(m_i \) for \(i = 1, \cdots, n \) are pairwise relative prime, then
\[
\prod_{i=1}^{n} Z_{m_i} \cong Z_{m_1 m_2} \left(\prod_{i=3}^{n} Z_{m_i} \right) \cong Z_{m_1 m_2 m_3} \left(\prod_{i=4}^{n} Z_{m_i} \right) \cong \cdots \cong Z_{m_1 m_2 \cdots m_n}.
\]
Conversely, if \(\prod_{i=1}^{n} Z_{m_i} \cong Z_{m_1 m_2 \cdots m_n} \), then \(\prod_{i=1}^{n} Z_{m_i} \) contains a subgroup isomorphic to \(Z_{m_i} \times Z_{m_j} \) for \(1 \leq i < j \leq n \). Every subgroup of the cyclic group \(\prod_{i=1}^{n} Z_{m_i} \cong Z_{m_1 m_2 \cdots m_n} \) is cyclic. Hence \(Z_{m_i} \times Z_{m_j} \) is cyclic. So \(\gcd(m_i, m_j) = 1 \) for \(1 \leq i < j \leq n \).

Cor 2.52. If a positive integer \(n \) is factorized as a product of powers of distinct prime numbers:
\[
n = (p_1)^{n_1} (p_2)^{n_2} \cdots (p_r)^{n_r},
\]
then
\[
Z_n \cong Z_{(p_1)^{n_1}} \times Z_{(p_2)^{n_2}} \times \cdots \times Z_{(p_r)^{n_r}}.
\]

Note: Each \(Z_{(p_i)^{n_i}} \) can not be further decomposed into a product of proper nontrivial subgroups.

Ex 2.53. \((Z_5)^2 \not\cong Z_{5^2} \). The group \((Z_5)^2 \) is not cyclic, but \(Z_{5^2} = Z_{25} \) is cyclic.

Def 2.54. The least common multiple (abbreviated lcm) of positive integers \(r_1, r_2, \cdots, r_n \) is the smallest positive integer that is a multiple of each \(r_i \) for \(i = 1, 2, \cdots, n \).

If \(M \) is a multiple of \(r_i \) for \(i = 1, \cdots, n \), then \(M \) is a multiple of \(\text{lcm}(r_1, \cdots, r_n) \).

Thm 2.55. Let \((a_1, a_2, \cdots, a_n) \in \prod_{i=1}^{n} G_i \). If \(a_i \) is of finite order \(r_i \) in \(G_i \), then the order of \((a_1, a_2, \cdots, a_n)\) in \(\prod_{i=1}^{n} G_i \) is \(\text{lcm}(r_1, r_2, \cdots, r_n) \).

Proof. \((a_1, a_2, \cdots, a_n)^k = (a_1^k, a_2^k, \cdots, a_n^k) \).

So \((a_1^m, a_2^m, \cdots, a_n^m) = (e_1, e_2, \cdots, e_n) \) if and only if \(m \) is a multiple of \(r_i \) for \(i = 1, 2, \cdots, n \), if and only if \(m \) is a multiple of \(\text{lcm}(r_1, r_2, \cdots, r_n) \). The smallest such positive integer is \(\text{lcm}(r_1, r_2, \cdots, r_n) \). So the order of \((a_1, a_2, \cdots, a_n)\) is \(\text{lcm}(r_1, r_2, \cdots, r_n) \).

Ex 2.56. The order of \((8, 4, 10)\) in \(Z_{12} \times Z_{60} \times Z_{24} \).

\(^{9}2\text{nd HW: } 13, 15, 32, 47, 50\)
2.4.2 The Structure of Finitely Generated Abelian Groups

Thm 2.57 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form

$$Z_{(p_1)^{r_1}} \times Z_{(p_2)^{r_2}} \times \cdots \times Z_{(p_n)^{r_n}} \times Z \times Z \times \cdots \times Z$$

where the p_i are primes, not necessarily distinct, and the r_i are positive integers. The direct product is unique except for possible rearrangement of the factors; that is, the number (Betti number of G) of factor Z is unique and the prime powers $(p_i)^{r_i}$ are unique.

The proof (omitted) is challenging.

In particular, every finite abelian group is isomorphic to a product of finite cyclic groups. (Caution: finite group \neq finitely generated group)

Ex 2.58. Decompose the following three groups:

- $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} \simeq \mathbb{Z}_2^2 \times (\mathbb{Z}_2 \times \mathbb{Z}_3) \times (\mathbb{Z}_3 \times \mathbb{Z}_5) \simeq (\mathbb{Z}_2^2)^2 \times (\mathbb{Z}_3)^2 \times \mathbb{Z}_5$,
- $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_{60} \simeq \mathbb{Z}_3 \times \mathbb{Z}_{2^2} \times (\mathbb{Z}_{2^2} \times \mathbb{Z}_4 \times \mathbb{Z}_5) \simeq (\mathbb{Z}_{2^2})^2 \times (\mathbb{Z}_3)^2 \times \mathbb{Z}_5$,
- $\mathbb{Z}_{20} \times \mathbb{Z}_{36} \simeq (\mathbb{Z}_{2^2} \times \mathbb{Z}_5) \times (\mathbb{Z}_{2^2} \times \mathbb{Z}_{3^2}) \simeq (\mathbb{Z}_{2^2})^2 \times \mathbb{Z}_{3^2} \times \mathbb{Z}_5$.

Therefore, $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} \cong \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_{60} \not\cong \mathbb{Z}_{20} \times \mathbb{Z}_{36}$.

Ex 2.59 (Ex 11.13, p.109). Find all abelian groups, up to isomorphism, of order 360.

2.4.3 Applications

Def 2.60. A group G is decomposable if it is isomorphic to a direct product of two proper nontrivial subgroups. Otherwise G is indecomposable.

Thm 2.61. The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime.

Thm 2.62. If G is a finite abelian group, then G has a subgroup of order m for every m that divides $|G|$.

Ex 2.63. If m is a square-free integer, then every abelian group of order m is isomorphic to \mathbb{Z}_m and is cyclic.
2.4. DIRECT PRODUCTS AND FINITELY GENERATED ABELIAN GROUPS

2.4.4 Homework, II-11, p.110-p.113

1st 1, 2, 14, 34, 46

2nd 13, 15, 32, 47, 50

3rd 18, 26, 36, 53

(opt) 29, 37, 38, 39, 52, 54