ON A QUESTION CONCERNING SHARP BASES

BRADLEY BAILEY AND GARY GRUENHAGE

Abstract. A sharp base \(B \) is a base such that whenever \((B_i)_{i<\omega}\)

is an injective sequence from \(B \) with \(x \in \bigcap_{i<\omega} B_i \), then \(\{ \bigcap_{i\leq n} B_i : n < \omega \} \) is a base at \(x \). Alleche, Arhangel’skii and Calbrix asked: if \(X \) has a sharp base, must \(X \times [0, 1] \) have a sharp base? Good, Knight and Mohamad claimed to construct an example of a Tychonoff space \(P \) with a sharp base such that \(P \times [0, 1] \) does not have a sharp base. However, the space was not regular. We show how to modify the construction to make \(P \) Tychonoff.

1. Introduction

A sharp base is a base \(B \) such that whenever \((B_i)_{i<\omega}\) is an injective sequence from \(B \) with \(x \in \bigcap_{i<\omega} B_i \), then \(\{ \bigcap_{i\leq n} B_i : n < \omega \} \) is a base at \(x \). In a \(T_1 \) space, \(\bigcap_{i<\omega} B_i = \{ x \} \).

In [AAC], Alleche, Arhangel’skii and Calbrix defined sharp bases and asked if there is a topological space with a sharp base whose product with \([0, 1]\) does not have a sharp base. Good, Knight and Mohamad [GKM] claimed to have a Tychonoff counterexample, but it turns out that their space is not regular. It is not regular because they added a closed discrete set \(L \) to the Baire metric space \(^\omega \mathbb{N} \), in such a way to make the new space \(P \) pseudocompact. Such \(P \) cannot be regular: for if it is, one may find a neighborhood of \(p \in ^\omega \mathbb{N} \) whose closure misses \(L \). That neighborhood can be assumed to come from a clopen basis for \(^\omega \mathbb{N} \), and would then be homeomorphic to \(^\omega \mathbb{N} \) and be pseudocompact, a contradiction.

In this paper we give a modification of the Good, Knight, Mohamad space which makes the space Tychonoff. The space we construct is pseudocompact but not compact, hence not metrizable; we also show it is not developable. Our space has no isolated points and a sharp base, and for \(T_1 \) spaces a sharp base is always weakly uniform. Since Heath and Lindgren show that a \(T_2 \) space with a weakly uniform base

\begin{tabular}{l}
\hline
1991 Mathematics Subject Classification. 54D70. \\
Key words and phrases. Sharp base; Pseudocompact. \\
Research of the second author was partially supported by National Science Foundation grant DMS-0072269. \\
\hline
\end{tabular}
has a $G_δ$-diagonal [HL], our space has one also. In [AJRS], it is shown that a pseudocompact space with a $G_δ$-diagonal is Čech-complete, and that if a space with not more than $ω_1$ isolated points has a sharp base, then it has a point countable base. Therefore, the space we construct is a counterexample for these three other questions:

Is every pseudocompact Tychonoff space with a sharp base metrizable? [AJRS]

Is every pseudocompact space X with a $G_δ$-diagonal and a point-countable base developable? [A]

Is every Čech-complete pseudocompact space with a point-countable base metrizable? [A]

We have borrowed much of our notation from the paper [GKM].

2. The Example

2.1. The Construction of space \mathcal{P}. Let $B = \omega^c$, and for $σ ∈ \omega^c$ define $[σ] = \{g ∈ B : σ ⊆ g\}$. We also denote $σ ∈ n+1c$ by $(α_0, α_1, \cdots, α_n)$, where $σ(i) = α_i$. For $σ = (α_0, α_2, \cdots, α_n)$, we denote $(α_0, α_2, \cdots, α_n, δ)$ by $σ^−(δ)$. By $σ_1 ⊥ σ_2$ we mean that $σ_1$ and $σ_2$ are incompatible (i.e. the two finite partial functions disagree at a point in both domains).

Define \mathcal{S} to be the collection of elements of $ω(ω^c)$ subject to these two conditions:

1. For all $S ∈ \mathcal{S}$ there exists a $k_s < ω$ and a $ρ_s ∈ \omega^c$ such that whenever $σ ∈ S$, $σ|k_s = ρ_s$. This $ρ_s$ will be called the root of S.

2. Whenever $σ_1$ and $σ_2$ are distinct elements of S, $σ_1(k_s) ≠ σ_2(k_s)$.

Let $\mathcal{S} = \{S_α : α < c\}$, and let the root of $S_α$ be $ρ_α$.

Define $T_α ∈ ω(ω^c)$ so that $T = \{T_α : α < c\}$ has these three properties:

(i) for $i ≠ j$, $T_α(i) ⊥ T_α(j)$

(ii) if $β, α < c$, $β ≠ α$, with $T_α$ and $T_β$ defined, then $\text{ran}T_β ∩ \text{ran}T_α = \emptyset$, and

(iii) for $β, α < c$, $β ≠ α$, $T_α$ and $T_β$ defined, if $T_α(i) ⊇ T_β(j)$, then whenever $j′ ≠ j$, $T_α(i′) ⊥ T_β(j′)$ for all $i′ < ω$.

Assume for $α < γ$ we have either constructed a $T_α ∈ ω(ω^c)$ subject to the conditions above or we have not constructed a $T_α$ at all. Now we define $T_γ$. Choose a $δ ∈ c$ not in $∪\{\text{ran}T_α(j) : α < γ, j ∈ ω\}$. Then for each $i ∈ ω$ let $S_γ(i) = S_γ(i)−(δ)$. The sequence $(T_γ(i))_{i < ω}$ will be a subsequence of $(S_γ(i))_{i < ω}$, so the fact that no previous $T_α$ contains a finite partial function with $δ$ in the range will yield property (ii) for $T_γ$.

In addition, the fact that the elements of S'_γ are pairwise incompatible will make the elements of T_γ also incompatible, satisfying property (i). We need to construct our subsequence T_γ of S'_γ to make property (iii) hold at step γ.

Case 1. Suppose there exists some $\alpha < \gamma$ for which T_α was defined, such that for infinitely many j there is some $\iota \in \omega$ with $S_\gamma(\iota) \supseteq T_\alpha(j)$. If this is the case, do not define T_γ.

Case 2. If for each $\alpha < \gamma$ there are at most finitely many j for which $S_\gamma(\iota) \supseteq T_\alpha(j)$ for some ι, we will define a T_γ.

Suppose that for $i \leq k$ we have already selected a sequence of natural numbers $0 = n_0 < n_1 < \cdots < n_k$ and defined $T_\gamma(i) = S'_\gamma(n_i)$. There are at most finitely many different finite partial functions f such that $f \subseteq T_\gamma(i)$ for some $i \leq k$. The second induction condition implies that there are at most finitely many $\alpha < \gamma$ with such an f in the range of T_α. List these as $\alpha(0), \ldots, \alpha(m)$. We have assumed that for each $\alpha < \gamma$, there are at most finitely many j for which $S'_\gamma(n_j)$ extends $T_\alpha(j)$ for some ι. Using this fact, we see that for each $\alpha(p)$ there is a j_p such that for all $j \geq j_p$, $S'_\gamma(n_j)$ does not extend any $T_{\alpha(p)}(j)$. Then define $n_{k+1} = \max\{j_p : p \leq m\} \cup \{n_k + 1\}$ and $T_\gamma(k + 1) = S'_\gamma(n_{k+1})$. To check property (iii), suppose that $\beta < \gamma$ and $T_\gamma(\iota) \supseteq T_\beta(j)$ for some $j, k < \omega$. (Note that $T_\beta(j) \nsubseteq T_\gamma(k)$ since $\delta \in \text{ran}T_\gamma(k) \setminus \text{ran}T_\beta(j)$.) Assume that k is the least possible for which there exists such a j. Then $\beta = \alpha(p)$ for some $p \leq m$ in the above construction. Since n_{k+1}, n_{k+2}, \ldots are all greater than j_p, $T_\gamma(\iota)$ cannot extend $T_\beta(j')$ for any $j' \neq j$ and any ι, so we have property (iii). Indeed from (iii) together with what we noted above and conditions (1) and (2) of $S \in \mathcal{S}$, we have the following.

(iv) If $\rho_\alpha = \rho_\beta$, then $T_\alpha(j)$ and $T_\beta(\iota)$ are compatible for at most one pair (i, j) in $\omega \times \omega$.

Choose L disjoint from B such that $L = \{s_\alpha : T_\alpha$ is defined$\}$. Let the root of s_α refer to ρ_α. Let $P = B \cup L$.

For $\sigma \in \mathcal{O} \epsilon$, let $B(\sigma) = [\sigma] \cup \{s_\beta : \rho_\beta \supseteq \sigma\}$ and let $B_n(\sigma) = \{s_\alpha\} \cup \bigcup_{m \geq n} ([T_\alpha(m)] \cup \{s_\beta : \rho_\beta \supseteq T_\alpha(m)\})$. These will be the basic open sets for P, and call the collection of them \mathcal{B}.

2.2. Verifying Properties of \mathcal{P}. First, we will observe some properties of \mathcal{B}.

(a) For $\sigma_1, \sigma_2 \in \mathcal{O} \epsilon$, $\sigma_1 \perp \sigma_2$ iff $B(\sigma_1) \cap B(\sigma_2) = \emptyset$ and if $\rho_\alpha \perp \rho_\beta$ then $B_n(\sigma_\alpha) \cap B_m(\sigma_\beta) = \emptyset$.

(b) $\sigma_1 \subseteq \sigma_2$ iff $B(\sigma_2) \subseteq B(\sigma_1)$, and if $\rho_\alpha \supseteq \sigma$, then for each $\iota < \omega$, $B_n(\sigma_\alpha) \subseteq B(\sigma)$.

(c) Suppose $B(\sigma) \cap B_n(s_\alpha) \neq \emptyset$. Then $\sigma \subseteq \rho_\alpha$ or $\rho_\alpha \subseteq \sigma$. If $\sigma \subseteq \rho_\alpha$ then $B(\sigma) \cap B_n(s_\alpha) = B_n(s_\alpha)$. If $\sigma \supseteq \rho_\alpha$, then the intersection is either $B(\sigma)$ or $B(T_\alpha(m))$ for some $m \geq n$. Finally, if $B(\sigma) \subseteq B_n(s_\alpha)$ then for some $m \geq n$ we have $B(\sigma) \subseteq B(T_\alpha(m))$.

(d) If $B_n(s_\alpha) \cap B_{n'}(s_{\alpha'}) \neq \emptyset$ and $\rho_{\alpha'} \subseteq \rho_\alpha$, then the intersection is either $B_n(s_\alpha)$ or a set of form $B(\sigma)$, for some $\sigma \in \{T_\alpha(m), T_{\alpha'}(m') : m \geq n, m' \geq n'\}$. In particular, the latter holds if $\rho_{\alpha'} = \rho_\alpha$.

Proof of (a) - (d):
(a) Suppose that $\sigma_1 \perp \sigma_2$; then there is no point of B nor any finite partial function that could extend both σ_1 and σ_2. If $s_\alpha \in L$ is in $B(\sigma_1) \cap B(\sigma_2)$ then ρ_α extends both, contradiction. Suppose for the reverse, that $B(\sigma_1) \cap B(\sigma_2) = \emptyset$; then since $[\sigma_1] \cap [\sigma_2]$ is contained in this set, it is clear that $\sigma_1 \perp \sigma_2$.

Now if the roots of s_α and s_β are incompatible then each pair of extensions of the roots will be incompatible, hence $B(T_\alpha(n')) \cap B(T_\beta(m')) = \emptyset$ for each $n' \geq n$ and $m' \geq m$. Further, $s_\alpha \in B_m(s_\beta)$ implies that ρ_α extends ρ_β, which has been assumed to be not the case. So $B_n(s_\alpha) \cap B_m(s_\beta) = \emptyset$.

(b) Clear from the definition of $B(\sigma)$ and s_α.

(c) Suppose that $B(\sigma) \cap B_n(s_\alpha) \neq \emptyset$. Since $B_n(s_\alpha) \subseteq B(\rho_\alpha)$ we have $\sigma \not\subseteq \rho_\alpha$, by (a). If $\sigma \subseteq \rho_\alpha$, then for each $m \geq n$, $\sigma \subseteq T_\alpha(m)$ and $s_\alpha \in B(\sigma)$, so $B_n(s_\alpha) \subseteq B(\sigma)$.

Suppose $\sigma \not\supseteq \rho_\alpha$; then for some $m \geq n$, $B(\sigma) \cap B(T_\alpha(m)) \neq \emptyset$, while property (i) of T implies that $B(\sigma) \cap B(T_\alpha(k)) = \emptyset$ for $k \neq m$. By (a) and (b), one of $B(\sigma)$ and $B(T_\alpha(m))$ is contained in the other, and the intersection is simply the contained set. This implies the last sentence of (c).

(d) Suppose $B_n(s_\alpha) \cap B_{n'}(s_{\alpha'}) \neq \emptyset$, where $s_\alpha \neq s_{\alpha'}$. If $\rho_{\alpha'} \subseteq \rho_\alpha$ then $s_{\alpha'} \not\in B_n(s_\alpha)$ and $[T_\alpha(j)] \cap [\rho_\alpha] \neq \emptyset$ for at most one $j \in \omega$. Therefore, $B_n(s_\alpha) \cap B_{n'}(s_{\alpha'}) = B(T_{\alpha'}(j)) \cap B_n(s_\alpha)$ for some $j \geq n'$. Now the rest follows from (c).

If $\rho_\alpha = \rho_{\alpha'}$, then the conclusion follows from condition (iv).

B is a clopen base for P. Notice that the properties show immediately that B is a base. To see that $B_n(s_\alpha)$ is closed, consider $s_\gamma \in L \setminus B_n(s_\alpha)$. Suppose that $B_j(s_\gamma)$ meets $B_n(s_\alpha)$, where j is sufficiently large that $s_\alpha \notin B_j(s_\gamma)$. Then by (d) the intersection is one of $B(T_\alpha(n'))$ for some $n' \geq n$, $B(T_\gamma(j'))$ for some $j' \geq j$, $B_j(s_\gamma)$ or $B_n(s_\alpha)$.

Since $s_\gamma \notin B_n(s_\alpha)$ and $s_\alpha \notin B_j(s_\gamma)$, we know that the intersection cannot be $B_j(s_\gamma)$ or $B_n(s_\alpha)$. If the intersection is $B(T_\gamma(j'))$ then $B_{j' + 1}(s_\gamma)$ misses $B_n(s_\alpha)$. So without loss of generality, the intersection is some
$B(T_{\alpha}(n'))$. Then $B(T_{\gamma}(j')) \supseteq B(T_{\alpha}(n'))$ for some j'. So $B_{j'+1}(s_\gamma) \cap B_n(s_\alpha) = \emptyset$.

To see that each limit point of $B_n(s_\alpha)$ in B is in $B(s_\alpha)$, suppose that p is a limit point of $B_n(s_\alpha)$ contained in $B \setminus B_n(s_\alpha)$. Clearly, $p \supseteq \rho_\alpha$. Choose $k < \omega$ so that $p|k \not\subseteq \rho_\alpha$. Then by property (c), $B(p|k) \cap B_n(s_\alpha) = B(T_\alpha(m))$ for some $m \geq n$. Then for $k' < \omega$ with $k' > |T_\alpha(m)|$, we have $B(p|k') \cap B_n(s_\alpha) = \emptyset$.

Lastly, we observe that $B(\sigma)$ is clopen. Since B is dense and the subspace base is clopen, we only need to turn our attention to limit points of $B(\sigma)$ in L. Suppose then that $s_\alpha \in L$ is a limit point of $B(\sigma)$, not in $B(\sigma)$; then for all $n < \omega$, $B_n(s_\alpha)$ meets $B(\sigma)$. If $\rho_\alpha \perp \sigma$, then clearly $B(\sigma) \cap B_n(s_\alpha) = \emptyset$. If $\rho_\alpha \supseteq \sigma$, then s_α is in $B(\sigma)$ which is contrary to our assumptions. So assume that $\sigma \supseteq \rho_\alpha$, then there is at most one $T_\alpha(m)$ that extends σ or is extended by σ. Then $B_{m+1}(s_\alpha) \cap B(\sigma) = \emptyset$.

B is sharp. Let the injective sequence $(B(\sigma_i))_{i < \omega}$ come from B. If $p \in B$ is contained in every $B(\sigma_i)$ then $p \supseteq \sigma_i$, so since $|\sigma_i|$ must be unbounded, it is clear that $\{\bigcap_{i \leq n} B(\sigma_i) : n < \omega\}$ is a base at p. If s_α is in every $B(\sigma_i)$, then ρ_α extends every σ_i, but since $|\rho_\alpha|$ is finite, this is not possible.

Now consider an injective sequence $(B_{n_i}(s_{\alpha_i}))_{i < \omega}$, with nonempty intersection. If there is an infinite subset J of ω such that the ρ_{α_i}, $i \in J$, are distinct, then it is easy to see that $\{B(\rho_{\alpha_i}) : i \in J\}$ is a base for a unique point $p \in B$. Hence, so is $\{\bigcap_{i \leq j} B_{n_i}(s_{\alpha_i}) : j < \omega\}$, since for each $i \in J$ we have $B_{n_i}(s_{\alpha_i}) \subseteq B(\rho_{\alpha_i})$.

Next, suppose that $s_{\alpha_i} = s_\alpha$ for all i in an infinite subset J of ω. Then $\{B_{n_i}(s_\alpha) : i < \omega\}$ is a base at s_α, therefore $\bigcap_{i \leq j} B_{n_i}(s_\alpha) : j < \omega\}$ is a base at s_α too.

The final case, without loss of generality, is when the s_{α_i}’s are distinct, but $\rho_{\alpha_i} = \rho$ for all $i < \omega$. Then by (d), pairwise intersections have the form $B(\sigma)$ for some σ in the range of the corresponding pair from T. By property (ii) of T, $\{B_{n_i}(s_{\alpha_i}) \cap B_{n_{i+1}}(s_{\alpha_{i+1}}) : i \text{ is even}, i < \omega\}$ consists of distinct $B(\sigma)$’s. Therefore, this must be a base at some $p \in B$, and $\bigcap_{i \leq j} B_{n_i}(s_{\alpha_i}) : j < \omega\}$ is as well.

P is not compact. Consider $C_0 = \{s_\alpha \in L : \rho_\alpha = \emptyset\}$. Note that $P \setminus C_0 = \bigcup_{\alpha < \gamma} B((\alpha))$. We intend to show that the closed set C_0 is infinite and discrete. To see that this is a discrete set, notice that for $s_\alpha \in C_0$, the set $B_1(s_\alpha) \cap C_0$ can only contain s_α. Examine $\{s_{\alpha_i} : \gamma < c\}$, where $\alpha_i = \alpha_i \gamma$ iff both $i = i'$ and $\gamma = \gamma'$, Call this collection S_0; then this is a subset of \mathcal{S}. Note, that for each $S_\alpha \in S_0$ and $i < \omega$,
we have that the length of \(S_\alpha(i) \) is exactly one. Also, each \(T_\alpha(j) \) is constructed to have length at least 2. Therefore, during the induction that defined \(T \), for each \(S_\alpha \in S_0 \), Case 1 does not hold. Therefore, a corresponding \(T_\alpha \) is constructed for each \(S_\alpha \in S_0 \).

\(P \) is not perfect, hence not developable. Let \(U = P \setminus C_0 \). We show that \(U \) is not \(F_\sigma \), and hence \(P \) is not developable. Suppose that \(\{ F_j \}_{j<\omega} \) is a collection of closed sets so that \(\bigcup_{j<\omega} F_j = U \). By the Baire property of \(B \), each \([\alpha]\) is Baire. So for all \(\alpha < \omega \) there is an \(n_\alpha \) and an \(\bar{\alpha} = [(\alpha, \beta_1, \cdots, \beta_{n_\alpha})] \subseteq F_{n_\alpha} \). Choose \(n_0 \) so that \(\{ \alpha : [\bar{\alpha}] \subseteq F_{n_0} \} \) is infinite. Order \(\{ \alpha_i \}_{i<\omega} \subseteq \{ \alpha : [\bar{\alpha}] \subseteq F_{n_0} \} \), then \(S = ([\bar{\alpha}_i])_{i<\omega} \in S \), and has the empty set as its root. So an \(s \in L \) was defined as a limit point of \(S \), and \(\sigma \) the root of \(s \) is also the empty set. Therefore, \(s \) is a limit point of the closed set \(F_{n_\sigma} \). This implies that \(s \in P \setminus C_0 \), contradicting that \(s \) has the empty root.

\(P \) is pseudocompact. Suppose that \(\varphi \) is an unbounded continuous real valued function on \(P \). Since \(B \) is dense, for each \(n \in \omega \) there is an \(x_n \) such that \(\varphi(x_n) > n \). Let \(D = \{ x_n : n \in \omega \} \) and let’s note that \(D \) is closed discrete, hence not compact. If \(p \) were a cluster point of \(D \), then every open neighborhood of \(p \) contains infinitely many elements of \(D \). This implies that \(\varphi \) increases unboundedly over every neighborhood of \(p \), contradicting the continuity of \(\varphi \).

Since \(D \) is closed and not compact we can find a \(k < \omega \) such that \(\{ x_n | k : x_n \in D \} \) is infinite. Choose the minimum such \(k \). Then there is a \(\sigma \in \prec \omega \) and an infinite subset \(A \) of \(\omega \), such that \(x_n | (k-1) = \sigma \) for \(n \in A \), and \(x_n(k-1) \) is different for these infinitely many \(n \in A \).

Let \(D^* = \{ x_n : n \in A \} \). Since \(\varphi(x_n) > n \) by continuity of \(\varphi \) there exists \(j_n > k \) so that \(\varphi(B(x_n | j_n)) > n \). Then for some \(\alpha < \omega \), \(\{ x_n | j_n : x_n \in D^* \} \) is \(S_\alpha \) and \(\rho_\alpha = \sigma \). If \(s_\alpha \) was not defined then for some \(\beta < \alpha \), \(T_\beta(j) \subseteq S_\alpha(n) = x_n | k \) for infinitely many \(j \). Then each basic open neighborhood of \(s_\beta \) contains infinitely many of the sets \(B(x_n | k) \). So \(\varphi \) takes on arbitrarily large values over every neighborhood of \(s_\beta \) contradicting continuity. If \(s_\alpha \) was defined, then \(T_\alpha(i) \) was chosen so that \(T_\alpha(i) \supseteq x_n | j_n \) for each \(i \in \omega \), so \(B(T_\alpha(i)) \subseteq B(x_n | j_n) \). So again, \(\varphi \) takes on large values over every open set containing \(s_\alpha \), contradicting the continuity of \(\varphi \).

The following lemma, which was suggested by the referee, is essentially due to [GKM].

Lemma 1. Let \(X \) be a Tychonoff, pseudocompact, non-compact space which partitions into \(B \cup L \), and has a sharp base \(B \). If

(a) \(B = B_1 \cup B_2 \) where \(B_1 \) is a \(\sigma \)-point finite base for \(B \)
(b) for all \(x \in L \) there is a local base \(\{ B_n(x) : n < \omega \} \) so that \(n < m \) implies \(B_m(x) \subset B_n(x) \) and \(\mathcal{B}_2 = \{ B_n(x) : n < \omega, x \in L \} \)

(c) for \(x \neq y \in L \), \(n, m \in \omega \), \(B_n(x) \neq B_m(y) \).

Then \(X \times [0,1] \) does not have a sharp base.

Proof. Assume, by way of contradiction, that \(\mathcal{W} \) is a sharp base for \(X \times [0,1] \). Let \(\mathcal{C} \) be a countable base for \([0,1]\). For each \(x \in L \), choose \(W^x_n \in \mathcal{W} \), \(B^x_n \in \mathcal{B} \) and \(C^x_n \in \mathcal{C} \) so that \((x, \frac{1}{3}) \in B^x_n \times C^x_n \subseteq W^x_n \subseteq B_n(x) \times [0,1] \). Let \(\mathcal{B}_C = \{ B \in \mathcal{B} : \text{for some } n \in \omega \text{ and } x \in L, B = B^x_n \text{ and } C = C^x_n \} \).

We claim that \(\mathcal{B}_C \) is point-finite. Suppose not; then there exists an infinite collection \((B_j)_{j<\omega} \) from \(\mathcal{B}_C \) that has nonempty intersection. Let \(y \in \bigcap_{j<\omega} B_j \); then there are \(x_j \in L \) and \(n_j \in \omega \) so that \(B_j = B^x_{n_j} \) and \(C = C^x_{n_j} \). Then \(\{ y \} \times C \subseteq \bigcap_{j<\omega} (B^x_{n_j} \times C^x_{n_j}) \subseteq \bigcap_{j<\omega} W^x_{n_j} \). If \(x_j \neq x_k \) then \(B_n(x_j) \neq B_n(x_k) \).

There are two cases to consider.

Case 1. There is an infinite \(J \subseteq \omega \) so that \(x_j \neq x_k \) whenever \(j \neq k \) with \(j, k \in J \). Then \(\{ W^x_{n_j} : j \in J \} \) is infinite. Suppose not; then some \(W \) is contained in infinitely many different \(B_{n_j}(x_j) \times [0,1] \). The sharpness of \(\mathcal{B} \) implies that \(\bigcap_{j<\omega} B_{n_j}(x_j) \) is at most a singleton; it must be \(\{ y \} \), implying \(W \subseteq \{ y \} \times [0,1] \), which is impossible. Hence \(\{ W^x_{n_j} : j \in J \} \) is infinite, and so \(\{ y \} \times C \subseteq \bigcap_{j<\omega} W^x_{n_j} \) is a single point, a contradiction.

Case 2. There is an infinite \(K \subseteq \omega \) so that \(x_j = x_k = x \) for \(j, k \in K \). Then the set \(\{ n_k : k \in K \} \) is infinite, since the \(B^x_{n_k} \) are distinct. Again, \(\{ y \} \times C \subseteq \bigcap_{k \in K} (B^x_{n_k} \times C^x_{n_k}) \subseteq \bigcap_{k \in K} W^x_{n_k} = \bigcap_{k \in K} W^x_{n_k} \). Once again, this is simply one point, so we have the same contradiction as in Case 1.

Therefore, \(\mathcal{B}_C \) is point finite. Let \(\mathcal{B}' = \bigcup_{C \in \mathcal{C}} \mathcal{B}_C \); then \(\mathcal{B}_1 \cup \mathcal{B}' \) is a \(\sigma \)-point finite base for \(X \). All pseudocompact spaces with \(\sigma \)-point finite bases are metrizable [U]. However, all metrizable pseudocompact spaces are also compact, contradiction.

\(P \times [0,1] \) does not have a sharp base. We use the above lemma. Let \(\mathcal{B}_1 = \bigcup_{n<\omega} \{ B(\sigma) : |\sigma| = n \} \) and \(\mathcal{B}_2 = \{ B_n(s_\alpha) : s_\alpha \in L, n < \omega \} \).

The authors would like to thank the referee for the valuable suggestions and comments that led to improvements throughout this note.

References

Department of Mathematics, Auburn University, Auburn, Alabama 36849

E-mail address: bailebs@auburn.edu
E-mail address: garyg@auburn.edu