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Abstract. Consider the class N of metrizable spaces which admit a metric d such
that, for every ε > 0, the collection {B(x, ε) : x ∈ X} of all ε-balls is locally finite. We
show that N is precisely the class of strongly metrizable spaces, i.e., X ∈ N iff X is
homeomorphic to a subspace of κω × [0, 1]ω for some cardinal κ (where κ carries the
discrete topology). In particular, this shows that not every metrizable space admits
such a metric, thereby answering a question of Nagata.

1. Introduction

Let (X, d) be a metric space. For ε > 0, we let Bd(x, ε) denote the ε-ball {y ∈
X : d(x, y) < ε} about x, and we let Bd(ε) denote the collection {Bd(ε) : x ∈ X} of
all ε-balls in X. We may delete the subscript d in case the metric is understood.

In [N1], J. Nagata showed that every metrizable space X admits a metric d such
that, for every ε > 0, Bd(ε) is closure-preserving. Indeed, implicit in his paper is the
fact that every separable metric space admits a metric d such that Bd(ε) is finite for
every ε > 0. For the metric he builds has the property that, for each ε > 0, there
is a locally finite open cover Gε of X such that Bd(ε) = {st(x,Gε) : x ∈ X}, where
st(x,Gε) = ∪{G ∈ Gε : x ∈ G} and is called the “star” of Gε at x. (It is easy to
check that the collection of stars of a locally finite collection is closure-preserving.)
Since a locally finite collection in a compact space must be finite, it follows then
that the Hilbert cube admits a metric d such that, for each ε > 0, Bd(ε) is finite.
Hence, so does any separable metrizable space, for the restriction of such d to any
subspace of the Hilbert cube has the same property.

In [N2], Nagata asks if every metrizable space admits a metric such that each
B(ε) is locally finite. (He uses the term “hereditarily closure-preserving” in place
of “locally finite”, but these notions are equivalent in the class of first-countable, in
particular metrizable, spaces.) In this note, we characterize the class N of metriz-
able spaces which admit such a metric as precisely the class of strongly metrizable
spaces, where a metrizable space X is strongly metrizable iff X has a base which is
the union of countably many star-finite open covers, or equivalently (see [P], Propo-
sition 3.27), X is embeddable in κω × Iω for some cardinal κ, where I = [0, 1] and
κ carries the discrete topology. This gives a negative answer to Nagata’s question;
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in particular, any space with a non-separable component, such as a hedgehog with
uncountably many spines, is not embeddable in κω × Iω and hence does not admit
a metric such that each B(ε) is locally finite.

2. Main results

We first show that it matters not if one changes the question by replacing “locally
finite” with “point-finite” or “star-finite”. (Recall that a collection U of subsets of
X is star-finite if each member of U meets only finitely other members.)

Lemma 1.1. Let (X, d) be a metric space, and ε > 0. Then the following are
equivalent:

(a) Bd(ε) is locally finite;
(b) Bd(ε) is point-finite;
(c) Bd(ε) is star-finite;
(d) There is a star-finite open cover U such that Bd(ε) = {st(x,U) : x ∈ X}.

Proof. That (c)⇒(a)⇒(b) is trivial, and (d)⇒(b) is easy to check.
We now prove (b)⇒(c), thereby establishing equivalence of (a)-(c). To this end,

suppose Bd(ε) is point-finite. For each B ∈ Bd(ε), let C(B) = {x ∈ B : B =
Bd(x, ε)}; i.e., C(B) is the set of centers of the ball B. Note that the C(B)’s
partition X. That (b)⇒(c) is then immediate from the following two claims.

Claim 1. Each B ∈ Bd(ε) meets at most finitely many C(B)’s. Suppose by way
of contradiction that xn ∈ C(Bn)∩B, n ∈ ω. Let x ∈ C(B). Then d(x, xn) < ε for
all n, so since xn ∈ C(Bn) we have x ∈ Bn for all n, contradicting (b).

Claim 2. Each C(B) meets only finitely many B’s in Bd(ε). To see this, suppose
xn ∈ C(B)∩Bn for all n. Let y ∈ C(B), and pick zn ∈ C(Bn). Then d(xn, zn) < ε,
so zn ∈ Bd(xn, ε) = B. This implies d(y, zn) < ε for all n, whence y ∈ Bn for all n,
again contradicting (b).

It remains to prove that (c)⇒(d). Assume Bd(ε) is star-finite. For each p 6= q ∈ X
with d(p, q) < ε, let

U(p, q) =
⋂
{B ∈ Bd(ε) : {p, q} ⊂ B}.

We first show that d(x, y) < ε for any two points x, y ∈ U(p, q). Clearly U(p, q) ⊂
Bd(p, ε) ∩ Bd(q, ε). It follows that p, q ∈ Bd(x, ε), whence y ∈ U(p, q) ⊂ Bd(x, ε).
So d(x, y) < ε as claimed.

Now let U ′ = {U(p, q) : p 6= q and d(p, q) < ε}. Since each member of U ′ is
a finite intersection of members of a star-finite collection, U ′ is also star-finite. It
covers all non-isolated points, but possibly not all isolated points, so we let U =
U ′ ∪ ({{x} : x ∈ X \ ∪U ′}), which of course is also star-finite. Consider any x ∈ X.
By the previous paragraph, we have st(x,U) ⊂ Bd(x, ε). Suppose y ∈ Bd(x, ε)\{x}.
Then x, y ∈ U(x, y) ∈ U , so y ∈ st(x,U). Thus st(x,U) = Bd(x, ε), which completes
the proof. ¤

The proof of the next lemma is similar to the proof of the equivalence of 1.1(b)
and 1.1(c) and hence is omitted.

Lemma 1.2. Let (X, d) be a metric space, and ε > 0. Then the following are
equivalent:

(a) Bd(ε) is point-countable;
(b) Bd(ε) is star-countable.
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Let N be as defined in the introduction. We note the following easy lemma.

Lemma 1.3. N is closed under subspaces and countable products.

Proof. If the metric d witnesses that X ∈ N , clearly the restriction of d to any
subspace X ′ witnesses that X ′ ∈ N . To prove closure under countable products,
suppose X0, X1, . . . are in N , witnessed by d0, d1, . . . . Let d′i(x, y) be the minimum
of 1/2i and di(x, y). It is easy to check that d′i also witnesses that Xi is in N , and
that d(~x, ~y) = maxi∈ω d′i(xi, yi) witnesses that Πi∈ωXi ∈ N . ¤

Since discrete spaces are obviously inN , and the Hilbert cube is inN by Nagata’s
result mentioned in the Introduction , it follows from Lemma 1.3 that, for any
cardinal κ, any subspace of κω× [0, 1]ω is in N (where κ has the discrete topology).
The next result, our main one, shows that this characterizes N .

Theorem 1.4. The following are equivalent for a metrizable space X:
(i) X ∈ N , i.e., X admits a metric such that, for all ε > 0, B(ε) is locally

finite;
(ii) X admits a metric such that, for all ε > 0, B(ε) is point-finite;
(iii) X admits a metric such that, for all ε > 0, B(ε) is star-finite;
(iv) X admits a metric such that, for all ε > 0, B(ε) is point-countable;
(v) X admits a metric such that, for all ε > 0, B(ε) is star-countable;
(vi) There is a sequence of star-finite open covers Gn, n < ω, of X such that,

for each n, Gn+1 refines Gn and, for each x ∈ X, {st(x,Gn) : n ∈ ω} is a
base at x.

(vii) There is a sequence of star-countable open covers Gn, n < ω, of X such
that, for each n, Gn+1 refines Gn and, for each x ∈ X, {st(x,Gn) : n ∈ ω}
is a base at x.

(viii) X is homeomorphic to a subspace of κω × [0, 1]ω for some cardinal κ.

Proof. By the previous lemmas, (i)-(iii) are equivalent, as are (iv) and (v). As
noted following the proof of Lemma 1.3, we also have (viii)⇒(i). Furthermore, it is
clear that (iii) implies (iv),(v), and (vi), and (v) and (vi) both imply (vii). We now
prove (vii) implies (viii); the theorem then follows from this and the aforementioned
implications.

Let {Gn}n∈ω satisfy condition (vii). For U, V ∈ Gn, define U ∼n V iff there
is a finite sequence U0, U1, . . . , Uk of elements of Gn with U = U0, V = Uk, and
Ui ∩ Ui+1 6= ∅ for all i < k. Then each equivalence class [U ]n is countable, and the
collection Pn = {∪[U ]n : U ∈ Gn} is a clopen partition of X. Since Gn+1 refines
Gn, Pn+1 refines Pn.

Let P∅ = P0 = {P〈α〉 : α < κ∅} for some cardinal κ∅. Then for each α < κ∅,
let P〈α〉 = {P ∈ P1 : P ⊂ P〈α〉} = {P〈α,β〉 : β < κ〈α〉} for some cardinal κ〈α〉. If
P〈α0,α1,...,αn−1〉 = {P〈α0,α1,...,αn−1,αn〉 : αn < κ〈α0,α1,...,αn−1〉} is defined, then let
P〈α0,α1,...,αn〉 = {P ∈ Pn+1 : P ⊂ P〈α0,α1,...,αn〉} = {P〈α0,α1,...,αn,αn+1〉 : αn+1 <
κ〈α0,α1,...,αn〉}. For each finite sequence σ for which Pσ has been defined, select
Gσ ∈ Gk, where k = |σ| − 1, such that Pσ = ∪[Gσ]k. Let Gσ denote the equivalence
class [Gσ]k; since equivalence classes are countable, we may index Gσ by {Gσ,j : j ∈
ω}.

Let κ be the supremum of all the defined κs’s. For any σ ∈ κ<ω for which Pσ

has not been defined, let Pσ = ∅ = Gσ. Note that for each n,

Gn =
⋃
{Gσ : σ ∈ κn+1}
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.
Since X is metrizable, hence paracompact, there is a locally finite closed shrink-

ing {H(G) : G ∈ Gn} of Gn. For G ∈ Gn, let fG : X → [0, 1/2n] be continuous such
that fG(H(G)) = {1/2n} and fG(X \G) = {0}. Let Fn = {fG : G ∈ Gn}.

Now we can define our desired embedding θ, which will map X into κω × Iω×ω.
Pick x ∈ X. Then for each n, there is a unique σx

n ∈ κn+1 with x ∈ Pσx
n
. Note that

σx
n+1 extends σx

n, so there is a unique τx ∈ κω such that τx ¹ (n + 1) = σx
n for all

n. Then let
θ(x) = {τx} × {〈fGτx�(k+1),j

(x)〉(k,j)∈ω×ω}.

Let us check that θ is one-to-one. Suppose x 6= y, yet θ(x) = θ(y). Then
τx = τy = τ ∈ κω, i.e., x and y are always in the same member of the partitions
Pn. Choose k sufficiently large so that y 6∈ st(x,Gk), and choose G ∈ Gk with
x ∈ H(G). Then for some j, G = Gτ�(k+1),j , and fGτ�(k+1),j

(x) = 1/2k while
fGτ�(k+1),j

(y) = 0. Thus θ(x) and θ(y) differ on coordinate (k, j), contradiction.
Now we show that θ is continuous. Let θ(x) = (θ1(x), θ2(x)), where θ1(x) ∈

κω and θ2(x) ∈ Iω×ω. Suppose a sequence of points xn, n < ω, converges to
x ∈ X. Fix k ∈ ω. Then for sufficiently large n, xn ∈ Pτx�(k+1) and hence also
τxn ¹ (k + 1) = τx ¹ (k + 1). It easily follows from this that as n gets large,
θ1(xn)(k) = τxn(k) converges to (in fact, is equal to) θ1(x)(k) = τx(k) and that, if
we also fix j, θ2(xn)(k, j) converges to θ2(x)(k, j). Thus θ is continuous.

It remains to prove that θ is a homeomorphism onto its range. To this end, let
O be open in X; it will suffice to show that θ(O) is relatively open in θ(X). Take
a point θ(x) ∈ θ(O). We need to find a neighborhood V of θ(x) in κω × Iω×ω such
that V ∩ θ(X) ⊂ θ(O).

Choose k sufficiently large so that st(x,Gk) ⊂ O. Let J = {j ∈ ω : x ∈
H(Gτx�(k+1),j)}; obviously, J is finite. Let ε = 1/2k, and let k′ = k + 1. Then the
set

V = {(z1, z2) ∈ κω × Iω×ω : z1 ¹ k′ = τx ¹ k′ & ∀j ∈ J(|z2(k, j)− θ2(x)(k, j)| < ε)}

is an open neighborhood of θ(x).
It remains to show V ∩ θ(X) ⊂ θ(O). Suppose θ(y) ∈ V ∩ θ(X) \ θ(O). Then

y 6∈ O. Since θ(y) ∈ V , τy ¹ (k+1) = τx ¹ (k+1). Let G ∈ Gk with x ∈ H(G). Then
G ∈ [Gτx�(k+1)]k and so G = Gτx�(k+1),j for some j; of course, j ∈ J . Since y 6∈ O,
y 6∈ G. Thus θ2(y)(k, j) = fGτy�(k+1),j

(y) = fGτx�(k+1),j
(y) = fG(y) = 0, while

θ2(x)(k, j) = fG(x) = 1/2k. But this contradicts θ(y) ∈ V , and thus completes the
proof. ¤

Corollary 1.5. N is precisely the class of strongly metrizable spaces.

Remark. Recall that a space is strongly paracompact if every open cover has
a star-finite open refinement. It is well-known and easy to see that every strongly
paracompact metrizable space is strongly metrizable and hence, by our result, is in
N . But not every member of N is strongly paracompact; e.g., it is known [N3] that
ωω

1 × (0, 1), which of course embeds in ωω
1 × Iω and hence is strongly metrizable, is

not strongly paracompact.
We also remark that Y. Hattori [H] obtained another characterization of strongly

metrizable spaces in terms of a metric.
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3. An Example

By Lemma 1.1, the only way the collection of ε-balls (ε fixed) can be locally
finite is for this collection to be precisely the stars of some star-finite open cover.
Recall that Nagata showed that every metrizable space admits a metric such that
the collection of ε-balls is closure-preserving by constructing a metric such that the
collection of ε-balls is precisely the collection of stars of some locally finite open
cover. So it is natural to ask if this is the only way the collection of ε-balls can be
closure-preserving. The following example shows that the answer is “no”.

Example. There is a metric space (X, d) such that, for every ε > 0, Bd(ε) is
closure-preserving but there is no locally finite open cover G(ε) with Bd(ε) =
{st(x,G(ε)) : x ∈ X}.
Proof. Let the set X be ω×R, viewed as a subset of the plane. For x, y ∈ X, denote
the usual Euclidean distance between x and y by |x − y|. Then for x = (nx, rx)
and y = (ny, ry) in X, define d(x, y) to be |x − y| if x = y, or if nx 6= ny, or if
nx = ny = n and |x− y| > 1/2n. Let d(x, y) = 1/2n otherwise. It is easy to check
that d is a metric on the set X, and that d generates the discrete topology on X.
So any collection of subsets of X is closure-preserving, in particular Bd(ε).

Fix ε > 0. We aim to show that Bd(ε) cannot be precisely the collection of stars
of some locally finite open cover. To this end, choose n such that 1/2n < ε, and
note that the trace of Bd(ε) on {n} × R contains {{n} × (x − ε, x + ε) : x ∈ R},
i.e., it contains all open intervals on {n} × R of length 2ε. Thus establishing the
following claim will complete the proof.

Claim. There is no point-finite cover G of R such that every open interval of
length 2ε is the union of some finite subcollection of G.

Proof of Claim. Suppose G is such a point-finite cover of R. Let z ∈ R. There is
a finite subcollection Gz of G such that ∪Gz = (z − 2ε, z). Since G is point-finite, if
we let

z′ = sup(∪{G ∈ Gz : sup(G) < z})
then z′ < z. Choose qz ∈ Q between z′ and z. Pick Gz ∈ Gz with qz ∈ Gz. Note
that sup(Gz) = z, hence z 6= z′ implies Gz 6= Gz′ . But there must be q such that
qz = q for uncountably many z, contradicting point-finiteness of G at q. ¤
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