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ABSTRACT. Consider the class N of metrizable spaces which admit a metric d such
that, for every € > 0, the collection {B(z,€) : « € X} of all e-balls is locally finite. We
show that A is precisely the class of strongly metrizable spaces, i.e., X € N iff X is
homeomorphic to a subspace of k* x [0,1]* for some cardinal x (where x carries the
discrete topology). In particular, this shows that not every metrizable space admits
such a metric, thereby answering a question of Nagata.

1. INTRODUCTION

Let (X,d) be a metric space. For € > 0, we let By(z,€) denote the e-ball {y €
X :d(z,y) < €} about x, and we let B,(€) denote the collection {By(e) : x € X} of
all e-balls in X. We may delete the subscript d in case the metric is understood.

In [N;], J. Nagata showed that every metrizable space X admits a metric d such
that, for every € > 0, By(e) is closure-preserving. Indeed, implicit in his paper is the
fact that every separable metric space admits a metric d such that By(e) is finite for
every € > 0. For the metric he builds has the property that, for each € > 0, there
is a locally finite open cover G, of X such that By(e) = {st(z,G¢) : v € X}, where
st(x,Ge) = U{G € G, : x € G} and is called the “star” of G, at x. (It is easy to
check that the collection of stars of a locally finite collection is closure-preserving.)
Since a locally finite collection in a compact space must be finite, it follows then
that the Hilbert cube admits a metric d such that, for each ¢ > 0, By(e) is finite.
Hence, so does any separable metrizable space, for the restriction of such d to any
subspace of the Hilbert cube has the same property.

In [N3], Nagata asks if every metrizable space admits a metric such that each
B(e) is locally finite. (He uses the term “hereditarily closure-preserving” in place
of “locally finite”, but these notions are equivalent in the class of first-countable, in
particular metrizable, spaces.) In this note, we characterize the class N of metriz-
able spaces which admit such a metric as precisely the class of strongly metrizable
spaces, where a metrizable space X is strongly metrizable ifft X has a base which is
the union of countably many star-finite open covers, or equivalently (see [P], Propo-
sition 3.27), X is embeddable in k* x I¥ for some cardinal x, where I = [0, 1] and
k carries the discrete topology. This gives a negative answer to Nagata’s question;
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in particular, any space with a non-separable component, such as a hedgehog with
uncountably many spines, is not embeddable in K x I“ and hence does not admit
a metric such that each B(e) is locally finite.

2. MAIN RESULTS

We first show that it matters not if one changes the question by replacing “locally
finite” with “point-finite” or “star-finite”. (Recall that a collection U of subsets of
X is star-finite if each member of U meets only finitely other members.)

Lemma 1.1. Let (X,d) be a metric space, and € > 0. Then the following are
equivalent:
(a)
(b)
(c)
(d)

By(e) is locally finite;

Ba(e€) is point-finite;

Ba(e€) is star-finite;

There is a star-finite open cover U such that Ba(e) = {st(x,U) : x € X}.

Proof. That (c)=-(a)=-(b) is trivial, and (d)=-(b) is easy to check.

We now prove (b)=-(c), thereby establishing equivalence of (a)-(c). To this end,
suppose Bg(e) is point-finite. For each B € By(e), let C(B) = {r € B : B =
By(z,€)}; ie., C(B) is the set of centers of the ball B. Note that the C(B)’s
partition X. That (b)=>(c) is then immediate from the following two claims.

Claim 1. Fach B € Bg(€) meets at most finitely many C(B)’s. Suppose by way
of contradiction that z,, € C(B,)NB, n € w. Let € C(B). Then d(z,z,) < € for
all n, so since z,, € C(B,,) we have z € B,, for all n, contradicting (b).

Claim 2. FEach C(B) meets only finitely many B’s in Bg(e). To see this, suppose
x, € C(B)NB, for all n. Let y € C(B), and pick z, € C(By,). Then d(x,, z,) < ¢,
SO zp, € Bg(x,,€) = B. This implies d(y, z,,) < € for all n, whence y € B,, for all n,
again contradicting (b).

It remains to prove that (¢)=(d). Assume B,(e) is star-finite. Foreachp # q € X
with d(p, q) < e, let

U(p,q) = {B € Ba(e) : {p.q} C B}.

We first show that d(z,y) < e for any two points x,y € U(p, q). Clearly U(p, q) C
Ba(p,€) N Ba(g,€). Tt follows that p,q € By(z,€), whence y € U(p,q) C Ba(zx,e).
So d(z,y) < € as claimed.

Now let ' = {U(p,q) : p # q and d(p,q) < €}. Since each member of U’ is
a finite intersection of members of a star-finite collection, U’ is also star-finite. It
covers all non-isolated points, but possibly not all isolated points, so we let U =
U U{{x}: 2z e X\ulU'}), which of course is also star-finite. Consider any x € X.
By the previous paragraph, we have st(x,U) C Bgy(x,€). Suppose y € By(z,€)\{z}.
Then z,y € U(x,y) € U, soy € st(x,U). Thus st(z,U) = By(x,€), which completes
the proof. [

The proof of the next lemma is similar to the proof of the equivalence of 1.1(b)
and 1.1(c) and hence is omitted.

Lemma 1.2. Let (X,d) be a metric space, and € > 0. Then the following are
equivalent:
(a) Bale) is point-countable;
Ya
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Let NV be as defined in the introduction. We note the following easy lemma.
Lemma 1.3. N is closed under subspaces and countable products.

Proof. If the metric d witnesses that X € N/, clearly the restriction of d to any
subspace X’ witnesses that X’ € M. To prove closure under countable products,
suppose Xg, X1,... are in N/, witnessed by dy, dy,.... Let d,(z,y) be the minimum
of 1/2% and d;(z,y). It is easy to check that d; also witnesses that X; is in A/, and
that d(Z,y) = max;e, d}(z;,y;) witnesses that IL;c, X; € N. O

Since discrete spaces are obviously in A, and the Hilbert cube is in N/ by Nagata’s
result mentioned in the Introduction , it follows from Lemma 1.3 that, for any
cardinal k, any subspace of k* x [0,1]* is in N (where « has the discrete topology).
The next result, our main one, shows that this characterizes N.

Theorem 1.4. The following are equivalent for a metrizable space X :

(i) X € N, i.e., X admits a metric such that, for all € > 0, B(e) is locally
finite;
(ii) X admits a metric such that, for all e > 0, B(¢€) is point-finite;
(iii) X admits a metric such that, for all e > 0, B(e€) is star-finite;
(iv) X admits a metric such that, for all € > 0, B(€) is point-countable;
v) X admits a metric such that, for all € > 0, B(¢) is star-countable;

) There is a sequence of star-finite open covers G,, n < w, of X such that,
for each n, G,11 refines G, and, for each v € X, {st(x,G,) : n € w} is a
base at x.

(vii) There is a sequence of star-countable open covers G,, n < w, of X such
that, for each n, G,y1 refines G, and, for each x € X, {st(x,G,) : n € w}
15 a base at x.

(viii) X is homeomorphic to a subspace of k¥ x [0,1]¥ for some cardinal k.

(vi

Proof. By the previous lemmas, (i)-(iii) are equivalent, as are (iv) and (v). As
noted following the proof of Lemma 1.3, we also have (viii)=-(i). Furthermore, it is
clear that (iii) implies (iv),(v), and (vi), and (v) and (vi) both imply (vii). We now
prove (vii) implies (viii); the theorem then follows from this and the aforementioned
implications.

Let {G,}new satisfy condition (vii). For U,V € G,, define U ~,, V iff there
is a finite sequence Uy, Uy, ..., Uy of elements of G, with U = Uy, V = Uy, and
U;NU;11 # 0 for all i < k. Then each equivalence class [U],, is countable, and the
collection P,, = {U[U],, : U € G,} is a clopen partition of X. Since G, refines
Gn, Pny1 refines P,.

Let Py = Py = {Plo) : @ < Ky} for some cardinal xy. Then for each a < kg,
let Py = {P € P1: P C Py} = {Pap : B <k} for some cardinal . If
Plag,ar,an—1) = 1Paoar,an_1,an)  On < Klag,ay,...an_1) ) 15 defined, then let
P(ao,al,...,an> = {P € Pny1: P C P(Oéo,Oél,...,Otn>} = {P(ozo,al,...,an7a.,L+1> D Qppl <
K{ag,a1,..,an) - For each finite sequence o for which P, has been defined, select
G, € Gk, where k = |o| — 1, such that P, = U[G,]x. Let G, denote the equivalence
class [G,]x; since equivalence classes are countable, we may index G, by {G,; : j €
w}.

Let x be the supremum of all the defined x,’s. For any o € k<% for which P,
has not been defined, let P, = () = G,.. Note that for each n,
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Since X is metrizable, hence paracompact, there is a locally finite closed shrink-
ing {H(G) : G € G, } of G,,. For G € G, let fo : X — [0,1/2"] be continuous such
that fo(H(G)) ={1/2"} and fg(X \ G) ={0}. Let F,, = {fq: G € G, }.

Now we can define our desired embedding @, which will map X into k% x [¥*%,
Pick 2 € X. Then for each n, there is a unique o € "' with z € P,=. Note that
oy, extends o, so there is a unique 7% € x such that 7* [ (n 4 1) = o7 for all
n. Then let

9(.%‘) = {Tx} X {<fGTrr(k+1),j (x)>(k,j)6w><w}'

Let us check that 6 is one-to-one. Suppose =z # y, yet 6(z) = 6(y). Then
T =71Y¥ =7 € kY, ie., x and y are always in the same member of the partitions
Pn. Choose k sufficiently large so that y ¢ st(x,Gx), and choose G € Gj with
x € H(G). Then for some j, G = Grykt1),5, and fa ., (@) = 1/2F while
fG. i (y) = 0. Thus 6(x) and 6(y) differ on coordinate (k, j), contradiction.

Now we show that 6 is continuous. Let 6(x) = (01(x),02(x)), where 01(z) €
kY and O9(x) € I“*“. Suppose a sequence of points z,, n < w, converges to
r € X. Fix k € w. Then for sufficiently large n, x, € Pre(x4+1) and hence also
T [ (k+1) = 7" | (k+1). It easily follows from this that as n gets large,
01(xy,) (k) = 7" (k) converges to (in fact, is equal to) 01 (z)(k) = 77 (k) and that, if
we also fix j, 02(z,)(k, j) converges to O5(x)(k,j). Thus € is continuous.

It remains to prove that 6 is a homeomorphism onto its range. To this end, let
O be open in X; it will suffice to show that §(O) is relatively open in 6(X). Take
a point 0(x) € 6(0). We need to find a neighborhood V' of #(z) in k* x I“*“ such
that VN O(X) C 6(0).

Choose k sufficiently large so that st(z,Gx) C O. Let J = {j € w : x €
H (G2 (k+1),;)}; obviously, J is finite. Let € = 1/2% and let k' = k + 1. Then the
set

V={(21,22) €Y X I 129 | K =7" [ k' & Vj € J(|22(k,7) — 02(x)(k,5)| < €)}

is an open neighborhood of 0(z).

It remains to show V NO(X) C #(O). Suppose O(y) € VNO(X)\ 6(0). Then
y ¢ O. Since 0(y) € V, 7Y | (k+1) = 7" | (k+1). Let G € Gy, withz € H(G). Then
G € [Gre(ps1))k and 80 G = G 1oy (p41),; for some j; of course, j € J. Since y ¢ O,
y ¢ G. Thus 92(y)(k7=.7) = fGryr(k+1),j (y> = fG-rIr(k+1),j(y) = fG(y) = 0, while
02(x)(k,j) = fo(x) = 1/2%. But this contradicts 6(y) € V, and thus completes the
proof. [

Corollary 1.5. N is precisely the class of strongly metrizable spaces.

Remark. Recall that a space is strongly paracompact if every open cover has
a star-finite open refinement. It is well-known and easy to see that every strongly
paracompact metrizable space is strongly metrizable and hence, by our result, is in
N. But not every member of N is strongly paracompact; e.g., it is known [N3] that
wy x (0,1), which of course embeds in w x I and hence is strongly metrizable, is
not strongly paracompact.

We also remark that Y. Hattori [H] obtained another characterization of strongly
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3. AN EXAMPLE

By Lemma 1.1, the only way the collection of e-balls (e fixed) can be locally
finite is for this collection to be precisely the stars of some star-finite open cover.
Recall that Nagata showed that every metrizable space admits a metric such that
the collection of e-balls is closure-preserving by constructing a metric such that the
collection of e-balls is precisely the collection of stars of some locally finite open
cover. So it is natural to ask if this is the only way the collection of e-balls can be
closure-preserving. The following example shows that the answer is “no”.

Example. There is a metric space (X,d) such that, for every ¢ > 0, Bg(e) is
closure-preserving but there is no locally finite open cover G(€) with By(e) =

{st(z,G(€)) : x € X}.

Proof. Let the set X be w xR, viewed as a subset of the plane. For z,y € X, denote
the usual Euclidean distance between x and y by |x — y|. Then for x = (ng,r,)
and y = (ny,ry) in X, define d(x,y) to be |z — y| if x = y, or if n, # n,, or if
ng =ny =n and |z —y| > 1/2". Let d(z,y) = 1/2" otherwise. It is easy to check
that d is a metric on the set X, and that d generates the discrete topology on X.
So any collection of subsets of X is closure-preserving, in particular By(e).

Fix € > 0. We aim to show that By(e) cannot be precisely the collection of stars
of some locally finite open cover. To this end, choose n such that 1/2" < €, and
note that the trace of By(e) on {n} x R contains {{n} X (r — ¢,z + €) : z € R},
i.e., it contains all open intervals on {n} x R of length 2¢. Thus establishing the
following claim will complete the proof.

Clatm. There is no point-finite cover G of R such that every open interval of
length 2¢€ is the union of some finite subcollection of G.

Proof of Clatm. Suppose G is such a point-finite cover of R. Let z € R. There is
a finite subcollection G, of G such that UG, = (z — 2¢, z). Since G is point-finite, if
we let

2 = sup(U{G € G, : sup(G) < z})

then 2/ < z. Choose g, € Q between 2’ and 2. Pick G, € G, with ¢, € G,. Note
that sup(G,) = z, hence z # 2’ implies G, # G.,. But there must be g such that
q. = q for uncountably many z, contradicting point-finiteness of G at q. [
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