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1. Introduction

Classes of “generalized” metric or metrizable spaces are those which possess some
of the useful structure of metrizable spaces. They have had many applications in
the theory of topological groups, in function space theory, dimension theory, and
other areas. Even some applications in theoretical computer science are appearing–
see, e.g., the article by G.M. Reed in this volume.
In Gruenhage[1992], we discussed research activity in generalized metrizable

spaces and metrization which occurred primarily over the seven years previous to
the 1991 Prague Topological Symposium. Here we discuss activity in the ten years
since that time. Of course, there were too many results to include everything, so
this article is a quite imperfect selection of them, reflecting to some extent the
author’s interests, as well as his lack of expertise in certain areas. The article is
divided into sections on topics where most of the recent activity has occurred. In
the final section, we discuss a variety of open problems.
There are a number of sources for more basic information about the concepts

discussed here, e.g., Gruenhage[1984] in the Handbook of Set-theoretic Topology,
and several articles in the book Topics in Topology (Morita and Nagata[1989]).
Unless otherwise stated, all spaces are assumed to be regular and T1.

2. Metrics, metrizable spaces, and mappings

In our previous article, not much about metrizable spaces or metrics themselves
were discussed, but let us mention here a few results in this area that have a
set-theoretic topology flavor.
First, an outstanding result in the dimension theory of metrizable spaces was

obtained by Mrowka[1997][2000]. Mrowka constructed a metrizable space M
(he denoted it by νµ0) with ind M = 0, such that if the set-theoretic axiom
denoted by S(ℵ0) is assumed, then any completion of M contains an interval
(hence Ind M ≥ 1) , and further every completion of M2, which of course also
has small inductive dimension 0, contains the square, and hence Ind M2 ≥ 2. M2

is the first known metrizable space in which the gap between the small and large
inductive dimensions is at least 2. Kulesza[20∞] extended this to show that
every completion of Mn contains an n-cube, and hence the gap between these
dimensions can be arbitrarily large.
The only rub with these fascinating examples is that they are far from being

ZFC examples. The spaceM is constructed in ZFC, andM fails to be an exam-
ple under the continuum hypothesis! Furthermore, the axiom S(ℵ0) under which
M is an example is very strong. Dougherty[1997] showed S(ℵ0) is consistent
modulo large cardinals and has large cardinal strength. More specifically, its con-
sistency follows from the existence of the Erdös cardinal E(ω1 + ω) and implies
the consistency of E(ω).
Some interesting mapping theory questions of E. Michael were answered. A

continuous map f : X → Y is compact covering (resp., countable-compact covering)
every compact (resp., compact countable) subset L of Y is the image of some
compact subset K of X , and is inductively perfect if there is some X ′ ⊂ X such
that the restricted map f�X ′ is a perfect map of X ′ onto Y . Michael[1981] asks
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the following questions, which were repeated (in Problems 392 and 393) in his
article in the book Open Problems in Topology:
Suppose X and Y are separable metric spaces, and f : X → Y continuous.
(a) Suppose f is compact covering. Must f be inductively perfect if either (i)

Y is countable, or (ii) each f−1(y) is compact?
(b) If each f−1(y) is compact, and f is countable-compact covering, must f be

compact covering?
Debs and Saint Raymond([1996] and [1997]) give counterexamples to (a)(ii)

and (b), respectively2 (contradicting Theorem 2.4 in Just and Wicke[1994] and
Theorem 0.2 in Cho and Just[1994]). On the other hand, the answer to (a)(i)
is positive (Just and Wicke[1994]), even if the condition on Y is generalized to
σ-compact (Ostrovsky[1994]).
Of course, (a) is a special version of the more general question of when com-

pact covering maps between separable metric spaces must be inductively per-
fect, and it turns out that this can be the case if X is “nice” in a descriptive
set-theoretical sense. For example, it is known to be the case if X is Polish
Christensen[1973]Saint Raymond[1971-1973]. Under Analytic Determinacy,
it holds if X is absolutely Borel (Debs and Saint Raymond([1996]), but under
V = L, there is a counterexample where X is an Fσ-subset of the irrationals (Debs
and Saint Raymond([1999]).
Another question on compact covering maps, due to Michael and Nagami and

also appearing in Open Problems in Topology, was answered by H. Chen [1999].
Chen constructed a Hausdorff space Y which is the image of a metrizable space
under a quotient map with separable fibers, such that Y is not a compact covering
image of any metrizable space. His space Y is not regular; he asks if there can be
a regular example.
A space Y is called a connectification of a space X if X is dense in Y and Y

is connected. It is easy to see that if X has a compact open subset, then X has
no Hausdorff connectification. There seem to be no other obvious general condi-
tions which preclude spaces from having “nice” connectifications. Watson and
Wilson[1993] gave the first systematic study of when spaces have a Hausdorff
connectification. Included in this work, they show that every metrizable nowhere
locally compact space has a Hausdorff connectification. Alas, Tkachuk, Tka-
cenko andWilson[1996] then showed that every separable metrizable space with
no compact open sets has a metrizable connectifaction, and asked if this is true
in the non- separable case as well. This question was answered in the negative
by Gruenhage, Kulesza and Le Donne[1998], who gave a construction (due
primarily to Kulesza) of a metrizable space with no compact open sets which does
not have a metrizable, or even perfectly normal, connectification. It is also proven
there that nowhere locally compact metrizable spaces do have metrizable connec-
tifications. Whether or not every metrizable space with no compact open sets has
a Tychonoff connectification remains an open question.
Now we present a sampling of results about metrics with special properties.

Ultrametric spaces, also called non-Archimedean metric spaces, are metric spaces
with a distance d such that d(x, z) ≤ max{d(x, y), d(y, z)}. The metrizable s-

2This implies a negative answer to Michael’s question on triquotient maps mentioned in
Michael[1981]
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paces which admit such a metric are exactly those having covering dimension 0.
They have a long history and have found many diverse applications. Here we
mention recent results on universal (in the sense of isometry) ultrametric spaces.
Any universal space for ultrametric spaces of cardinality two must have cardinality
continuum. A. Lemin and V. Lemin[2000] constructed for every infinite cardi-
nal number τ , a universal ultrametric space LWτ with weight τ

ω . The Lemin’s
asked if their result could be improved for cardinals τ > c. This was answered
by Vaughan[1999], who showed that there is a subspace LW ′τ of LWτ which is
universal for ultrametric spaces of cardinality τ , and assuming the singular car-
dinal hypothesis, has weight τ whenever τ ≥ c (and in ZFC has weight τ for
an unbounded set of cardinals). It is unknown if this can be done in ZFC; if so,
apparently a different example would be needed.
Nagata[1983] showed that every metric space has a metric d such that, for

each ε > 0, the collection Bd(ε) of all ε-balls with respect to d is closure-preserving.
His method shows that for separable metric spaces Bd(ε) can be made finite. In
[1999] he asked if any metrizable space admits a metric d such that Bd(ε) is locally
finite. Gruenhage and Balogh[20∞] gave a negative answer by showing that
the class of metrizable spaces which admit a metric d such that Bd(ε) is locally
finite for all ε > 0 is exactly the class of strongly metrizable spaces, i.e., those
spaces which embed in κ× [0, 1]ω for some cardinal κ, where κ carries the discrete
topology.
Nagata has also asked if every metrizable space admits a metric d such that X

has a σ-locally finite (σ-discrete) base consisting of open d-balls. Hattori[1986]
has shown that the answer to the σ-locally finite question is positive; the σ-discrete
question is still unsettled.
“Midset” metric properties have been studied by several authors. The midset

between points x and y is the set of all z such that d(z, x) = d(z, y). Hattori
and Ohta[1993] showed that a separable metric space X is homeomorphic to a
subspace of the real line iff there exists a metric d for X such that the cardinality
of each midset is at most one, and for each x there are at most two points the same
distance from x. A metrizable space X is said to have the unique midset property
(UMP) if there is a metric d on X such that each midset has exactly one point.
Ito,Ohta and Ono[1999] showed that discrete spaces with the UMP are exactly
the ones of cardinality ≤ c other than 2 or 4. They also showed that the countable
power of any discrete space of size ≤ c has the UMP; hence, the Cantor set and
the irrationals have the UMP. But the question of Hattori and Ohta, whether any
separable metrizable space having the UMP must be homeomorphic to a subset
of the real line, remains open.

3. Networks

Recall that F is a network for a space X if x ∈ U , where U is open, implies
x ∈ F ⊂ U for some F ∈ F . A σ-space is a space with a σ-discrete network.
Spaces with a countable network are exactly the continuous images of separable
metric spaces, and are sometimes called cosmic spaces.
Delistathis and Watson[2000] made an important advance in the dimen-

sion theory of general spaces by constructing, under CH , a cosmic space X (in
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fact, X is the union of countably many separable metrizable subspaces) in which
dim X 6= Ind X . Of course, all three of the standard dimensions agree for separa-
ble metrizable spaces; this shows that they may differ for their continuous images,
and answers a question of Arhangel’skii. It was also known that the dimensions a-
gree for paracompact Hausdorff spaces which are µ-spaces, i.e., embeddable in the
countable product of paracompact spaces which are Fσ-metrizable (= the union of
countably many closed metrizable subspaces). So this is also a consistent example
of a cosmic space which is not a µ-space. Tamano[2001] later obtained a ZFC ex-
ample of a cosmic non-µ-space; and subsequentlyTamano andTodorcevic[20∞]
obtained rather natural examples by showing that for separable metric spaces X ,
Cp(X) is not a µ-space if X is not σ-compact. See Section 5 for the relevance of
these examples to the “stratifiable implies M1” problem.
I am a little embarrassed to mention that the definition of Σ-spaces (a general-

ization of σ-spaces) given in my article in the Handbook of Set-theoretic Topology
is incorrect, as was pointed out by Tamano[1997]. I had said that X is a Σ-space
if there are a cover C by closed countably compact sets and a σ-discrete collection
F of subsets of X such that, for any C ∈ C and open U with C ⊂ U , there is
F ∈ F with C ⊂ F ⊂ U . I should have replaced “σ-discrete” with “σ-locally
finite”, and required members of F to be closed. For the class of σ-spaces, i.e.,
where C can be taken to be the collection of singletons, these differences can be
ignored. However, Tamano showed that they can’t be ignored here by obtaining
an example which satisfies my definition, but is not a Σ-space. It is apparently not
known if my definition would have been equivalent to the original had I required
the members of F to be closed (but keeping “σ-discrete” in place of “σ-locally
finite”).
Cosmic spaces, which are exactly the Lindelöf σ-spaces, are properly contained

in the class of Lindelöf Σ-spaces, which can be characterized as the continuous im-
ages of perfect pre-images of separable metric spaces. One motivation for studying
Lindelöf Σ-spaces comes from Banach space theory. If X is Eberlein compact, then
Cp(X) is Lindelöf Σ. Indeed, the class of Gul’ko compacta is precisely the class
of compact spaces which have Lindelöf Σ function spaces and is an important
generalization of the class of Eberlein compacta.
Several questions of Arhangel’skii concerning Lindelöf Σ-spaces were answered.

Let Cp,1(X) = Cp(X), and Cp,n+1(X) = Cp(Cp,n(X)). Okunev[1993] showed
that if X and Cp(X) are Lindelöf Σ, then so is Cp,n(X) for all n > 0; hence a
compact spaceX is Gul’ko compact iff Cp,n(X) is Lindelöf Σ for some n ∈ ω\{0} iff
Cp,n(X) is Lindelöf Σ for all n ∈ ω\{0}. Tkachuk[2000] shows further that there
are exactly four possibilities for which Cp,n(X)’s are Lindelöf Σ: either this holds
for no n, for all n, or for exactly all even n, or exactly all odd n. He also shows that
if ω1 is a caliber of X (equivalently, Cp(X) has a small diagonal

3), or [2001] if X
has countable spread, then Cp(X) Lindelöf Σ implies X is cosmic. (Arhangel’skii
had obtained these results consistently.) Okunev and Tkachuk[2001] answered
another question of Arhangel’skii by showing that the aforementioned countable
spread result fails if this condition is weakened to p(X) = ω, i.e., every point-finite
open collection in X is countable. It is not known if Cp(X) Lindelöf Σ and ω1 a

3A space Y has a small diagonal if any uncountable subset Z of Y 2\∆ contains an uncountable
Z′ such that Z′ ∩∆ = ∅
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caliber for Cp(X) implies X cosmic.
Arhangel’skii (see Yaschenko[1994]) also asked the following question about

network properties in Cp(X), which is still open: Does Cp(X) a σ-space imply
that X and Cp(X) are cosmic?
Gruenhage[20∞] partially answered another question of Arhangel’skii by

showing that under CH a Lindelöf Σ-space with a small diagonal is cosmic. See
Problem 10 in the problems section for other results on small diagonals.
A stronger network notion is that of a k-network for a space X , i.e., a collec-

tion F of subsets of X such that, whenever K is compact and U is an open set
containing K, then K ⊂ ∪F ′ ⊂ U for some finite F ′ ⊂ F . k-networks have been
useful, among other things, in the study of certain kinds of images of metrizable
spaces (e.g., see my earlier surveys Gruenhage[1984] and [1992]). In the last ten
years, many results and examples concerning k-networks that are point-countable,
star-countable, compact-countable, and so forth have been obtained. Rather than
attempt to summarize them here, we refer the interested reader to the excellent
and very complete surveys of Y. Tanaka[1994][2001].

4. Monotone normality

The definition of monotonically normal, due to Heath, Lutzer, and Zenor, is prob-
ably what you would guess if asked to define “normal in a monotone way”. It
means that one can assign to each pair (H,K) of disjoint closed sets an open set
U(H,K) with H ⊂ U(H,K) ⊂ U(H,K) ⊂ X\K, so that H ⊂ H ′ and K ⊃ K ′

implies U(H,K) ⊂ U(H ′,K ′). Every metrizable space and every linearly ordered
space is monotonically normal.
Surely the most exciting recent development in this area is the proof of Rudin

[2001] that the compact monotonically normal spaces are precisely the continuous
images of compact ordered spaces. This answered a question of J. Nikiel. By an
earlier result of Nikiel and (independently) Treybig, it also implies the following
non-metric analogue of the Hahn-Mazurkiewicz theorem: X is a continuous im-
age of a connected ordered compact space iff X is compact, connected, locally
connected, and monotonically normal.
The earlier work ofWilliams and Zhou[1991][1998] on the structure of com-

pact monotonically normal spaces, which was discussed to some extent in Hušek
and van Mill[1992], has continued to play a role, in particular, the so-called
“Williams-Zhou” trees. The idea of these trees is part of the difficult proof of
Rudin’s result above, and the trees are used by Gartside[1997] in his thorough
study of cardinal invariants of monotonically normal spaces.
Another result of Rudin[1996] answered a question of Purisch; she constructed

a locally compact monotonically normal space which has no monotonically normal
compactification.
Some interesting results regarding products were obtained. Purisch and

Rudin[1997] showed that if X and Y are monotonically normal, and Y is count-
able, then X × Y is normal. They construct an example demonstrating that the
monotone normality assumption on Y is necessary.
Nyikos[1999] studied monotone normality in trees with the interval topology.

He shows that a tree is monotonically normal iff it is the topological sum of convex
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chains of the tree (hence of ordinal spaces); this generalizes a result proven by K.
P. Hart for ℵ1-trees.
A few more results about monotonically normal spaces are mentioned in the

next two sections, since they are related to the classes discussed there. Also, we
refer the reader to Collins[1996] for an excellent survey of monotone normality
up to 1996.

5. Stratifiable and related spaces

Ceder[1961] defined the class of M1 spaces to be those spaces which have a σ-
closure preserving base. He also definedM2 andM3-spaces, now known to be equal
and usually known as stratifiable spaces. A nice characterization of stratifiable
spaces is that they are exactly the monotonically perfectly normal spaces; i.e.,
to each closed set H one can assign a sequence Un(H) of open sets satisfying
H =

⋂
n<ω Un =

⋂
n<ω Un so that H ⊂ H

′ implies Un(H) ⊂ Un(H ′). They are
also exactly the class of monotonically normal σ-spaces.
The main question about stratifiable spaces remains open: are they the same

as M1-spaces, i.e., do they have a σ-closure-preserving base? There have been
a number of interesting advances and related partial results. Mizokami and
Shimane[2000a] improved Ito’s much earlier result that first-countable stratifi-
able spaces are M1 by proving that stratifiable k-spaces (or, equivalently in this
context, sequential spaces) are M1. Their result is a bit more general than that,
as follows:

5.1. Theorem. Suppose X is stratifiable and has the following property:
(∗) Whenever U is open and x ∈ U\U , there exists a closure-preserving collec-

tion F of closed subsets of X that is a net at x and F ∩ U = F for each F ∈ F .
Then X is an M1-space.

It is easy to see that Frechét spaces satisfy (∗): let F be the collection of tails
of a sequence in U converging to x (along with the limit x itself). Mizokami and
Shimane show that sequential stratifiable spaces satisfy (∗).4 The quite lengthy
proof of their main theorem involves using (∗) to build closure-preserving collec-
tions of various sorts until finally all can be put together to get the sought-after
σ-closure-preserving base.
Recently, this result has been improved byMizokami, Shimane and Kitamu-

ra [20∞], who showed that Theorem 5.1 holds with (∗) restricted to dense open
sets U .
We mentioned the class of µ-spaces in the section on networks. The examples

of Delistathis and Watson, and Tamano, mentioned there are the first known
examples of paracompact σ-spaces which are not µ-spaces. This is relevant here
because stratifiable spaces are paracompact σ-spaces, and it is known that all
stratifiable µ-spaces areM1, but it is not known whether all stratifiable spaces are
µ-spaces.
Gartside and others have looked, with some success, for “natural” classes of

spaces that are stratifiable. First, in a negative direction, Gartside[1998] proved

4In fact, one can use an induction on the sequential order of a point x with respect to U to
show more generally that regular sequential spaces with points Gδ satisfy (∗)

6



that a compact κ-metrizable (in the sense of Ščhepin[1980]; one may use Dugund-
ji compacta here instead) space with a dense monotonically normal subspace is
metrizable. Since Tychonoff cubes are κ-metrizable, and any linear subspace of
a product of lines can be re-embedded densely in a product of lines, and hence
densely in a compact κ-metrizable space, it follows that (i) Cp(X) is monotonically
normal (or stratifiable, or metrizable) iff X is countable, and (ii) a Banach space
in its weak topology is monotonically normal (or stratifiable, or metrizable) iff it
is finite dimensional. Results (i) and (ii) answer questions of Arhangel’skii and
Wheeler, respectively. In a more positive direction, Shkarin[1999] shows that the
locally convex direct sum of stratifiable locally convex spaces, as well as the strict
inductive limit of a sequence of metrizable locally convex spaces, is stratifiable
(see Robertson and Robertson[1964] for definitions of the functional analytic
terms used here).

Gartside’s result that Cp(X) is stratifiable if and only if X is countable was
proven independently by both Yaschenko[1994] and Sakai. On the other hand,
Gartside and Reznichenko[2000] show that for Ck(X), the space of continuous
real-valued functions on X with the compact-open topology, the situation is quite
different:

5.2. Theorem. Let X be a Polish space (i.e., complete separable metric). Then
Ck(X) is stratifiable.

This result provides us with a very natural class of stratifiable spaces. It is
interesting that the proof gives no clue as to whether or not these function spaces
are in general M1. In particular, it is not known if Ck(P), where P is the space of
irrationals, isM1. In unpublished results, Gruenhage and Balogh have shown that
there is no σ-closure-preserving base consisting of finite unions of standard basic
open sets, and K. Tamano showed that standard basic open sets cannot witness
another base property known to imply that the space is a µ-space (and henceM1).

It is also not known if Ck(X) for other separable metric spaces X are stratifi-
able; deciding whether or not Ck(Q) is stratifiable is probably key here.

Besides function spaces, spaces of subsets with the Vietoris topology were stud-
ied by several researchers. It follows easily from classical results that the hyper-
space of all (non-empty) closed sets is monotonically normal, stratifiable, or cosmic
iffX is compact metric. Fisher, Gartside, Mizokami and Shimane[1997] show
that the space F(X) of all finite subsets of X is monotonically normal iff X2 is
monotonically normal iff (by Gartside’s result mentioned in the next section) Xn

is monotonically normal for all n < ω, and thereby obtain as a corollary the result
of Mizokami and Koiwa[1987] that F(X) is stratifiable iff X is. Furthermore,
they show that the space K(X) of all compact subsets of X is stratifiable if it
is monotoncially normal and every non-empty open set in X contains an infinite
compact set.

Guo and Sakai[1993] showed that if X is a connected CW-complex, then the
space of compact (resp. compact connected) subsets of X is an absolute retract
(AR) for the class of stratifiable spaces. Cauty, Guo and Sakai[1995] showed
that the space of non-empty finite subsets ofX is an absolute neighborhood retract
(resp., AR) for stratifiable spaces iff X is stratifiable and 2-hyper-locally connected
(resp., and connected). In the negative direction, Cauty[1998] obtained a result
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implying that none of the classical characterizations of ANR’s for metrizable spaces
extend in general to the class of stratifiable spaces.
A long and difficult argument of Sipacheva[1993] shows that the free abelian

group of a stratifiable space is stratifiable. Arhangel’skii’s question whether the
same result holds in the non-abelian case remains unsolved. In any case, Sipache-
va’s result shows that any stratifiable space can be embedded as a closed subspace
of a stratifiable abelian group.
Kubiak[1993] characterized monotonically normal spaces in terms of the inser-

tion of a continuous function between upper and lower semi-continuous functions.
Specifically, X is monotonically normal iff X has the monotone insertion property,
i.e., for every pair (f, g) of real-valued functions onX with f upper semi-continuous
and g lower semi-continuous, and f(x) ≤ g(x) for all x ∈ X , one can assign a con-
tinuous function λ(f, g) on X with f(x) ≤ λ(x) ≤ g(x) for all x, and f ≤ f ′, g ≤ g′

implies λ(f, g)(x) ≤ λ(f ′, g′)(x) for all x.
Lane, Nyikos and Pan[20∞] showed that also requiring λ(x) to be strictly

between f(x) and g(x) for all x with f(x) < g(x) characterizes stratifiablity; Good
and Stares[2000] show that stratifiability is also characterized by requiring this
strict betweenness only for those pairs (f, g) with f(x) < g(x) for all x ∈ X . 5

6. Some higher cardinal generalizations

Some interesting work has been done on higher cardinal generalizations of metriz-
able and stratifiable spaces, and related classes. A space X is non-archimedean if
it admits a base which is a tree of open sets under reverse inclusion. If each level
of such a tree base covers X , and the height of the tree has uncountable cofinality
ωµ (i.e., µ > 0), then X is ωµ-metrizable. A space X with topology T is said to
be stratifiable over the cardinal ωµ if for each open set U , U can be written as the
increasing union of open subsets U(α), α < ωµ, whose closures are also contained
in U , such that U ⊂ U ′ implies U(α) ⊂ U ′(α) for each α < ωµ. If X is stratifiable
over some cardinal, X is called linearly stratifiable, and is ωµ-stratifiable if ωµ is
the least cardinal over which it is stratifiable. If X is ωµ-stratifiable and each
point has a totally ordered local base, X is ωµ-Nagata. ωµ-metrizability implies
ωµ-Nagata implies ωµ-stratifiable.
See Vaughan[20∞] for a nice discussion of the above classes of spaces, along

with other characterizations of them and examples illustrating their differences.
He shows there that ωµ-Nagata spaces are ultraparacompact (for µ > 0 of course);
it is apparently not known if the same is true for ωµ-stratifiable spaces. He also
shows that, unlike ωµ-metrizable spaces, ωµ-Nagata spaces need not have an ortho-
base (i.e., a base B such that for any B′ ⊂ B, either ∩B′ is open, or ∩B′ is a single
point and B′ is a base at that point). Vaughan’s original argument [1972] that
linearly stratifiable spaces are paracompact turned out to have a gap, which is
filled here, though it was earlier fixed in a slightly different way by Harris[1991]
(who was the one who noticed the gap).

5The above insertion results should be compared with classical results of Katetov and Tong,
Michael, and Dowker, asserting that the existence of at least one continuous function between
pairs as above characterizes normal spaces, perfectly normal spaces, and normal and countably
paracompact spaces, respectively.
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An interesting result of Stares and Vaughan[1996] shows that the space 2ω1

with the countable box topology is an ω1-metrizable topological group without the
Dugundji extension property. This demonstrates that certain results claimed by
van Douwen and Borges, namely, that the Dugundji extension property holds for
ωµ-metrizable and linearly stratifiable spaces, respectively, are false.
A non-archimedean space can equivalently be described as a space with a rank 1

base B; i.e., B,B′ ∈ B and B∩B′ 6= ∅ implies either B ⊂ B′ or B′ ⊂ B. X is proto-
metrizable if X has a rank 1 pair-base B, i.e, B = {B = (B1, B2) : B ∈ B} such
that (i) B1 is open; (ii) B1 ⊂ B2; (iii) x ∈ U , U open, implies x ∈ B1 ⊂ B2 ⊂ U
for some B ∈ B; and (iv)B,B′ ∈ B and B1 ∩ B′1 6= ∅ implies either B1 ⊂ B

′
2 or

B′1 ⊂ B2.
All of the classes of spaces discussed in this section are hereditarily paracompact

and monotonically normal. Gartside[1999] proved thatX2 monotonically normal
implies Xn is monotonically normal and hereditarily paracompact for all n < ω,
and under some further assumptions is linearly stratifiable. On the other hand,
he constructs a non-linearly stratifiable topological group every finite power of
which is monotonically normal. Cammaroto[1994] obtains a related result: X is
ωµ-stratifiable iff X × Y is monotonically normal for every ωµ-metrizable Y .
Gartside andMoody[1993] characterized proto-metrizable spaces as “mono-

tonically paracompact” spaces, and Junnila and Kunzi[1993] characterized them
as those spaces which are both monotonically normal and “monotonically ortho-
compact”. Here, a space X is monotonically paracompact if one can assign to each
open cover U a star-refinement µ(U) such that V refines U implies µ(V) refines
µ(U); monotonic orthocompactness, which we will not define here, has a bit more
complicated definition in terms of “transitive neighbornets”. We should mention
that Gartside and Moody also characterize ωµ-metrizable topological groups.
A class of spaces related to the above classes is the class of elastic spaces,

due to H. Tamano and Vaughan[1971]. Gartside and Moody[1992] showed
that every elastic space has the “well-ordered F” property (called “well-ordered
point-network” in Gruenhage[1992]); recall that well-ordered F spaces are also
monotonically normal and hereditarily paracompact. Later [1997a], they showed
that every protometrizable space is elastic, and in [1997b] they obtained a coun-
terexample to a long-standing conjecture of Tamano and Vaughan by constructing
an example of a perfect image of an elastic space which is not elastic.

7. Moore and developable spaces

Recall that a space X is developable if there is a sequence Gn, n < ω, of open
covers such that, for every x ∈ X , {st(x,Gn) : n ∈ ω} is a base at x. A Moore
space is a regular developable space.
Shakhmatov, Tall and Watson[1996] showed that it is consistent for there

to be a normal Moore space which is not submetrizable (i.e., it has no weaker
metrizable topology). Tall[1994] shows that there are also models of set theory
in which there is a non-metrizable normal Moore space and a non-submetrizable
countably paracompact Moore space, yet every normal Moore space is submetriz-
able.
There have been other results related to countable paracompactness in Moore
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spaces. Knight[1993] used a complicated forcing argument to obtain (consistent-
ly) a subset ∆ of the real line which is a ∆-set but not a Q-set, where A ⊂ R is
a ∆-set if for every decreasing sequence of subsets An, n < ω, of A with empty
intersection, there are open subset Un ⊃ An such that

⋂
n∈ω Un = ∅. It follows

that it is consistent that there is a separable countably paracompact non-normal
Moore space (namely, the tangent disk space over ∆).
A space is δ-normal if every pair of disjoint closed sets, one of which is a

regular Gδ-set, can be separated by disjoint open sets. Good and Tree[1994],
answer a question of Nyikos by constructing a δ-normal Moore space Y which is
not countably paracompact (recall that normal Moore spaces must be countably
paracompact). It is also the case that Y × [0, 1] fails to be δ-normal.
Laberge[1999] answered a question of Tall by constructing a consistent ex-

ample of a normal Moore space in which every open cover of cardinality ℵ1 has
a locally finite open refinement, but not every open cover of cardinality ω2 does.
(Tall did not include the Moore property in the statement of his question.) The
continuum hypothesis holds in the model, and the example has the property that
every countable-to-one pre-image of the space is normal.
A π-base for a space X is a collection P of non-empty open sets such that every

non-empty open set in X contain a member of P . G. M. Reed had shown long
ago that a Moore space has a σ-discrete π-base iff it can be densely embedded
in a developable T2-space with the Baire property, and asked if “developable T2-
space” could be replaced with “Moore space”. This question appears as Problem
303 in the book Open Problems in Topology. D. Fearnley[1999] answered the
question in the negative by constructing a Moore space with a σ-discrete π-base
which cannot be densely embedded in any Moore space with the Baire property.
Gartside, Good, Knight and Mohamad[2001] have answered a couple of

questions of P. Nyikos by constructing a quasi-developable (defined like devel-
opable, except that the Gn’s need not be covers) manifold with a Gδ-diagonal
which is not developable, and a consistent example which is also countably meta-
compact. Tree andWatson[1993] answer questions of Reed by constructing two
non-metrizable Moore manifolds, one of which is pseudonormal, while the other,
done under CH , is pseudocompact.
“Property (a)” is a property which had its origins in the theory of countably

compact spaces and appears close to normality. X has property (a) if for every
open cover U of X and every dense subset D of X , there is a closed discrete subset
F of D such that st(F,U) = X . Rudin, Stares and Vaughan[1997] proved that
monotonically normal spaces have property (a). Matveev [1997] showed that
separable Moore spaces having property (a) are metrizable. However, this does
not carry over to the non-separable case, as Just, Matveev and Szeptycki
[2000] show that in ZFC there is a non-metric Moore space having property (a).

8. Bases with certain order properties.

There has been some interesting work done on weakly uniform bases and related
properties. Recall that a base B is weakly uniform if the intersection of any infinite
subcollection of B is either empty or a singleton. Also, a base B is uniform (resp,
sharp) if every infinite subfamily is a local base (resp., subbase) at each point of
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its intersection. Sharp bases were introduced by Alleche, Arhangel’skii and
Calbrix[2000]. Note that if a base is sharp, it is also weakly uniform. A weak
uniform base could reasonably be (and now is) also called 2-in-finite, since any
two distinct points are in only finitely many members of the base. Similarly, a
point-countable base might be called “1-in-countable”. This leads to the notions
of n-in-finite, ω-in-countable, and so forth.

Motivating some of the results here is an old question ofHeath and Lindgren
[1976] : Does every first-countable space with a weakly uniform base have a (pos-
sibly different) point-countable base? In other words, does the existence of a 2-
in-finite base along with first-countability imply the existence of a 1-in-countable
base? Put in those terms, it shouldn’t be too surprising that some interesting
combinatorics get involved. Old partial results of Davis, Reed and Wage[1976]
say that there is a counterexample under MA(ω2), though the answer is positive
in ZFC if there are not more than ℵ1-many isolated points.

Here are some interesting new results. Arhangel’skii, Just, Reznichenko
and Szeptycki [2000] show that a space with a sharp base has a point-countable
base, generalizing the corresponding known (and easy) result for uniform bases.
They also show, under CH , that every first-countable space with a weakly u-
niform base and no more than ℵω-many isolated points has a point-countable
base. Balogh, Davis, Just, Shelah and Szeptycki[2000] obtain a stronger
(topological) result, which in particular eliminates any condition on the number
of isolated points, by introducing the axiom CECA, which is equivalent to GCH
plus a bit of �λ for singular λ and thus follows from V = L. They show that the
following holds under CECA: X has a point-countable base if it is first-countable
and has a base B such that, for every infinite subset A of X , some finite subset
of A is included in only finitely many members of B. Note that the stated base
condition is weaker than n-in-finite for any fixed n.

In the paper of Alleche et al above, an example of a non-developable space
with a sharp base is given. In Arhangel’skii et al it is asked whether a pseudo-
compact space with a sharp base must be metrizable (this is known to be the case
if “sharp” is strengthened to “uniform”). Good, Knight and Mohamad[20∞]
answer this in the negative; their counterexample has the additional property that
its product with the unit interval fails to have a sharp base, which answers a
question of Alleche et al.

Balogh and Gruenhage[2001] generalize the classical result that compact
spaces with a point-countable base are metrizable, by showing that compact spaces
with an ω-in-countable base are metrizable. They also show that the corresponding
statement for countably compact spaces is independent of ZFC. Generalizing
results of Peregudov, and Burke and Davis, they show that a locally compact
space is metrizable if it has an n-in-countable base, or, provided it has no isolated
points, if it has a c-in-countable base.

Balogh, Bennett, Burke, Gruenhage, Lutzer and Mashburn[2000]
study the notion of an open-in-finite (OIF) base B, i.e., every non-empty open set
is contained in at most finitely many members of B. They show that a base B is
uniform iff the restriction of B to any subspace Y is an OIF base for Y . They
also show, among other things, that every space is an open perfect image as well
as a closed subset of a space with an OIF base, and give an example of a space
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with a point-countable base and an OIF base which is not quasi-developable.
Bennett and Lutzer[1998a] study several of these base properties in ordered

spaces. They show that a linearly ordered space has a point-countable base iff it
has an ω-in-countable base. They also show that a generalized ordered space has a
weak uniform base iff it is quasi-developable with a Gδ-diagonal, and is metrizable
iff it has an OIF base iff it has a sharp base.
There have been some results on products involving point-countable bases.

Zhu[1993] showed that if X is a metalindelöf Morita P -space (see Section 9 for
the definition), and Y has a point-countable base, then X×Y is metalindelöf. Al-
ster and Gruenhage[1995] showed that the same holds if X is a paracompact
monotonically normal space, part of the motivation here being the corollary that
there can be no monotonically normal counterexample in ZFC to Michael’s ques-
tion whether the product of a Lindelöf space with the irrationals must be Lindelöf.
(A Lindelöf version of the Michael line is a monotonically normal counterexample
which exists under CH , or more generally, under b = ω1.) Zhu also showed X×Y
is metalindelöf in case X and Y are metalindelöf and Y is a strong Σ-space.
Balogh([20∞a], [20∞b]) obtained some interesting reflection theorems re-

garding point-countable bases. He showed that for spaces of density not greater
than ℵ1, if every subspace of cardinality ω1 has a point-countable base, then so
does the whole space. A very interesting question is whether or not this can be
consistently true, for first-countable spaces, without the density restriction (it is
known to be consistently false). Balogh also proved that under the so-called Axiom
R of Fleissner, a locally compact space is metrizable if every subspace of cardinali-
ty ω1 has a point-countable base. (Compare with Dow’s ZFC theorem [1988]that
compact space is metrizable if every subset of cardinality ℵ1 is metrizable.)

9. Normality in products.

A most exciting development here is the solution by Larson and Todorcevic of
the following long-standing problem of Katetov [1948]: If X2 is compact and
hereditarily normal, must X be metrizable? Katetov had shown the answer to be
positive if X3 is hereditarily normal. Nyikos discovered a counterexample under
MA(ω1), and Gruenhage under CH . The question remained whether or not there
is a consistent positive answer.
The difficulty in the problem lay in the fact that certain consequences of CH

simultaneously with certain consequences of MA(ω1) appeared to be needed to
solve it. In particular, it is (in effect) shown inGruenhage andNyikos[1993] that
a model with no Q-sets and no S− or L− subspaces of first countable compacta
would be a model in which the answer to Katetov’s question is affirmative. Larson
and Todorcevic [20∞] succeeded in constructing such a model. To get their
model, they take a model M in which there is a “coherent” Souslin tree S such
that MA(ω1) holds for all posets P such that P × S is ccc. (Such models were
already known to exist.) They prove that in the model obtained from M by
forcing with S, there are no Q-sets (in fact, there are no Q-sets in any model
obtained by forcing with a Souslin tree), and that also (here is the most difficult
part of the argument) a certain partition relation holds which implies that the
hereditary Lindelöf property and the hereditary separable property are equivalent
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in subspaces of first countable compacta.
It is not difficult to observe that in a model with no Q-sets and no S- or

L- subspaces of first countable compacta, e.g., the Larson-Todorcevic model, any
compact space X such that X2\∆ is perfectly normal must be metrizable; this
answers a question mentioned in Gruenhage and Nyikos[1993]. However, Przy-
musinski’s problem whether there are ZFC examples of non-metrizable compact
X and Y such that X × Y is perfectly normal is still open.
Another old problem involving normality in products was solved by Z. Balogh.

Morita long ago characterized the spaces X such that X × Y is normal for every
metric space Y ; such X are now called (Morita) P-spaces. Morita also stated the
following three problems:
(1) Must X be discrete if X × Y is normal for any normal space Y ?
(2) Must X be metrizable if X × Y is normal for any normal P-space Y ?
(3) Must X be metrizable and σ-locally compact if X × Y is normal for any

countably paracompact normal space Y ?
In Gruenhage[1992], we reported that M. Atsuji and M.E. Rudin had an-

swered (1) affirmatively in ZFC, and that K. Chiba, T. Przymusinski, and Rudin
had answered (2) and (3) affirmatively assuming V = L. Now, Balogh[2001] has
used extensions of the idea of his recent ZFC Dowker space construction to give
affirmative answers to (2) and (3) in ZFC.
Motivated by normality of product questions, Junnila and Yajima[1998] in-

troduce some new classes of spaces defined by special networks. One such class is
the class of LF -netted spaces, which are spaces X having a σ-locally finite network
F such that, for every closed H ⊂ X , the collection {F ∈ F : F ∩H 6= ∅} is locally
finite at each point of X \H . They show that if X is LF -netted and Y normal and
countably paracompact, then X × Y is normal iff countably paracompact. Since
metric spaces are LF -netted, this extends classical results of Morita, and Rudin
and Starbird. Since Mizokami and Shimane[2000b] show that every Lašnev s-
pace, i.e., closed image of a metric space, is LF -netted, it also generalizes a result
of Hoshina. It is not known if every stratifiable space, or stratifiable µ-space, is
LF -netted, though stratifiable Fσ-metrizable spaces are.

6

Next we mention an interesting result on normality in Σ-products, where X is
a Σ-product of the the spaces Xα α < κ, if there are pα ∈ Xα such that

X = {~x ∈ Πα<κXα : |{α : xα 6= pα}| ≤ ω}.

Recall that Gul’ko and Rudin independently proved that any Σ-product of metriz-
able spaces is normal. There is by now a whole theory of normality in Σ-products
inspired by this result. One of the more interesting open problems, due to Ko-
dama and mentioned in my earlier survey Gruenhage[1992], is whether or not
the Gul’ko-Rudin theorem holds for the wider class of Lašnev spaces. There is now
a consistent negative example, essentially due to P. Koszmider and appearing in
Eda, Gruenhage, Koszmider, Tamano and Todorcevic[1995]. Sequential
fans are key in this result. The sequential fan with κ-many spines, denoted by
S(κ), is the (Lašnev) space obtained from the topological sum of κ-many conver-
gent sequences by identifying their limit points. Since the space ω1 of countable

6Mizokami recently announced that stratifiable µ-spaces are LF -netted.
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ordinals appears as a closed subspace in any uncountable Σ-product of non-trivial
T1-spaces, the product S(ω2)

2 × ω1 is a closed subspace of a Σ-product of Lašnev
spaces. Koszmider constructs a model in which this product is non-normal. On
the other hand, he shows that this product is normal under MA(ω2) and the
negation of Chang’s Conjecture. It is still open if there are ZFC examples of non-
normal Σ-products of Lašnev spaces. In particular, it is not known if S(2c)2 × ω1
is non-normal in ZFC.

10. Sums of metrizable subspaces

Tkachuk[1994] defines a property P to be weakly n-additive if X has P when-
ever Xn is the union of at most n subspaces having property P. He showed
many properties–most of them local properties such as first-countability and local
compactness–are weakly n-additive for finite n. He also showed that metrizabil-
ity is weakly n-additive for finite n in the class of compact or ccc spaces. He
asked if metrizability is weakly n-additive in general. Balogh, Gruenhage and
Tkachuk[1998] show that the answer is positive for pseudocompact spaces, but
negative in general. Any “ladder space” X on the countable ordinals is a coun-
terexample; indeed, Xn is the union of two metrizable subspaces for any finite n.
Independently, Ohta and Yamada[1998] obtained another example.
Tkachuk’s investigation was motivated by an old question of Arhangel’skii. To

put it in the above terminology, it asks whether metrizability is weakly ω-additive,
i.e., must X be metrizable if Xω is the union of countably many metrizable sub-
spaces? Tkacenko had shown that the answer is positive for separable or countably
compact spaces, and Tkachuk showed it to be the case if Xω is the union of finitely
many metrizable subspaces. However, Gruenhage[1997] answered the question
in the negative by showing that any ladder system space on ω1 in which the set
of non-isolated points is Gδ (such spaces can easily be constructed in ZFC) is a
counterexample.
In another direction, Ismail and Szymanski[1995],[1996],[2001] have a series

of papers in which they investigate the metrizability number m(X) of a space
X ; m(X) is the least cardinal κ such that X is the union of κ-many metrizable
subspaces. They obtain nice structure theorems for locally compact X whenm(X)
is finite; e.g., in this case X must have a dense open metrizable subspace whose
complement has smaller metrizability number. From their structure theorems,
they easily conclude that, in the finite case, the metrizability number of a locally
compact space cannot be raised by a perfect mapping. It is not known if this
remains true for infinite metrizability numbers, even if the domain is compact (in
particular, the case m(X) = ω is unsettled).
We take the opportunity to mention here an old unsolved problem on metriz-

ability number due to van Douwen, Lutzer, Pelant and Reed[1980]: Is
m(X) ≤ c whenever X has a point-countable base?

11. Open problems.

In this section we give a selection of several open problems. In some cases, there
are recent partial results to be mentioned that didn’t conveniently fit into previous
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categories. That is one purpose; another is to show the rich variety of interesting
questions that remain, and thereby, I hope, stimulate further research in general-
ized metric spaces and metrization. Some of these questions have appeared in my
previous article [1992], and in one case earlier in this article. One is completely
new. None are due to me originally.

1. Are stratifiable spaces M1?

This question of Ceder from 1961, the oldest one on my list, was discussed in
detail in Section 5; in particular, Ck(ω

ω) was suggested as a potential counterex-
ample.

2. Is it consistent that there are no symmetrizable L-spaces?

This is a problem of Arhangel’skii dating back to 1966. Recall that a function
d : X ×X → [0,∞) is a symmetric on X if d(x, y) = d(y, x) and d(x, y) = 0 ⇐⇒
x = y. Then a space X is symmetrizable if there is a symmetric d on X such that U
is open inX iff for each x ∈ U , there is some ε > 0 such that the ε-ballB(x, ε) about
x is contained in U . (Note: As d need not satisfy the triangle inequality, B(x, ε)
itself need not be open.) Shakhmatov [1992] obtained a consistent example of a
symmetrizable L-space by forcing, but no ZFC example is known.

Next we list three problems which would take finding a certain Dowker space (or
prove such a Dowker space cannot exist) to answer. In each case, without further
assumptions on the space, there are no consistent theorems or counterexamples.
I.e, the solution, for all we know, could go either way, in ZFC!

3(a). Is there a symmetrizable Dowker space?

(b). Suppose X is normal, and the union of countably many open
metrizable subspaces. Must X be metrizable?

(c). Is every normal space with a σ-disjoint base paracompact?

Problem 3(a) is due to S. Davis. A positive answer would imply a negative
answer to an old question of E. Michael: Must every point of a symmetrizable
space be Gδ? 3(b) is one of Mike Reed’s favorite problems. In unpublished work,
Reed has shown the answer is positive for spaces of weight less than b, and has
constructed a regular non-developable space which is the increasing union of open
metrizable subspaces. And 3(c) is one of Mary Ellen Rudin’s favorites. A coun-
terexample to 3(b) is easily seen to be a counterexample to (c) too.

4. (The point-countable base problem.) Does a space X have a
point-countable base iff X has a countable open point-network?

This problem is due to Collins, Reed, and Roscoe. The property “countable
open point-network”, also called “open(G)”, means that one can assign to each
x ∈ X a countable open base B(x) for x such that, whenever a sequence of points
xn converges to x, then

⋃
n∈ω B(xn) contains a base at x. It is easily seen that

a space with a point-countable base B has a countable open point-network (let
B(x) = {B ∈ B : x ∈ B}). It is known that the answer to Question 4 is “yes” for
spaces of density ℵ1, so a positive answer (necessarily consistent) to the reflection
problem mentioned in Section 8 would give a consistent positive answer to this
one. See Collins, Reed and Roscoe[1990] for more insight and partial results
related to this problem.

5. If every ℵ1-sized subspace of a first-countable space X is metriz-
able, must X be metrizable?

This reflection problem, a version of a problem due to P. Hamburger, was also
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mentioned in Gruenhage[1992], where further information can be found. Except
for Balogh’s related results on point-countable base reflection (see Section 8), I
know of no progress since then.
6. Is Arhangel’skii’s class MOBI preserved by perfect mappings?
Recall that MOBI is the smallest class of spaces containing all metrizable s-

paces, and closed under open compact images. The above problem is the only one
still open of those mentioned in Arhangel’skii’s classic survey [1966]. However,
it is still open at least in part because some other fundamental questions about
MOBI remain unsolved, especially whether or not there is some positive integer
n such that every space X is MOBI is “nth-generation”, i.e., there is a metriz-
able space M and a sequence f1, f2, ...fn of open compact mappings such that
X = fn ◦ fn−1...◦ f1(M). Indeed, it is possible, perhaps likely, that such an n, if it
exists, can be 2, as this is the case in a very natural way for every known example.
See my earlier survey [1992] for more information.
Part of the motivation for MOBI was the search for “nice” classes of spaces

which generalized metrizable ones; part of the definition of “nice” included p-
reservation under various standard topological constructions. Now we state a new
question of this sort, asked of the author in a recent private communication by E.
Michael.
7. Is there a class of spaces (and if so, describe it) which:
(i) contains all metrizable spaces;
(ii) is closed under the taking of closed subspaces, closed images,

perfect pre-images, and countable products; and
(iii) is contained in the class of paracompact spaces?
If one only asked for preservation under perfect mappings, then the class of

paracompact p-spaces (i.e., the class of all perfect pre-images of metrizable spaces)
would satisfy all the conditions. The required class of course must contain all
paracompact p-spaces, but also Lašnev spaces (=closed images of metric spaces).
Both Lašnev and paracompact p-spaces are subclasses of the class of paracompact
Σ-spaces, which satisfies all conditions except preservation under closed maps. The
somewhat wider class of paracompact Σ#-spaces7 is closed under closed maps,
and it would work if paracompactness were countably productive in the class of
Σ#-spaces. But that is an unsolved problem! In fact, it is not known if X,Y
paracompact Σ# implies X × Y is paracompact (it is Σ# ).
Another approach to the question might be to consider the smallest classM#

containing all metrizable spaces and closed under the operations mentioned in (ii).
ThenM# is contained in the class of Σ# spaces. The question becomes: Is every
member ofM# paracompact? If the answer is affirmative, one would also like an
internal characterization ofM#. I don’t know if there is a paracompact Σ#-space
which is not inM#.
8. Is there in ZFC a non-metrizable perfectly normal non-archimedean

space?”
Recall that X is non-archimedean if it has a base which is a tree of open

sets under reverse inclusion. A Souslin tree implies a consistent counterexample
(namely, the “branch space” of a Souslin tree). Qiao and Tall[20∞] proved

7Σ#-spaces are defined like Σ-spaces were in Section 3, except that the collection F is assumed
to be only σ-closure-preserving instead of σ-locally finite.
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that this problem, originally due to Nyikos, is actually equivalent to the following
problem of Maurice: “Does every perfect (= closed sets are Gδ) linearly ordered
space have a σ-discrete dense set?” See Lutzer’s article in this volume for more
information.
There is a more general question, which is due to Mike Reed and came out of

research from the ’60’s and ’70’s on dense metrizable or dense Moore subspaces,
which is also unsolved:
9. Is there in ZFC a regular perfect first-countable space with no

σ-discrete dense subset?
This question seems to be unsolved even without the “first-countable” assump-

tion. Note that L-spaces do not have σ-discrete dense sets. But it’s consistent
that there are no first-countable L-spaces, and may be consistent that there are
no L-spaces in general, though this is still unsettled.
10. Is there a non-metrizable compact space with a small diagonal?
This is an old problem of Hušek. As was reported in my previous survey,

results of Hušek, Dow, and Jushasz and Szentmiklossy show that the answer is
“no” under CH or if Cohen reals are added to a model of CH . Gruenhage[20∞]
answered questions of Zhou and Shakhmatov by showing that the same question for
countably compact spaces is independent of ZFC. A deep result of Eisworth and
Nyikos[20∞] about the consistency with CH of countably compact non-compact
first-countable spaces containing a copy of the countable ordinals (which does
not have a small diagonal) implies the positive result. Pavlov[20∞], answered
one of my questions by showing that, under ♦∗, there is a perfect pre-image
of ω1 with a small diagonal; together with my positive result above, this showed
independence of the countably compact question with ZFC+CH . Pavlov also has
shown that the negation of CH implies that there is a Lindelöf space with a small
diagonal but no Gδ-diagonal. Gruenhage also showed that there are consistent
examples of hereditarily Lindelöf, consistent with CH examples of Lindelöf, and
ZFC examples of locally compact spaces having a small diagonal but no Gδ-
diagonal.
We should also mention that Arhangel’skii and Bella[1992] showed that

CH implies that every Lindel”of p space (i.e., every perfect pre-image of a sep-
arable metrizable space) with a small diagonal is metrizable, and Bennett and
Lutzer[1998b] answered one of their questions by obtaining a ZFC example of a
paracompact p-space (i.e., a perfect pre-image of a metrizable space) with a small
diagonal which is not metrizable. See Lutzer’s article in this volume for more
details.
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Katětov, M.

[1948] Complete normality of Cartesian products. Fund. Math. 35, 271-274.

Knight, R. W.

[1993] ∆-sets. Trans. Amer. Math. Soc. 339 (1), 45-60.

Kubiak, T.

[1993] Monotone insertion of continuous functions. Questions Answers Gen.
Topology 11 (1), 51-59.

Kulesza, J.

[20∞] Some new properties of Mrówka’s space µν0. Proc. Amer. Math. Soc., to
appear.

Kunen, K., and J. Vaughan, editors.
[1984] Handbook of Set-theoretic Topology. North Holland, Amsterdam.

LaBerge, T.

[1999] A space with normal countable-to-one regular preimages. Topology Appl. 91
(3), 227-232.

Lane, E., P. Nyikos, and C. Pan.
[20∞] Monotone insertion properties of stratifiable spaces. To appear.

Larson, P. and S. Todorcevic.
[20∞] Katetov’s Problem. Trans. Amer. Math. Soc., to appear.

Lemin, A.J. and V. A. Lemin.
[2000] On a universal ultrametric space. Topology Appl. 103, 339-345.

Matveev, M. V.

[1997] Some questions on property (a). Questions Answers Gen. Topology 15 (2),
103-111.

Michael, E.

[1981] Inductively perfect maps and tri-quotient maps. Proc. Amer. Math. Soc. 82,
115-119.

van Mill, J. and G.M. Reed, editors.
[1990] Open Problems in Topology. North Holland, Amsterdam.

Mizokami, T. and K. Koiwa.
[1987] On hyperspaces of compact and finite subsets. Bull. Joetsu Univ. Ed. 6(3),

1-14.

21



Mizokami, T. and N. Shimane.
[2000a] On the M3 versus M1 problem. Topology Appl. 105(1), 1-13.
[2000b] A Lasnev space is LF-netted. Houston J. Math. 26, 537-542.

Mizokami, T., N. Shimane, and Y. Kitamura.
[20∞] A characterization of a certain subclass of M1-spaces. To appear.

Morita, K., and J. Nagata, editors.
[1989] Topics in General Topology. North Holland, Amsterdam.

Mrówka, S.

[1997] Small inductive dimension of completions of metric spaces. Proc. Amer.
Math. Soc. 125, 1545-1554.

[2000] Small inductive dimension of completions of metric spaces, II. Proc. Amer.
Math. Soc. 128, 1247-1256.

Nagata, J.

[1983] Modern dimension theory. Heldermann Verlag, Berlin
[1999] Remarks on metrizability and generalized metric spaces. Topology Appl., 91,

71-77.

Nyikos, P.J.

[1999] Metrizability, monotone normality, and other strong properties in trees. II
Iberoamerican Conference on Topology and its Applications(Morelia, 1997).
Topology Appl. 98, 269-290.

Ohta, H. and K. Yamada.
[1998] Simple examples showing that various topological properties are not finitely

additive in the sense of V. V. Tkachuk. Math. Japon. 47 (1), 93-95.

Okunev, O.G.
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[1993] The products of meta-Lindelöf spaces. Topology Proc. 18, 221-229.

24


